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The spontaneous radiation of electrons in planar and axial channeling has been investigated 
theoretically in crystals with a superlattice under resonance conditions when the energy differ- 
ence of two levels of the transverse motion in the averaged potential of the channel is approxi- 
mately equal to a multiple of 2&/l, where I is the period of the superlattice along the channel 
axis. It is shown that the total energy levels of the electrons are split under the action of the 
spatially periodic perturbation. This changes the spectral and angular characteristics of the radi- 
ation substantially. In particular, resonance splitting of individual bands of the quasicharacteris- 
tic radiation is predicted. The magnitude of this splitting is estimated. I t  is established that there is 
no observable splitting in the channeling of positrons. 

INTRODUCTION 

Following the predictions by K ~ m a k h o v ' . ~  in 1976 of 
intense x-rays and y radiation in channeling of relativistic 
electrons and positrons in single crystals, a large number of 
theoretical and experimental papers have been devoted to 
this phenomenon; a review can be found in Refs. 3 and 4. As 
estimates show, at sufficiently high particle energies ( ? 100 
MeV) a classical description of the motion of the channeled 
particles is applicable. At lower energies, when there are 
only a few levels of the transverse motion, the classical de- 
scription becomes clearly inapplicable. In this case experi- 
ments devoted to studying the radiation of channeled parti- 
cles detect bands of quasicharacteristic radiation which 
appear distinctly on the background of a broad spectrum; 
these bands arise from spontaneous transitions between dis- 
crete energy levels of the transverse 

In channeling a particle experiences coherent scattering 
by different atoms located along the channel axis. As a result 
the action of the combined potential of the atoms of the crys- 
tal usually can to a good approximation be replaced in lowest 
order by the action of a potential averaged along the direc- 
tion of the axis. Here it is important that the ratio of the time 
for a particle to travel a distance equal to the period of the 
averaged potential is small compared to the period of the 
transverse oscillations. Some features of the radiation when 
the discreteness of the atomic planes is taken into account 
have been discussed in Refs. 8-1 1. 

The extensive production of various semiconductor 
multilayer superlattices by methods of molecular epitaxy 
(see for example Ref. 12 and references cited therein) per- 
mits the properties of particle channeling in crystals with a 
superlattice to be discussed. Chu et al. l3  observed experi- 
mentally an increase in the probability of de-channeling of 
ions in layered superlattices of GaP/GaAs, P ,  _, when the 
superlattice period coincided with the wavelength of the 
transverse oscillations. Ikezi et al. l 4  considered theoretically 
the radiation of electrons in axial channeling in multilayer 
crystals. However, the authors of that work overlooked the 
important fact that the levels of the total energy of a chan- 
neled particle are multiply degenerate. This degeneracy, 

which does not appear under ordinary conditions, is partial- 
ly lifted under the influence of a large-scale spatially periodic 
perturbation of the channel potential in which the difference 
of the energies of two levels of the transverse motion is equal 
to a multiple of 27T4iC/I, where I is the period of the superlat- 
tice along the channel axis. 

In  the present work we shall show that the resonance 
splitting of the energy levels of a channeled particle under 
the influence of a spatially periodic perturbation gives rise to 
a substantial change of the spectral and angular characteris- 
tics of the radiation. In particular, one should observe a reso- 
nance splitting of the series of bands of quasicharacteristic 
radiation in planar and axial channeling of electrons. The 
magnitude of the splitting has been estimated. I t  is noted that 
the effect of resonance splitting of the bands is characteristic 
for electrons and should not be present in channeling of rela- 
tivistic positrons. 

1. RADIATION IN PLANAR CHANNELING OF ELECTRONS 

The quantum theory of spontaneous radiation of chan- 
neled particles in single crystals was developed in Refs. 15 
and 16. We shall consider first the planar channeling of elec- 
trons in crystals with a superlattice. Let the xz plane be the 
plane of channeling and thez axis be directed along the chan- 
nel axis. We shall consider the motion of an electron in a 
potential U(x)  + V(x) W(z).  Here W(z) is a function peri- 
odic along the z axis with a period l, W(z + l )  = W(z); 
U(x) is the averaged continuous potential of the channel, 
i.e., 

1 

The form of the function V(x) depends on how the uniform 
potential of the channel is distorted. For example, if only the 
channel axis is periodically deformed, then V(x) 
= V, U(x),14 and if the channel axis remains straight, but 

the channel potential is periodically modulated in amplitude 
along the z axis, then in the simplest case V(x) 
= C + U(x) ,  where C i s  some constant. Other cases are also 

possible, however. We shall assume that the potential 

967 Sov. Phys. JETP 62 (5), November 1985 0038-5646/85/110967-05S04.00 @ 1986 American Institute of Physics 967 



V ( x )  W ( z )  can be taken into account on the basis of pertur- 
bation theory. As will be shown below, this assumption is 
fulfilled well for real experimental situations. 

