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It is shown that, in contrast to the situation in amorphous media,5.6 a variable cross section for 
incoherent inelastic scattering in a crystal can have a profound effect on multiple scattering 
phenomena, causing electrons passing through a thin crystal to be less dispersed in angle and 
reducing the back-scattered flux from such a crystal relative to a comparable amorphous sample. 
The magnitude of these effects is found to be sizable, suggesting that they should be observable in 
experiments. 

1. It is well know that fast nonrelativistic electrons mov- 
ing in crystals are diffracted due to the average periodic ar- 
rangement of the atoms; in addition, they undergo incoher- 
ent scattering accompanied by excitation of the electron and 
phonon subsystems. For a theoretical analysis of these phe- 
nomena, it is usually the motion of particles along the close- 
ly-packed atomic planes which is of interest; in other direc- 
tions, it is assumed that the physical picture of these 
scattering processes differs negligibly from that of multiple 
incoherent scattering in amorphous materials (see, e.g., $5.3 
and $5.4 in Ref. 1 and $5 in Ref. 2) .  At first glance this 
assumption seems well founded, since measurement of the 
cross-section for a single incoherent scattering in a non-crys- 
tallographic direction yields a temperature-dependent 
phonon contribution to this cross-section which is less then 
15%,3 while for scattering processes accompanied by elec- 
tronic excitation the periodic atomic arrangement has al- 
most no effect.'') However, the situation changes completely 
in thick crystals, where the number of incoherent scattering 
events can be substantially greater than one. In this case 
there arises a competition, which is characteristic of multi- 
ple-scattering phenomena, between the effects of elastic 
collisions which give rise to angular dispersion of the particle 
flux and ionization "braking" in the medium. Such effects 
have been well studied in the theory of radiation transport in 
amorphous media.4 However, in amorphous systems the ra- 
tio of the elastic and inelastic scattering cross sections, which 
depends on the charge of the atomic nuclei in the medium 
and the energy of the incident particles, is fixed. In  crystals, 
the incoherent elastic cross section is determined by the level 
of excitation of the phonon subsystem and thus is tempera- 
ture dependent. The effect of variation of the elastic cross 
section was analyzed in detail for the first time in Refs. 5 and 
6 for the case of resonance scattering. For all practical pur- 
poses, single scattering in an amorphous medium takes place 
on the potential of a particular atom 

In crystals, on the other hand, incoherent scattering is 
caused only by the deviation of an atomic potential from its 
average value due to thermal vibrations: 

while the average potential gives rise to Bragg diffraction. 
Therefore, in crystals the mean square deviation angle for an 
electron which undergoes a single incoherent scattering in a 
crystal can differ markedly from its value in an amorphous 
medium, and depends on temperature. This circumstance, 
as we show below, can reveal itself in a striking manner, 
particularly under multiple-scattering conditions. 

When fast electrons undergo multiple scattering in sin- 
gle-crystal materials, it is possible to distinguish two charac- 
teristic length scales over which the fast electron wave func- 
tion varies. One of these is determined by the dimensions of 
the region in which the amplitude of the scattered wave asso- 
ciated with an individual atom of the medium is generated, 
the second (on the order of the mean free path) is connected 
with the cumulative effects of many successive collisions. 
For fast nonrelativistic electrons these scales can differ by 
several orders of magnitude.'z3 Under these conditions, in 
the expression for the density matrix of fast particles 

6 p  d3p' 
W (p, p'; r, r') exp (ipr-ip'r') 

it is convenient to separate out a slowly varying "amplitude" 
factor W(p,pf;r,r'). (From this point on we assume that 
f i  = 1 ). The meaning of the function W(p,p';r,rl) intro- 
duced here can be elucidated by calculating, for example, the 
average value of the current density operator 

By direct substitution we readily obtain 

d3p  d3p' p+p' 
j ( ~ ) = j ~ ~  W (p, p f ;  R, R) ~ ' ( P - P ' ) ~  

Using the explicit form of the matrix elements 
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and neglecting spatial derivatives of W, we find 

As is clear from the preceding formula, the slowly-varying 
function W(p,pl;R,R) plays the role of a "local" momen- 
tum-space density matrix for fast electrons in the vicinity of 
the point R. In particular, the diagonal elements 

W(P, R ) = W ( p ,  P; R, R )  
correct to terms of order 

give the probability distribution in momentum space for fast 
electrons in the neighborhood of R. 

