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Two-component magnetic systems are investigated in the framework of an infinite-range model 
with fluctuating exchange couplings. Depending on the sign of the average exchange-interaction 
energy and the relative magnitudes of the average value and standard deviation of this energy, re- 
entrant phase transitions to a spin glass are possible both from the ferromagnetic and from the 
antiferromagnetic phase. The phase diagram in a magnetic field for systems in which the average 
exchange energy has antiferromagnetic sign is constructed. Its characteristic feature is a nonmon- 
otonic dependence of the temperature of the transition to the spin glass (the de Almeida-Thou- 
less temperature) on the external field. The susceptibility in the antiferromagnetic phase is found, 
and it is shown that for sufficiently strong disorder the susceptibility in a region of temperatures 
near the NCel point increases as the temperature decreases. 

Theoretical investigations of spin glasses are currently 
conducted mainly in the framework of the infinite-range 
model proposed by Sherrington and Kirkpatrick1 (the SK 
model). Depending on the relative magnitudes of the param- 
eters, this model describes both the paramagnet-spin-glass 
transition and successive paramagnet-ferromagnet-spin- 
glass transitions (the latter transition is customarily called a 
re-entrant transition).' In the SK model a spin glass is a 
nonergodic phase characterized by an infinite number of or- 
der parameters, viz., by a function q ( x )  (Refs. 3-5). Al- 
though in reality the interaction energy depends in an essen- 
tial way on the distance, the results obtained on the basis of 
the SK model give a good description of the basic properties 
of spin glasses (see the reviews in Refs. 6 and 7) .  

Sherrington and Kirkpatrick' proposed a variant of in- 
finite-range model in which the re-entrant transition to the 
spin glass can occur only from the ferromagnetic phase. At 
the same time, the introduction of disorder into an antiferro- 
magnet leads naturally to antiferromagnet-spin-glass phase 
transitions. Transitions of this type have been observed in 
many  substance^.^-" 

In the present paper the SK model is modified so as to be 
able to describe multicomponent Ising magnets undergoing 
re-entrant transitions both from the ferromagnetic and from 
the antiferromagnetic phase (and, with an obvious change of 
the parameters, from the ferrimagnetic phase). We consider 
in detail the situation in which, as the temperature is 
lowered, the paramagnetic phase is succeeded by the antifer- 
romagnetic phase and then by the spin glass. It is shown that 
an Ising antiferromagnet with a sufficiently large number of 
frustrated couplings (i.e., with about half of the couplings 
frustrated) possesses unusual properties. Near the NCel tem- 
perature the susceptibility in the antiferromagnetic phase 
does not display the usual decrease with lowering of the tem- 
perature, but, on the contrary, increases. 

The phase diagram in a magnetic field is constructed. 
With increase of the field the Nee1 temperature T, (H) de- 
creases monotonically to the value To = T, ( H , )  at which 
TN ( H )  intersects the de Almeida-Thouless (AT) line 
Tf (H) on which the transition to the spin-glass state occurs. 

Thus, To is a triple point on the phase diagram in the ( T, H) 
plane. The AT line undergoes a striking change in compari- 
son with that for the one-component model. In the one-com- 
ponent model Tf decreases monotonically as the field in- 
creases. In our case, for H < H o  the temperature Tf (H) 
passes successively through a minimum and a maximum as 
the field increases, and its value at the maximum exceeds 
Tf (0).  

In this paper we do not discuss the properties of the 
spin-glass phase. This question will be considered separate- 
ly. 

1. THE FREE ENERGY 

We shall consider a two-component Ising magnet in 
which only spins of different types interact. The Hamilton- 
ian of the system has the form 

where S , i  and SZi are the spins of the different components, 
Si = f 1, and H is the external magnetic field. The ex- 
change integrals will be assumed to be distance-independent 
random quantities with the normal distribution 

where N is the number of spins in each of the components. 
For J o ( O  this model differs only in inessential details from 
the SK model. But if Jo > 0, then for small J ,  our model, 
unlike the SK model, admits the establishment of long-range 
antiferromagnetic order. 

