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The spectrum of a Peierls semiconductor with a charge-density wave (CDW) is studied in the 
two-band model in the self-consistent-field approximation. I t  is shown that the energy gap in the 
single-particle excitation spectrum can have a nonmonotonic temperature dependence and can 
even go to zero. The temperature dependence of the CDW wave vector Q is analyzed. The rela- 
tionship of the results to experiments on TaS, is discussed. 

The kinetic properties and other characteristics of qua- 
si-one-dimensional conductors which on cooling below a 
temperature Tp undergo a Peierls transition and develop a 
charge-density wave (CDW) have received a great deal of 
study in recent years. It has been found that even in weak 
electric fields E 5 1 V/cm the CDW plays an important role 
in the kinetics of a number of inorganic compounds (TaS,, 
NbSe,, KO,, MOO,, and others). In spite of the considerable 
progress made toward understanding the properties of con- 
ductors with CDWs, many questions remain (see, e.g., the 
review by Salva et al . ' ) .  For example, there is still some 
doubt about the activation energy of CDW conductors. The 
activation energy determined from the temperature depen- 
dence of the conductivity in a weak field E is generally iden- 
tified with the band gap E, in the single-particle excitation 
spectrum. At the same time it is known that the conductivity 
can contain a contribution from excitations of the ampli- 
tude-soliton type, and the energy necessary for the forma- 
tion of such excitations on a single chain is different from E, . 
Optical  measurement^^.^ in orthorhombic TaS, (0-TaS,), 
which could prove the existence of amplitude solitons, give a 
complicated picture of the photoconductivity spectrum. The 
observed spectral dependence of the photoresponse, al- 
though consistent with the existing ideas about the energy 
spectrum of amplitude solitons, is too complex for unam- 
biguous interpretation. In addition, the CDW wave vector Q 
in o-TaS, has been found to depend on the temperature. The 
reason for this, too, is unclear. 

The majority of the theoretical papers on Peierls con- 
ductors with CDWs have, as a rule, used the extremely sim- 
ple model of a one-band metal for T >  Tp ) in which the Fer- 
mi surface consists of two slightly curved planes. In the 
self-consistent-field approximation under the assumption 
that amplitude solitons can be neglected, the half-width E, of 
the band gap in this model is equal to the amplitude of the 
order parameter A and depends on the temperature in accor- 
dance with the BCS formula. At the same time, it is known 
that the compounds under study have a complex crystal 
structure with seveial nonequivalent chains in the unit cell.' 
I t  is therefore of interest to ascertain the qualitative changes 
that would result from allowing for the multiband nature of 
the energy spectrum. The necessity of this was pointed out 
back in Ref. 1 in connection with the interpretation of the 
Q ( T )  curve in o-TaS,. In addition, the influence of the mul- 
tiband nature on the structure of soliton lattices arising in 

systems with period doubling or approximate period dou- 
bling was studied in Ref. 4. 

In the present paper we investigate theoretically the en- 
ergy spectrum of a Peierls conductor in the two-band model, 
i.e., we assume that the Fermi surface in the metallic state 
consists of two pairs of curves planes. Such a spectrum might 
be due, for example, to the presence of two nanequivalent 
chains in the unit cell. Working in the self-consistent-field 
approximation, we find the momentum dependence of the 
excitation energies for T < T, and show that even this simple 
model gives some qualitatively new features: a fundamental 
restructuring of the excitation spectrum, the possibility of a 
gapless state of the Peierls conductor, a nonmonotonic tem- 
perature dependence of the energy gap E, , etc. 

1. Let us consider a quasi-one-dimensional two-band 
metal in which both bands E, ( p ) ,  where s = 1,2, have n -  
type conductivity. We assume that PFr - Q/2 /<Q,  i.e., the 
Fermi momentap, of both bands are close (on a scale of Q)  
to Q /2. Then the energy (measured from the Fermi energy 
EF ) of an electron near the right-hand ( a  = 1 ) or left-hand 
( a  = - 1 ) Fermi plane can be written in the form 

where 

is the modulus of the Fermi velocity in band s. The Hamil- 
tonian of the system is of the form 

Here 

The first term in (2 )  is the electronic part of the Hamilton- 
ian. The electron-phonon interaction of interest here [the 
second term in ( 2 ) ]  is written in the self-consistent-field 
approximation. The summation in ( 3 )  is over all indices and 
all momenta k. The matrix elements of the order parameter 
are 

aa' A... =o (a=al) ,  

A:; =A;> --A,,,=g,, ,(  b,+b-,+> (a+ a ' ) ,  

whereg,,, is the matrix element for the transition of an elec- 
tron from one part of the Fermi surface to the other, either 