2. As was shown in Refs. 7 and 8, the effect of diffrac- 
tion on the distribution of fast electrons in a crystal must be 
taken into account when the initial particle flux is incident 
along a crystallographic direction corresponding to a close- 
packed atomic plane. If the initial beam is incident along a 
noncrystallographic direction, or if its angular width ex- 
ceeds the Bragg angle, we can neglect these coherent diffrac- 
tion processes in calculating the incoherent background. 
Under these conditions, the momentum distribution func- 
tion for fast electrons W(p,r) satisfies the kinetic equation 
(see the appendix for a more detailed derivation) 

The quantity a,( - q,q) which appears in ( 1 ) is proportion- 
al to the probability of elastic incoherent thermal scattering. 
For a monatomic crystal, using the Einstein model for the 
thermal motion and assuming the Debye-Waller factor does 
not depend on the position of an atom in the unit cell, we can 
write a, in the transparent form9: 

where Nis the number of atoms per unit volume of the medi- 
um, Uo(q) is the Fourier transform of the interaction poten- 
tial of a fast electron with an individual atom, and 
M ( q )  = ( ( q . ~ ) ~ ) .  As is clear from (2) ,  in contrast to the 
case of an amorphous medium, the incoherent elastic scat- 
tering cross section in a crystal contains an additional factor 
of 1 - e P M .  In Refs. 5 and 6 an analysis was presented 
which explained the appearance of a similar dependence in 
the linewidth for resonance elastic scattering of particles in 
single-crystal media. There it was shown that the appear- 
ance of this additional factor was a fundamental conse- 
quence of quantum-mechanical effects connected with the 
period nature of the positions of the scattering centers. 

Because of this factor, the elastic cross section for multi- 
ple incoherent scattering of electrons is found to be smaller 
in a crystal than in an amorphous medium. On the other 
hand, the probability of exciting the electronic subsystem to 

a state j # O  does not depend on the position of the atom, and 
equals 

The main contribution to the angular dispersion of a fast 
electron beam in a crystal comes from elastic scattering from 
thermal fluctuations of the potential. The contribution to the 
angular dispersion of inelastic scattering by atomic electrons 
is Z times smaller than the elastic scattering contribution, 
and can be neglected. Therefore, to calculate the mean 
square angle of deflection in the crystal, it is sufficient to 
include only go( - q,q 1 from (2 )  : 

where u is the electron velocity, xP,, is the angle between p 
and p + q, E~ = p2/2m, and at, is the "transport cross-sec- 
tion"." In a model using a screened Coulomb potential, (4)  
can be evaluated explicitly: 

where 

x is the inverse screening radius, (u2) is the mean square 
thermal displacement, and E, ( x )  is the exponential inte- 
gral. l2  For fast electrons a( 1 andfl) 1, and formula (5)  can 
be simplified: 

Since the value of the function 

f (x) = (l-tx) exE, (2) ( 7 )  

is always larger than unity, the mean-square scattering angle 
for electrons in a crystal when the initial current is incident 
along a noncrystallographic direction is found to be smaller 
than in an amorphous medium of the same composition. 
Correspondingly the width of the angular distribution of 
electrons decreases after they tranverse crystalline samples 
in which a large number of incoherent scattering events oc- 
cur. 

3. Effects associated with the multiple scattering of 
electrons are most easily observed by studying the reflection 
of particles from the surface of a thick crystal for an initial 
beam flux falling on the surface at close to normal incidence. 
In order to exit the material in this way, a particle must be 
deflected from its initial direction of motion into an angle 
8 > ~ / 2 ;  this can take place only as a result of multiple colli- 
sions, each of which produces a small-angle deflection (for 
fast nonrelativistic electrons, the deflection angle for a single 
elastic scattering is a quantity whose order of magnitude is 
10-1-10-2, while the probability of an electron being de- 
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flected through an angle 9- 1 in one encounter is negligi- 
ble). In order to find the reflected current from a semi-infi- 
nite crystal, it is necessary to solve Eq. ( I ) ,  taking into 
account boundary conditions at the incident surface: 

where thez axis is directed along the inward normal n to the 
surface; S(p)  is referred to as the reflection function and n is 
the electron momentum. 

An approximate solution to this problem for the case of 
an amorphous medium was found in Ref. 13. The method 
developed there is unusal in that it explicitly takes into ac- 
count the effect of multiple scattering on both the elastic and 
inelastic scattering components of the reflected particle cur- 
rent. Using this method, it is found that the total reflection 
coefficient 

is a monotonically increasing function of the ratio 

of the total path length of electrons to the transport length 
ltr = (Nutr)-', i.e., 

Here H ( p ,  A )  is the Chandrasekhar function, which can be 
evaluated using the approximate expression 

to an accuracy of 5% for 0<A < 1. 
Making use of (5 ) ,  the ratio (10) in a crystal can be 

written in the form 

where for the nonrelativistic case (Rdl, ,  ),,,,, z (Z + 1 ) /  
4 (Ref. 13). Like the mean square deflection angle (and for 
the same reason), the ratio of the total path length to the 
transport length ( 10) is found to be smaller for a crystal than 
the same ratio for a comparable amorphous medium. As a 
result, for an initial current incident along a noncrystallo- 
graphic direction the reflection coefficient for fast electrons 
from a crystal is decreased compared to that of an amor- 