The stationary states of an electron channeled in a po- 
tential U ( x )  are described by wave functions4916 

( 0 )  1 
$ i S p  = 9. ($1 e r p  (+ p z )  , 

where L is a normalization constant, p is the momentum 
projection on the z  axis, and the functions pi ( x ) ,  which de- 
scribe the states of the transverse motion satisfy the Schro- 
dinger equation with a relativistic mass, which is a conse- 
quence of the Dirac equation to within O( U2/c2p2) : 

where y is the relativistic factor, the subscript i numbers the 
states of the transverse motion, 

is the energy of the transverse motion, and E j,:' is the total 
energy of the particle. 

It is obvious that in the absence of the perturbation po- 
tential V ( x )  W ( z )  the energy eigenvalue E :,:' corresponds to 
the set of eigenfunctions $I,:', $:!, ..., wherep' = p + fiwif/c 
and we have used the notation fiwif = gi - gf. Thus, each 
energy level E :,:' turns out to be multiply degenerate. The 
action of the perturbation operator V ( x )  W ( z )  under certain 
resonance conditions partially lifts the degeneracy. 

For this purpose we shall consider matrix elements of 
the operator V ( x )  W ( z )  calculated with the wave functions 
( 1 ) :  

rn 

a-i 

where 

We shall consider the case of resonance, in which for some 
a = ti the following inequality is satisfied: 

I ~ i : ' ,  - ~ I ; ' p + p  I < I V i fb;  1, ( 4 )  

where q = 21~&fi/l (for definiteness we shall assume that 
gi ) gf ) . In this case as the correct wave functions in lowest 
order we must take linear combinations of the functions ( 1 ), 
and the energy eigenvalues must be found from the corre- 
sponding secular equation. l7  

The left side of the inequality ( 4 )  obviously vanishes for 
the condition 

1=2nticloi/ .  ( 5 )  

In other words, the difference in the energies of two levels of 
the transverse motion in the averaged potential of the chan- 
nel must be a multiple of 277?ic/l, where I is the period of the 
superlattice in the direction of the channel axis. In order to 
estimate the order of magnitude of I, we shall assume that 

fiwX - 100-10 nm. Therefore the necessary value of the peri- 
od corresponds to real semiconductor superlattices.I2 

As is well k n ~ w n , ~ . ~  the transverse motion of a chan- 
neled electron is highly anharmonic, and this permits obser- 
vation of separate bands in the spectrum of quasicharacteris- 
tic radiation. Therefore we shall assume that the variation in 
the distance between the transverse energy levels exceeds the 
value I vf b, I and that inequality ( 4 )  is satisfied only for the 
pair of levels of the transverse motion energy i and$ Then in 
the two-level approximation the correct normalized wave 
functions of the zero approximation have the form 

where 
112 

eii = (vi ibE/VifbG) , 
the dimensionless quantity Mif characterizes the amount of 
detuning from the exact resonance, 

Mif= (Ei$) -Ef(,;+,) / ~ o i , ,  

and 

is a measure of the magnitude of the splitting of the selected 
energy levels for the resonance ( 5 ) .  

The energy values corresponding the functions ( 6 )  are 

In Eqs. ( 6 )  and (8 )  the superscripts 1 and 2 correspond to 
the upper and lower signs. In a similar way we can express 
$i;2) in terms of $g and $,!;)-, , and we can express Ei;2' 
in terms of E g  and E /,:'-, . 

Using the wave functions $:,it', $i;2' and the energy 
values E :j2', Ei;2), it is straightforward to calculate the 
properties of the quasicharacteristic radiation near the reso- 
nance condition ( 5  ) . The spectral and angular dependence 
of the spontaneous radiation power for a transition between 
the discrete levels a and b is given by the formula16918 

where 

C 
a,,b = - 

E.,P J e x ~ ( - i x r ) $ ~ , , . j r p . , ,  dr; 

here titt and PA are the momentum and polarization of the 
photon; w = ~1x1. 