By making use of the method of replicas, we can repre- 
sent the free energy per spin in the form' 

n N 

where a is the replica index. By integrating over Jij we trans- 
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form the expression for f to the form 

The summation over ( a ,  0 )  is performed over all different 
pairs of indices a and 8. Following next the standard proce- 
dure, we obtain 

I 
f=-T lim- 

2 n N  

wherep = 1,2, and 3, and 

+ (.ypa')'- ln T r  exp [gx (S,a+S2a) 
(a,B)p a 

In the limit N- m the integrals are calculated by the method 
of steepest descent. As a result, 

where the subscript 0 indicates the solutions of the saddle- 
point equations 

The angular brackets signify averaging with the exponential 
that appears inside the trace in ( 6 ) .  

2. THE REPLICA-SYMMETRIC SOLUTION 

Assuming that the matrix elements qaB and qy5 in (8 )  
are all the same and equal to q and q,,, , respectively (analo- 
gously, ma = m and my,, = m,,, ), we obtain equations of 
the SK type: 

mIs2=(th E2,l (z)  ),, 

q1,2=(th2 E2,i (z )  ) e ,  

m='12 (m,+m2), q='/z(qif qz). 

Here 

The angular brackets in (9 )  signify averging over z with a 
Gaussian distribution function: 

In the absence of an external magnetic field we have 
q,  = q 2 a n d ( i f J o > O ) m l =  - m , , o r ( i f J o < O ) m l = m 2 , s o  
that Eqs. ( 9 )  coincide with the SK equations.' Therefore, 
for H = 0 the phase diagram determined by the system (9 )  is 
analogous to that obtained in the one-component SK model. 
The corresponding diagram is given in Fig. 1, in which the 
A T  line is also shown.' In  contrast to the SK diagram, in our 
model, depending on the sign of J,, both ferromagnetic and 
antiferromagnetic ordering are possible, and, correspond- 
ingly, there arises a re-entrant transition to the spin-glass 
phase both from the ferromagnetic phase and from the anti- 
ferromagnetic phase. 

I t  is known that the replica-symmetric solution is valid 
only in that region of the phase diagram which lies above the 
AT line on which the transition to the spin glass occurs. The 
equation determining this line in an external magnetic field 
will be derived in the next Section. 

3. THE DE ALMEIDA-THOULESS LINE 

In order to determine the region of stability of the re- 
plica-symmetric solution it is necessary to find the eigenval- 
ues of the matrix 

d 2 @  
Y ,,, = lim 

71-0 aypaii d ~ ~ , : ~  ' 

Instability appears when one of the eigenvalues becomes 

FIG. 1. Phase diagram in the (T, J,) plane. The dashed lines are lines of 
re-entrant transitions in the replica-symmetric model. 
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FIG. 2. Diagrammatic series for the correlator K"'. 

negative.2 Here \V is a 3 X 3 matrix in the space of the vectors 
x = (j l , j2, j ,) ,  wherej, is the matrix with elements yiS. AS 
shown in Ref. 2, there are three i2dependent eigenfunctions 
p z)  (i = 1,2,3) of the matrices Ypp . To one of these func- 
tions, which we denote by p A", there corresponds an eigen- 
value that changes sign at a certain tem~erature.  It is easy to 
convince oneself that all the matrices YppI. that are nondia- 
gonal in the subscripts have the sa%e symmetry in the re- 
plica sRace as the diagonal matrices Ypp . Therefore, the ma- 
trices \VppI do not mix functions p:) with different i. As a 
result, the eigenfunctions of the matrix Y are columns with 
elements proportional to p A". In order to find the condition 
for instability of the replica symmetric solution it is suffi- 
cient to take the eigenfunction constructed entirely from 
4;'). The equation for the eigenvalues A has the form 

Here 

hY3-h a,,,, A,,,, 
a,,,, A,,-a 0 
a,,,, 0 h,,-A 

J2 
hu,,,=l + -(I-<ch2 E2,l ( z )  >,), 

T2 ( 14) 

= 0. 

P 
h ,,,,,, = i  -(ch-' Ez,, ( z )  >,. 

T2  
(15) 

One of the roots of Eq. ( 12) is equal to unity. The other 
two roots are 

l2 
hl,2=l* -[(ch- 'E,  ( z )  >,(ch-' E 2 ( z )  >,I1". 

T' 
(16) 

This means that the line of the transition to the spin-glass 
state is determined by the equation 

T ' /P=<c~- 'E ,  ( z )  > , (~h - 'Ez ( z )  )c, (17) 

where m,,, and q,,, must be found from Eqs. (9) .  
We now show that the A T  instability line can be ob- 

tained by considering the singularity of the correlator 

Here the local susceptibility of the spin S,  is equal to 

The brackets ( . . . ), signify thermodynamic averaging 
with the Hamiltonian ( 1 ) , which can be represented in the 
form 

The term quadratic in the spin in Xo for the infinite-range 
model under consideration is equivalent, like the other two 
terms, to the energy of the spins in the field. 