FIG. 1. Temperature dependence of the total reflection coefficient for 
electrons with an initial energy of 3 keV incident on single-crystal silicon 
along a noncrystallographic direction. The value 20% corresponds to 
amorphous material. 

phous medium of the same composition. 
4. Although the function f ( x )  from (7)  tends to infin- 

ity for x-0, owing to the existence of zero-point oscillations 
of the atoms the reflected electron current does not com- 
pletely disappear even at T = 0, i.e., ap = x2(uZ)  > 0. Esti- 
mates show that for low temperatures x3 (u2) ~ 0 . 1 ,  and 
f ( x )  ~ 2 . 5 .  Therefore, for high energy (in particular, rela- 
tivistic) electrons, i.e., those for ln(4p2/x2) > 1, effects due 
to the ordered nature of the medium, e.g., the decrease in 
reflection, are insignificant. However, for electrons with en- 
ergies on the order of a few keV, the reduction in back-scat- 
tered current can reach 20-30%. This latter effect is espe- 
cially marked in silicon, which has a high Debye 
temperature; calculations taking this into account show that 
its inclusion can decrease the reflection coefficient of 3-keV 
electrons for single-crystal silicon at T = 0 by a factor of two 
compared to the case of amorphous silicon. (We note that 
the corresponding change in the magnitude of the total 
cross-section is less than 

The temperature dependence of the total reflection co- 
efficient for single-crystal silicon calculated according to 
formulae ( 11 ), ( 12) is shown in the figure. It is evident that 
even at T = 300 "K the reduction in backscattered flux 
amounts to 25%, which should be observable in experi- 
ments. A reduction this large should also be taken into ac- 
count in quantitative surface Auger spectroscopy of crystal- 
line  material^.'^," 

In summary, we have shown that under multiple scat- 
tering conditions quantum-mechanical variation of the cross 
section for single incoherent elastic scattering can have im- 
portant consequences in a crystal which are not observed in 
an amorphous material, in particular a marked decrease in 
the width of the angular distribution of electrons passing 
through the crystal and a concomitant reduction of back- 
scattered electron flux. 

APPENDIX 

As shown in Ref. 10, when r and r' are located in the 
scattering medium, the slowly-varying function W(p,p';r,rl) 
satisfies the kinetic equation 
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P' ' ) a +-- W ( p ,  p'; r, r') +i (ep-E, , )  W ( p .  p l ;  r, r l )  (mdr m 

x W (p-q, pf+K-q; r, r') 

x W ( p - K f q ,  pf+q; r, r') 

The quantity A(K) in ( A l )  is the Fourier transform of the 
periodic average crystal potential; the summation is taken 
over all reciprocal lattice vectors. The terms in the kinetic 
equation which contain this A (K)  come from coherent elas- 
tic scattering, i.e., Bragg diffraction. We note that the mo- 
tion of fast nonrelativistic electrons perpendicular to the re- 
flecting atomic planes has an essentially quantum character 
(the number of "transverse motion levels" is of order uni- 
ty1s.19), so that it is not permissible to describe the influence 
of the periodic potential which enters into the kinetic equa- 
tion by a classical force term Fd W/dr. 

The remaining terms on the right side of (A1 ) are (in- 
elastic) collision integrals for excitation of the electronic 
( j f 0)  and phonon subsystems of the crystal.1° 

The stipulation that the fast electron be incident in a 
direction which does not coincide with any of the close- 
packing crystallographic directions is equivalent to the 
mathematical condition 

I ( K )  = I A ( K ) / ( E ~ + ~ - E ~ )  1 for all K f  0. (A21 

The maximum intensity of the Kth Bragg reflection is pro- 
portional to the square of the parameter I ( K )  < 1. Since the 
Fourier components of the periodic potential contain the 
Debye-Waller factor 

the terms in the series decrease rapidly as K increases, and so 
condition (A2) will be fulfilled; this implies that the total 
intensity of all the Bragg reflections will be small. Then on 
the right side of ( A l )  it is enough to save only the term 
K = 0 out of the whole sum over the reciprocal lattice vec- 
tors. 

We note that the (partial differential) equation for 
W(p,pt;r,r') obtained in this way is closed. Its characteris- 
tics are the straight lines r - r' = const. In particular, we 
obtain equation ( 1) for the distribution function W(p,r) by 
choosing the characteristic r - r' = 0. 

"'The author is grateful to F. N. Chukovsky for pointing out this circum- 
stance. 
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