Depending on the form of the perturbation operator, 
two different situations are possible, which are shown sche- 
matically in Figs. 1 and 2. The first situation occurs when the 
channel potential perturbation operator is such that the res- 
onance condition ( 4 )  or ( 5 )  is satisfied for the two closest 
levels of the transverse energy, i and f i - 1, and the second 
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FIG. 1. Diagram of a series of the most intense spontaneous transitions of 
a channeled electron in the case V ( x )  = V, U ( x ) .  The resonance condi- 
tion (4)  is satisfied for transverse energy levels i and i - 1. The transverse- 
energy-level numbers and the longitudinal momentum of the electron 
have been indicated. In parentheses we have given the quantum numbers 
of the energy levels split under the action of a spatially periodic channel- 
potential perturbation. 

situation occurs when two further removed levels fall into 
resonance, say, i and f r i  - 2. In Fig. 1 we have shown a 
series of levels of the electron energy and the most intense 
transitions, in the dipole approximation, between them in 
the first case, when theperturbation operator V(x) W(z) 
connects neighboring levels of the transverse energy (i.e., 
ViSi - , # O  and the inequality (4 )  is satisfied). This case oc- 
curs, for example, when V ( x )  = V, U(x).  Splitting of the 
electron energy levels leads to an appreciable change of the 
spectral and angular characteristics of the radiation. For ex- 
ample, for the transitions l i ( l p 2 '  )+If "v2' ) ( 1 f )  
r li - 1); see Fig. 1 ) in the dipole approximation we obtain 
from (6)-(9) .  

+ cos2 6 [  cos 0 -P[ l+s in2  0 (E (Mii2+Aif2) ' I ~ - M , ~ )  ] 1 

I - P i  cos 0 

where exif is the matrix element of the dipole moment of the 
transition, < is the azimuthal angle of the radiation, 0 is the 
angle between K and the z axis, and /3 ,,  = p/m,yc. Values of 
the dimensionless quantities B,., and E are given in Table I, 

FIG. 2. Diagram of a series of the most intense spontaneous transitions of 
a channeled electron in the case of a perturbation potential U ( x )  W ( z ) .  
The resonance condition (4)  is satisfied for transverse energy levels i and 
i-2. 

where for brevity we have used the notation 
A =M,f/(M:+A:)"2. 

As follows from Eq. (10) for the transition 
li)+l f )  ( l i  - 1) ), for exact resonance ( 5 )  three maxima 
appear in the frequency spectrum of the radiation: 

(E = 0, + 1 ) instead of one. The dimensionless quantity Aif 
which characterizes the splitting, as is shown by estimates 
given in Section 3, under certain conditions can be fairly 
large and accessible for experimental observation. 

Thus, in the case considered (Fig. 1, Table I ) ,  when the 
resonance condition ( 4 )  is satisfied for the two closest levels 
of the transverse energy, i and i - 1, in the spectral distribu- 
tion of the intensity of radiation the band corresponding to 
the transition li)+li - l ) ,  will be split into three lines, and 
the bands corresponding to the transitions / i  + 1) 
+li) and li - l ) + / i  - 2) will be split into two lines. The 
bands corresponding to all other transitions, as can be seen 
from Fig. 1, remain unsplit. This fact is directly related to the 
assumption that the magnitude of the variation of the trans- 
verse energy level separations for the electron in the channel 
exceeds the magnitude of the resonance splitting A,.,. It will 
be shown below that this assumption is well satisfied for real 
semiconductor superlattices. As can be seen from Fig. 1, 
when the value of IM,.,l/A,., increases the intensities are re- 
distributed between the individual lines of the split bands. 
Obviously, detuning from the exact resonance ( 5 )  will re- 
duce the chances for experimental observation of the reso- 
nance splitting effect. 

It should be mentioned that if the radiative width of the 
energy levels is taken into account, the &function in Eq. 
( 10) must be replaced by a Lorentz curve, as was done, for 
example in Ref. 4. In addition, the criterion for the approach 
used above to be applicable is that the ratio of the half-sum of 
the widths of the levels i and f to the inverse time of flight of 
the particle over a distance equal to the superlattice period 
be small. 