101 4 Sov. Phys. JETP 62 (5), November 1985 0038-5646/85/111014-04$04.00 @ 1986 American Institute of Physics 101 4 



with a change in the band index ( s f s ' )  or without a change 
in the band index (s  = s ' ) ,  and 6 ,  is the annihilation opera- 
tor for a phonon having the same wave vector as the CDW. 
The fact the order parameter A,, depends only on a single 
pair of phonon operators 6 ,  , b  T, means that we are assum- 
ing the development of a single CDW with wave vector Q. 
The occurrence of two vectors Q depends on the strength of 
the interaction between chains. For example, in the case of 
two types of chains, two CDWs with different wave vectors 
Q arise if the interaction between chains is weak. If the cou- 
pling between chains is sufficiently strong, the development 
of CDWs with Q, #Q2 is energetically unfavorable. Such a 
situation occurs, for example, in NbSe, for 59 < T <  145 K, 
in o-TaS, for T < T, = 2 15 K, and in m-TaS, for 
160 < T < 240 K. '  The last term in (2 )  describes the phonon 
subsystem. 

We introduce Green's functions as in Ref. 5, but in the 
present case they are matrices not only with respect to the 
indices ( a , a 1 )  but also with respect to $e band indices 
(3,s'). For example, the retarded function GR is of the form 

8"= [G,?' ( t ,  t ' )  1" 
=-ie(t-t ')  < C , , ( ~ ) C ~ ~ ~  (t')+c:,' ( t ' )  c,,(t) ). 

With the aid of (2 )  we obtain an equation for+'A) [we will 
drop the superscript R ( A )  ] : 

aa' aa' 
C-'C=[6,,,6..( ( 8 - e I a ( k ) )  -A,,,  ]G,,r =6,,,6,.,. (4 )  

h A 

Inverting the matrix G - I ,  we easily find the function GR'A' 
whose poles determine the excitation spectrum. The equa- 
tion for the poles is 

Det G-'=(&-el+) ( E - & I - )  ( E - E ~ + )  ( E - E ~ - )  

-Ai ' (&-e2+) ( 8 - ~ 2 - )  

-A2' ( & - E l + )  ( 8 - & I - )  -A:[ ( & - & I + )  ( & - & 2 - )  

+(&-el-) (E-ez i  ) If (A1A2-As2)'=0. ( 5 )  

Here E,+ = ~ : ( k )  for a =  1, s =  1,2, and A,,,, 
= A, = A,, = A,,. From Eq.(5) onecaninprinci- 

ple find the spectrum ~ ( k )  for various relationships among 
the parameters of the system. For general relationships 
among the parameters, however, the analysis is too compli- 
cated. Therfore, to obtain a qualitative understanding of the 
behavior of the system, let us first consider the simplest, 
symmetric case. We assume that A, = A, = A and kv, 
= kv2-6. We then obtain from ( 5 )  a biquadratic equation1' 

for the energy E=E - 7,  where 7 = ( v l  + 77,)/2. By solving 
this equation we find two branches of excitations: 

Here y = A,/A, and 2a = (7, - v2) = El(Q/2,pl  ) 
- E2(Q/2,p, ) is the distance between the bands in the me- 

tallic state a t p  = Q /2. The excitation energy 2 is measured 
from the midpoint between the bands. Figure 1 shows the 
dependence of the excitation energy Z on the "momentum" 
6 = kv in the case a < A (Fig, l a )  and a > A (Fig. lb ) .  One 
can obtain E(6) in the other quadrants by a mirror reflection 
with respect to the 2 = 0 and 6 = 0 axes. The values of Z at 
the extrema are given by 

FIG. 1. Excitation energy E as a function of "momentum" = ku for a )  
A = 0 . 2 ~  and b) A = 1 . 5 ~ .  In both cases y = 1. All quantities are normal- 
ized to a. 

T , , ~  ( 0 )  = 1 ( a Z + ~ ' y Z )  '"+A 1, F,=YA (a2-A')  " ' la .  (7 )  
The 2, minimum given by 2, exists and is different from 
E,(O) if 

Consequently, the energy gap E, is equal to Em for A < A, 
and to 2,(0) for A>A,. 