The diagrammatic series for K, obtained by means of 
the standard technique for the Ising model,12 is shown in 
Fig. 2. The circles with indices 1 and 2 correspond to correla- 
tors K in which the averaging is performed with the Ha- 
miltonian To: 

while the double lines linking the circles correspond to J 2/ 

T2 .  The system of Dyson equations for the correlators has 
the form 

K ( ~ = K : ' )  + J ~ T - Z K ; ' ) K ( ~ ) ,  

and its solution is 

T 4  
The condition for vanishing of the denominator in (22) co- 
incides with the equation ( 17) that determines the tempera- 
ture of the transition to the spin glass. 

For the one-component model with Jo = 0 and Ho = 0 
the connection between the stability condition and the posi- 
tion of the singularity in the correlator was noted in Refs. 13 
and 14. 

In the absence of an external magnetic field we have 
( c o ~ h - ~ E ,  (z)) ,  = ( c o ~ h - ~ E ~ ( z ) ) ,  , and Eq. ( 17) coin- 
cides with the A Tequation. The corresponding phase-transi- 
tion line is depicted in Fig. 1. 

4. THE PHASE DIAGRAM IN A MAGNETIC FIELD 

In the one-component model or in the two-component 
model with Jo < O  an external field destroys the transition 
from the paramagnetic to the ferromagnetic phase and leads 
to a monotonic decrease of Tf with increase of the field. In 
the two-component system with Jo > 0 the effect of the mag- 
netic field on the phase diagram turns out to be much more 
interesting. 

We shall consider first the phase diagram near the triple 
point, when (Jo - J)/Jo = b(1. Expanding the expression 
(9)  in powers of m, q and H ,  we obtain an equation for the 
NCel temperature TN ( H )  : 

where 
HTN m=m,=m,= - 

TN+Jo ' 
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The second solution 
a 

2':' =I[ 1-2b"cos -1 
3 

H 

FIG. 3. Phase diagram in the ( T , H )  plane. The dashed line is the line of 
the re-entrant transition in the replica-symmetric model. 

and q ( TN ) = q, ( TN ) = q2 ( TN ) satisfies the equation 

In very weak magnetic fields, when TN ( H )  > J ,  it follows 
from (25) that 

Substituting (26) and (24) into (23), we obtain 

This formula is valid if H#bJo. With increase ofH, when TN 
approaches J ,  the term proportional to ( 1 - J 2 / T 2 )  in Eq. 
(25) can be discarded, and 

The fields for which this formula is valid satisfy the inequa- 
lity IJob - H l/H( 1. 

Finally, we consider the region of fields for which the 
temperature satisfies TN < J  and the inequality J /  
TN - 1 )H /J. Then 

Using (23), (24), and (29), we obtain a cubic equation for 
TN : 

which in the physical region of parameters has two solutions 
if the field satisfies 

and has no solutions if H > Ho. One of the solutions is 

where 

joins with (28) at H- bJo and describes the decrease of the 
NCel temperature as the field increases with H)bJo to 
H = Ho. At H = Ho the NCel temperature is equal to 

satisfies the inequality J / T N  - l ) H  for all magnetic fields 
less than Ho. It gives the temperature of the re-entrant tran- 
sition from the antiferromagnetic state to the spin glass in 
the replica-symmetric scheme. For H = 0 we have 
T 2) ( 0 )  = J( 1 - 36) ' I 2 ) .  As the field increases, so does 
T$), and at H = Ho it coincides with To (Fig. 3) .  Below we 
shall see that in the phase diagram the whole branch de- 
scribed by formula (34) falls in the region of instability of 
the replica-symmetric solution. 

It follows from the above analysis that near the triple 
point of the phase diagram of Fig. 1 the Ntel temperature 
decreases anomalously fast with increasing H. The destruc- 
tion of the antiferromagnetic order by the magnetic field is 
entirely different from that in an ordered magnet, in which, 
as H increases the NCel temperature decreases to zero in 
fields comparable to the exchange field. In strongly disor- 
dered antiferromagnets, for which J= Jo, the minimum Nee1 
temperature To differs little from Jo, and is attained in a field 
Ho(Jo. As we shall see below, the conclusion that the mini- 
mum NCel temperature is not equal to zero also remains 
valid far from the triple point, but in this case the antiferro- 
magnetism vanishes at temperatures substantially lower 
than Jo. 