In Fig. 2 we have shown the other possible situation, in 
which the channel-potential perturbation operator 
V(x) W(z) connects energy levels which are spaced further 
apart (than in Fig. 1 ), between which a spontaneous transi- 
tion is impossible in the dipole approximation. This case oc- 
curs, for example, when V(x) = C + U(x).  Then 
Vi,+ - # 0, and if wiVi -, = 2rrErc/l, then, as can be seen from 
Fig. 2, each of the four bands corresponding to the transi- 
tions li + l)+li), li)+li - I ) ,  li - l)+li - 2), 
/ i  - 2)+li - 3) is found to split into two lines. The bands 
corresponding to all other transitions are unsplit. The abso- 
lute value fo the splitting / KVi -, b,1 for all four bands is the 
same. For the transitions indicated, the formula for the spec- 
tral and angular dependence of the radiation power is similar 
to Eq. (10) with the corresponding values of wif ,  a coeffi- 
cient 2 in front of the formula, and E = + 1/2. 

2. RADIATION IN AXIAL CHANNELING 

The results of the previous section are easy to relate to 
the case of axial channeling of electrons in a crystal with a 
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TABLE I. Values of B,,, and E for a number of transitions. - 
Transition 

1 i('1) -+ 1 f ( '1)  
I d21) -+ I f ( 2 ) )  

1 i(1))  -. 1 f ( 2 ) )  

li@)) + Ifii)) 

superlattice. In this case the channel-potential perturbation 
operator has the form V(p) W(z), wherep is the modulus of 
the two-dimensional radius vector in the xy plane. Then us- 
ing the usual approachI6 to the axial-channeling case, we 
obtain the following formula for the spectral and angular 
dependence of the dipole radiation power for the condition 
of exact resonance ( 5) : 

where r,,- = Jp, *e)fp2dp, and the values of the remaining 
quantities can be understood from comparison of Eq. ( 12) 
with Eq. ( 10). Dipole transitions are possible only when the 
angular-momentum projection on the z axis changes by uni- 
ty. 

As in the case of planar channeling, two basic cases are 
possible. The first case occurs when the perturbation opera- 
tor connects states with different parity. It arises, for exam- 
ple, when V(p) = V, U(p).  We shall not give the diagrams 
of the energy levels and allowed transitions between them or 
the values of E ,  since these are easily obtained by analogy 
with the previous section. 

3. ESTIMATION OF THE MAGNITUDE OF THE RESONANCE 
SPLITTING OF THE LEVELS 

In the present section we present results of calculations 
of the magnitude of the resonance splitting Aif (7 )  for planar 
channeling of electrons. For definiteness the estimates were 
made for the first harmonic of the spatially periodic pertur- 
bation (6 = 1 ) . As is well known, for electrons the averaged 
potential of a plane can be represented accurately in the form 

Here the functions pi ( x )  which describe the transverse os- 

cillations are expressed in terms of ultraspherical polynomi- 
als.19 In Tables I1 and I11 we give values of the resonance 
splitting A$ and the quantities associated with them for a 
number of the lowest levels of the transverse energy. We 
considered the two cases shown in Figs. 1 and 2. Numerical 
estimates were made for typical values U, = 20 eV, b = 0.03 
nm,4 and total energy E = 50 MeV. The form of the function 
W(z) depends on the specific situation, but in many cases a 
good approximation (for alternating layers of identical 
thickness) is 

W ( z )  =-a,, ( n f  l / , ) l<z<(n+l )  I ,  

where a, is a constant characterizing the amplitude of distor- 
tion of the uniform channel potential and n is an integer. In 
Table I1 data are given for the perturbation potential 
V, U(x) W(z).  For estimates we took the value a, = 0.002 
nm.14 We have also used the gamma function T (s) and 

1 2b2EUo )'"-+ 
s =( 

4 ii2c2 
In Table I11 we give data for the perturbation potential 
U ( x  ) W(z) ; for estimates we took a, = 0.1. 