It is interesting to track the change in E, as a function of 
the quantity A/a. Figure 2 showsE,,, (O), Em, and&, as func- 
tions of A/a for two values of y [see Eq. ( 7 )  1. It is seen that 
E, has a nonmonotonic dependence on A/a. This circum- 
stance can lead to a nonmonotonic temperature dependence 
of the gap. If A(0)  > a d .  where A(0)  is the value of the 
order parameter at T = 0, then E~ will first increase with 
increasing temperature and then will decrease to zero. In 
addition, if y # 1 there can be a gapless state in which E, = 0 
but A $0. It follows from ( 7 )  that the gap in the spectrum 
goes to zeroat A = Oand A2 = a 2 ( 1  - y ) - ' .  

2. Let us now calculate thejensity of states N(E) .  Using 
(4 )  to determine the functions GR'A) and neglecting the cur- 
vature of the Fermi surface, we find 

Thus, if the smearing of the spectrum is ignored N(E)  has a 
square-root singularity at the extrema 
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FIG. 2. Minima of the function E(4) versus A  for a )  y = 1 and b) y = 0.5. 

N ( e ) m  [ ~ - T ~ , ~ ( O ) ]  - I h ,  N ( E ) ~  [ F - € , I - " ' .  
Let us now turn to the self-consistency condition, which 

determines the temperature dependence of the order param- 
eter A. The equation of motion for the phonon operators 
easily yields 

A=i(hIZn) 5 dS  1 ~ E [ G : I - + G ~ - + G : - + G ~ ~ ] .  (10) 

Here G: - = (GR - G A ) $  - t anh(~ /2T) ,  and A=g2/  
uev. For simplicity we have ignored the dependence of 7 on 
p, and considered the special case A, = A, = A, v l  = v, = v, 

h 

and Y = 1. Substituting into ( 10) the expressions for GR'*' 
from (4)  and performing the integration over e, we get 

e0 

E l  & z 2 - g 2  E z  L=hj  -[ tanh - - - tanh -1, 
~1 - E z  2T &z 2T 

(11) 

where E~ and E, are given by (6)  for 7 = 0 and y = 1. Let us 
consider ( 1 1 ) at low temperatures, where the difference 
between A and A (0)  is small. The correction giving the dif- 
ference between A and its value at T = 0 for a(A is 

nTaVh 
A-A (0) =A ( 0 )  [(=) e-a112AT- ($) I" e - z ~ l ~ ] .  ( 12) 

Thus, it follows from ( 12) that at low temperatures the first 
term is greater than the second term and that A increases 
with increasing T. However, since the coefficient of the ex- 
ponential are small the increase in A is extremely small and is 
practically unnoticeable. The function A ( T) obtained by 
numerical integration of ( 12) is shown in Fig. 3, along with 
the temperature dependence of the gap E,. 

FIG. 3. Temperature dependence of the order parameter A  and of the half- 
width E, of the band gap for0 = 0.8A(0) .  The points show the BCS curve 
for 2A(T) .  

3. In the symmetric model (with v l  = u, and A ,  = A,) 
studied in paragraph 2 above, the CDW wave vector is given 
by Q = ( p,, + p,, ), and the Fermi level passes midway 
between the bands. If the bands are asymmetric, the Fermi 
level is shifted, and the CDW wave vector depends on the 
temperature.,' Analysis of the form of Q( T) for an arbitrary 
shape of the spectrum E ,,, ( p )  leads to awkward expres- 
sions. Let us therefore consider a simplified model with a 
linear dispersion relation El = ku, + a and E, = ku, - a 
with only slightly different velocities v,,, = v (  1 + Su/v), 
where Sv/v( 1. Let us also suppose that the electron-phonon 
interaction constants g,, and g,, differ only slightly: 
gllo2, = ( 1 + Sg/g), where Sg/g( 1. Then the excitation 
energies f tjo' (here the t jO' are the arithmetic values of the 
roots in (6 ) ,  s = 1,2) are changed in comparison with (6)  by 
an amount 

be.= ( -1 )"  ( (g26vlv)+ ( A 2 6 g / g ) ]  [ a 2  ( g 2 +  A 2 )  +A'y2 ] - ' .  
(13) 

To find the equilibrium value of Q and Ef=p we must 
minimize the free energy F = p N  - R for a specified number 
of particles. The minimization leads to the condition an/ 
a Q  = 0, where R is given by the familiar expression 

Eo 

Q = T E J  n o d g l o L [  2 I +  tanh 2 T (14) 