We now turn to the AT instability line. I t  is simplest of 
all to obtain the dependence Tf ( H )  for H>Ho. In this case, 
m, = m, and q, = q,, and the dependence Tf (H) is obtained 
directly from the AT formula for a one-component magnet 
by replacing H by H - Jom = H/(  1 + Jo/T) r H  /2: 

From this is can be seen that for H = Ho the temperature 
Tf(Ho) coincides with To = TN (H,). Thus, the point 
(To,Ho) lies at the intersection of the lines Tf (H) and 
TN ( H ) ,  so that (To,Ho) is a triple point on the ( T,H) phase 
diagram. 

In the region H < Ho on the AT line the antiferromag- 
netic order parameter I ( H )  = 4 [m, (H) - m, (H) ] is non- 
zero. As H decreases from Ho the temperature Tf (H) in- 
creases in accordance with a law close to (35 ), for so long as 
the parameter I (H) is small in comparison with the sublat- 
tice magnetization, which in order of magnitude is equal to 
H. This is the case when (Ho - H)/Ho is of the order of 
unity, and formula (35 ) shows that Tf (H) then increases by 
an amount of the order of J b  ' I 2  in comparison with To. With 
further decrease of the field the character of the dependence 
changes sharply. In order to understand the general form of 
the dependence Tf ( H )  we shall consider extremely weak 
fields. 

F o r H =  Owehavem,(O) = m2(0)  andq,(O) = q,(O), 
and from Eqs. (9 )  we obtain 

mi2 (0)  = Z ~ T - ~ / ~ T ~ ,  

q, (0) = ~ [ l f  4/3b-4/,~2], T=I-T/J~. (36) 

It follows from (36) and (17) that 
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I t  can be seen from (37),  (35),  and (33) that to within the 
leading terms in b ' I2  the temperatures Tf (O), To and 
Tf (H,) coincide. 

Expanding in powers of H ,  we obtain 

m,, , (H)  =m, , ( O )  +H/2Jd~IP/8J ,%,  ( 0 ) ,  

q , , ~  ( H )  =q,  (0) *HJ,,mi (0)/2T'+'/12H2/T2.  
(38) 

In this region of fields the temperature of the transition to 
the spin glass decreases as the field increases in accordance 
with the law 

According to (39),  the decrease occurs very slowly and the 
maximum change Tf (0 )  - Tf (H,) is of the order of 
J b  3 ' 2 ( ~  - Tf (0 )  = J b  'I2. On the other hand, as was shown 
earlier, at a certain H of the order of Ho the temperature 
Tf ( H )  takes a value that exceeds Tf (0 )  by an amount of the 
order of J b  ' I 2 .  Consequently, there is a region of fields of the 
order of Ho in which the transition temperature Tf (H)  in- 
creases with increase of H (see Figs. 3 ) .  

In the one-component model that has been investigated 
up to now, irrespective of the relative magnitudes of the pa- 
rameters the temperature Tf (H) decreases monotonically 
with increase of the field, i.e., the magnetic field always sup- 
presses the spin glass. In the two-component Ising model 
with Jo > 0 the field suppresses the spin glass in weak and 
sufficiently strong fields, but there is a region of fields which, 
on the contrary, suppress the antiferromagnetism and facili- 
tate the appearance of the spin glass, and the transition tem- 
perature Tf (H) in these fields is higher than Tf (0 ) .  This 
character of the dependence Tf ( H )  is valid not only for b( 1 
but for all relative magnitudes of Jo and J ,  provided that 
Jo > J. 

The odd behavior of Tf ( H )  becomes understandable if 
we examine how the internal field acting on the sublattices in 
the ordered Ising ferromagnet varies as a function of the 
external field. From the equations 

it follows that 

The denominator in (40) is always positive. As can be easily 
checked, e.g., for Jo/n 1, the numerator changes sign twice 
with increase of H ,  so that the internal field acting on the 
first, stiffer sublattice increases with H in weak and strong 
fields and decreases in intermediate fields. The increase of Tf 
is a reflection of this decrease in "stiffness" in intermediate 
fields. 