The values of A$ given in Tables I1 and I11 are less than 
the magnitude of the variation in the evergy level spacing of 
the transverse motion S = - , /mi + - 1. We also car- 
ried out calculations of the value of the resonance splitting 
for axial channeling of electrons. For an axis potential 
U(p) = - a / p w i t h a =  l n m - e V a n d E = 4 M e V ( R e f . 4 )  
the values of A$ fell in the range 0.05-0.25 for the series of 
lowest levels of the transverse energy. Thus, the estimates 
show that with reasonable values of the parameters, the con- 
ditions for the two-level approximation to be applicable are 
satisfied for treatment ofelectron channeling in crystals with 
a supperlattice. 

CONCLUSIONS 

In the present work we have investigated the spontane- 
ous radiation of electrons in channeling in crystals with a 

TABLE 11. Parameters characterizing the splitting in planar channeling of electrons in a pertur- 
bation potential V, U ( x )  W ( z ) .  
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U, = 20 eV, b = 0.03 nm, 
E = 50 MeV, 0, = 0.002 nrn 

f 
I ( i  I v,U I 1 )  I . ' " s  ['('- i)~''' 

{T s + i  
r(s+*12) 

0 

1 

2 

'(rl I V i f b l  l 
2 I l r i l b ,  1, eV I - I fiCoif 

0,145 

0,185 

0,200 

1 

(s- q2) A!3 

[2(s-2) ] " ~ ( ~ - ~ / p )  

[3(s-2) (s-3) ]"%(a2-3s+13/s) 
(s- ' /z)~ (s-3/z) 

0,730 

0,774 

0.661 



TABLE 111. Parameters characterizing the splitting in planar channeling of electrons in a per- 
turbation potential U ( x )  W ( z ) .  

-- - 

superlattice under the resonance conditions (4 ) ,  when the 
energy difference of two levels of the transverse motion is 
close to a multiple of 2&/l. Under such conditions large- 
scale spatially periodic perturbation of the channel poten- 
tial, called a superlattice, partially lifts the degeneracy and 
causes splitting of a number of levels of the total channeled 
particle energy, which in turn leads to splitting of a number 
of bands of the quasicharacteristic radiation. The form of the 
channel-perpturbation potential can be deduced from the 
nature of the band splitting (into two or three lines). The 
magnitude of the splitting AIf will depend both on the form 
of the resonance perturbation operator and on the specific 
wave functions of the transverse motion. 

The results of numerical calculations presented above 
show that with appropriate choice of the experimental con- 
ditions the magnitude of the splitting can be quite large: 
A,, =; 0.1-0.2. For experimental observation of the phenom- 
enon considered in the present work, it is necessary to create 
conditions under which the half-width of the line of quasi- 
characteristic radiation will be less than the magnitude of 
the splitting. From this point of view planar channeling of 
electrons is apparently more appropriate than axial channel- 
ing. For example, in Refs. 5 and 7 for planar channeling of 
electrons with energy E z 5 5  MeV in silicon and diamond 
the half-width of the individual lines of the radiation was less 
than 0.1 of the line frequency. 

In channeling of positrons the anharmonicity of the 
transverse oscillations is small, so that the observed radi- 
ation spectrum is one unsplit band.4 It is quite obvious that a 
periodic perturbation of the channel potential cannot lead to 
an observable splitting of this band. The correct wave func- 
tions were calculated to lowest order and the corresponding 
energy values of a channeled positron were evaluated in the 
2N-level approximation, where N was chosen from the con- 
dition 2AIf z N 6 ;  here S = w,,, - , /w ,  + ,,, - 1. It was found 
that even if A,f is much greater than the nonequidistance of 
the initial transverse energy levels, the variation in separa- 
tion of the renormalized levels still will not exceed 8. The 
action of the spatially periodic perturbation of the channel 
potential produces some broadening of the radiation band, 
leaving it unsplit. 

In conclusion it must be mentioned that the results we 
have obtained differ qualitatively from those of Ref. 14, in 

1 

2 

3 

4 

which the splitting of the channeled-particle energy levels 

Uo = 20 eV, b = 0.03 nm, 
A= 50 MeV, a, = 0.1 nm 

under the action of a periodic perturbation was not taken 

i 

0 

21v,jb,l,eV 

0,228 

0,346 

0.405 

into account and, in essence, a situation far from resonance 

- 

1 

2 1 V,fh  I - 
no,, ,-1 

0,054 

0,105 

0,166 

was considered. 

6 (s - (S - 4) " 2  I (s - 1) (s - 312) 
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