Here 

The condition that R (Q) be an extremum leads to the equa- 
tion 

4 Eo 

1  
Z ( E , - ~ ) - - - E  d(g tanh 

F , , + E * - ~  
2  

n = l  0 
2T 

+EX j d l [  1- tanh 'n'EQ-" 2  T  d;, -- - o. (15) 
, I - 1  0 

If 6u = 0, Eq. ( 15) is solved by Qo = 2p/v = 2k,. For 
T >  T,, when A = 0, Eq. ( 15) becomes an identity, i.e., the 
vector Q is indeterminate, as it should be in this case. Let us 
suppose A#O (i.e., T <  T, ) and substitute into (15) expres- 
sions (6)  and ( 13) for the branches of the spectrum of exci- 
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tations En . Then Eq. ( 15 ) and conservation of particles yield 

u ~ Q - u  (Q-Qo)  = ( 2 B - A C )  / ( 2 - C ) ,  (16) 
where 

EQ - ( 0 )  
En 

tanh - 
2T ' 

It follows that at low temperatures T<A, the difference 
between Q and Q, = ( p,, +p,, )/2 is exponentially small 
(the coefficients B and C are exponentially small). The dif- 
ference SQ changes with increasing temperature. It follows 
from ( 16) that the relative change in SQ at T- A is equal to 
max{Su/v,Sg/g). It can be found by numerical evaluation of 
the integrals in ( 16). Let us confine ourselves here to a calcu- 
lation s of SQ in the limit T)A, i.e., for temperatures near 
T, . In this case we have 

Thus as the temperature decreases, the difference between 
the CDW wave vector Q and Q, changes from the value 
given by ( 17) to a value of zero. 

4. Our analysis above has shown that allowance for the 
multiband nature of the conductor even in the simplest mod- 
el leads to an unusual energy spectrum for the Peierls semi- 
conductor. 

First of all, the minima of the restructured conduction 
bands can be found both for a single value of the wave vector 
and for different values. Since the distance 2a between the 
bands depends on p, , the energy gap E, also depends onp, . 
Consequently, the band structure in a real substance with a 
CDW can be extremely complicated. 

Second, the band minima have an unusual dependence 
on the order parameter A. While 2 ,  (0 )  for the upper band 
increases with increasing A, E,(0) for the lower band de- 
creases with increasing A; this can lead to a nonmonotonic 
temperature dependence of the gap E, (see Fig. 3 ) . For such 
a dependence to be realized, it is necessary that A at low 
temperatures be greater by a factor of 1 / f i  than the distance 
between bands in the metallic state. We note that in real 
substances the transverse dispersion of the electron spec- 
trum and the fluctuations not taken into account here should 
lower the temperature of the Peierls transition in compari- 
son with the curves of Fig. 3. 

We also note that the self-trapping of the excitations, 
which is accompanied by a deformation of the lattice (the 
formation of solitons), gives rise to a change in the spectrum 
obtained here (see, e.g., the review by Heeger et and the 
literature cited therein). However, ifthe interaction between 
chains is sufficiently strong, i.e., if the dependence on p, is 
substantial, then the formation of self-trapped excitations on 
just one chain becomes unfavorable. In this case either the 
spatially homogeneous state studied here is realized or else 
domain walls can arise if 7 ( p, ) has a suitable form.' 

It is difficult to compare our results directly with ex- 
perimental data, since the parameters of the band structure 
of many substances are unknown. One suitable object for 
comparison might be TaS,, in which the quasi-one-dimen- 
sionality assumed here is more pronounced than in NbSe,, 
for example. Unfortunately, there is little information in the 
literature about the band structure of TaS,. Nevertheless, we 
should mention the experimental dataL on o-TaS,, which are 
in qualitative agreement with our conclusions here. For ex- 
ample, a nonmonotonic temperature dependence was found 
for the activation energy determined from the temperature 
dependence of the resistivity of o-TaS, in weak fields. A 
change in the vector Q with temperature was also observed. 
In addition, a nonmontonic temperature dependence was 
found for the ratio of the CDW current to the oscillation 
frequency of the current. This ratio is proportional to the 
number of condensed electrons and depends on the gap 
width 2 ~ ,  , which, as we have said, has a nonmonotonic de- 
pendence on T. 

We are grateful to Yu. I. Latyshev, who stimulated our 
interest in this problem in a discussion of experimental re- 
sults. 

I '  In the present case of a symmetric spectrum, the Fermi level passes 
midway between bands E l  and E, forp = Q/2. The function 7 is there- 
fore nonzero only insofar as it depends on the transverse momentump, . 

') The presence of transverse dispersion 7( p, ) can be an additional cause 
of temperature dependence of the wave vector Q. 
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