We now find Tf ( H )  for Jo,J. We shall assume that the 
average internal fields H - Jam,,, acting on the sublattices 
are much greater than J. Then we have 

1 
T I  ( H )  = - -1erp - -[ ( H - J ~ ~ , ) ~ +  ( ~ - - l ~ m ~ ) ~ ] )  . { 412 3 

(41 
In fields H < Jo and (Jo - H ) / J $ l ,  when, to within expon- 
entially small terms, we have m,  = - m, = 1, the tempera- 
ture Tf decreases with increase of the field: 

B u t i f H > J o a n d ( H -  J , ) / J ) l , thenm,  = m ,  = l a n d  
Tf (H) decreases like J exp{ - (H - J0 l2 /W *) with in- 
crease of the field. Thus, approaching H- Jo from the region 
of strong fields we obtain Tf -J, and approaching H-J, 
from the region of weak fields we obtain 
Tf - J exp( - J t / W 2 ) .  This means that in the interval of 
fields IH - JoI -J there is a sharp increase of the tempera- 
ture of the transition to the spin glass with increase of the 
field. The phase diagram has qualitatively the same form as 
that in Fig. 3. 

5. MAGNETIC SUSCEPTIBILITY IN THE 
ANTIFERROMAGNETIC PHASE 

In the preceding section we saw that for (J,, - J)/Jo< 1 
fluctuations of the exchange-interaction energy strongly af- 
fect the properties of the antiferromagnetic phase. I t  turns 
out that the temperature behavior of the magnetic suscepti- 
bility in a wide range of parameters is changed qualitatively 
by the fluctuations. 

Differentiating Eqs. ( 9 )  with respect to H ,  we obtain a 
system of equations for dm,.,/dH and dq,.,/dH. Taking 
into account that in the limit of zero field we have dm,/  
d H  = dm,/dH = X, dq,/dH = - dq,/aH and m , = - m,, 
q, = q,, we have 

II 

I t  follows from this that in the antiferromagnetic phase near 
TN = J,, i.e., for T = (T, - T)/T, (1, the susceptibility 
satisfies 

Comparing (43) with the paramagnetic susceptibility 
x = ( T  + Jo) - I ,  we see that, as usual, the susceptibility has 
a discontinuity at  the transition point. But in contrast to the 
ordered antiferromagnet, if J <  Jo < 2 ' 1 2 ~  the susceptibility 
in the antiferromagnetic phase near T, does not decrease 
with increase of the temperature, but increases, though more 
slowly than in the paramagnet. 

This unusual behavior of the susceptibility in the anti- 
ferromagnetic phase is due to the large number of frustrated 
couplings. If there are few frustrations, i.e., J <  ~,,/fi, the 
susceptibility, as usual, decreases in the interior of the anti- 
ferromagnetic phase. 

In the case b( 1 it is possible to calculate the magnetic 
susceptibility in the entire temperature range of the antifer- 
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romagnetic phase. It  is easy to see that for b( 1 
10 

IT = - [ l -q ,+ (Jami )Z l ,  
T 

and it follows from (36) that 

The susceptibility described by formula (45) has a maxi- 
mum at r = b 'I2, so that, to leading order in b 'I2, the tem- 
perature of the maximum coincides with TJ. 

If Jo/J)l, then 1 - q, is proportional to 
exp ( - J i /W ,), and the second term is proportional to the 
square of this exponential. Therefore, 

The expression (46) is valid in the wide temperature range 
J2/Jo)T > Tf o:exp( - J i / W 2 ) .  

Finally, we note that the nonlinear susceptibility 
X(3' = $3 ( m  , + m,)/dH is anomalously large in the para- 
magnetic phase near the triple point of the phase diagram, 
i.e., for b( 1: 

CONCLUSION 

The question of whether the results obtained here are 
applicable to Heisenberg antiferromagnets of the "easy- 
axis" type requires additional analysis. But it may be antici- 
pated that they are applicable at least for so long as the exter- 
nal field, directed along the easy axis, is smaller than the 
sublattice-reversal field. 

In the experimental study of disordered antiferromag- 
nets one should keep in mind the random-field effects that 

can occur if the external magnetic field is switched on along 
the easy a ~ i s . ' ~ , ' ~  In order that these effects not lead to de- 
struction of the long-range antiferromagnetic order it is nec- 
essary to apply not-too-strong external fields or to switch on 
the external field after the transition to the antiferromagnet- 
ic phase. l 6  

The model investigated here can be generalized easily to 
describe more complicated magnets. In particular, one 
could include the interaction within the subsystems with 
spins S,  and S,. However, this should not qualitatively alter 
the results obtained here. 
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