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The effect of a strong magnetic field on the relative orientation of the field, average spin, and order 
parameter vectors is considered for longitudinal NMR in superfluid 3He. It is shown that the 
orientation is stabilized by strong static fields. Resonant effects are considered for nonlinear 
parallel "ringing" in which there is a slow broadening or stochastic modulation of the ringing 
frequency. The angle orientation is shown to be stable for the A phase, but in the B phase the 
stability depends on the remanent static field after the nonlinear ringing has been excited. 

INTRODUCTION 

Leggett first predicted' that a weak time-varying mag- 
netic field h ( t )  in superfluid 3He can excite oscillations in 
the average spin vector Salong the direction of the field. This 
phenomenon was subsequently detected in longitudinal 
NMR experiments as a resonant absorption of energy2 from 
an ac field close to the resonance frequency f l  (dipole fre- 
quency) for longitudinal NMR. If a static field Ho parallel to 
h ( t )  is also present then the spin oscillates longitudinally 
about the equilibrium value So =xH0/IyI, which does not 
significantly alter the longitudinal NMR (herex is the static 
susceptibility and y is the gyromagnetic ratio). 

The Leggett description of the magnetic properties of 
3He requires that one analyze the combined motion of the 
average spin vector S and the order parameter d. In longitu- 
dinal NMR one usually assumes that in the A phase, d moves 
perpendicular to the plane of the field: d l h ( t )  llS, while in 
the B phase d rotates about an axis n parallel to h(t)and S. 
We refer to this mutual orientation as the geometry of the 
longitudinal NMR; it is uniquely determined by S = /SI and 
@, where @ is the angle between d and the plane normal to 
the field (for the A phase) or the rotation angle of d about n 
(for the B phase). In either case, @ is described by the equa- 
tion for a pendulum which is driven by a nonlinear force and 
subject to nonlinear Leggett-Takagi damping. If the fields 
vary sufficiently slowly, the nonlinearity will be negligible 
and S and @ will oscillate slightly about their equilibrium 
values, which for @ are the points at which the dipole energy 
is a minimum. 

It was shown in Refs. 3 and 4 by solving the equations 
numerically that for stronger ac fields, the behavior of S and 
@ becomes very complicated and may be qualitatively differ- 
ent, depending on the field amplitude h and frequency w. 
The specific nature of the Leggett-Takagi damping mecha- 
nism is largely responsible for this behavior. The geometry of 
the longitudinal NMR was assumed to be stable in Refs. 3 
and 4 (so that the stability problem was not addressed), and 
it is only in this case that the longitudinal NMR is insensitive 
to static fields. 

The stability problem for longitudinal NMR was first 
raised in Refs. 5 and 6, where it was shown that when no 
static field is present, fluctuations grow in amplitude and 
distort the longitudinal geometry, so that nonlinear longitu- 

dinal NMR cannot be observed at all in the B phase6 and 
only with great difficulty in the A phase.5 

There are grounds for believing that an applied static 
magnetic field might stabilize the geometry, so that the lon- 
gitudinal resonance remains stable over a wider range. The 
purpose of the present paper is to investigate stabilization by 
a static field and to analyze longitudinal NMR for the case 
when the ac field frequency w is equal to the rotation fre- 
quency of the "pendulum" d when a static field changes in- 
stantaneously (during a time much shorter than the charac- 
teristic Leggett-Takagi relaxation time). 

1. STABILITY ANALYSIS IN THE ADIABATIC 
APPROXIMATION 

Following Fomin,' we write 

av 
@=oL(S-I) -ai sin ot+o, - - 2S dV 

kmL2-- as ~ S + P  a 0  ' 
(1 

to first order in E for the spin dynamics of the A and B phases 
of 3He in the presence of an ac field h ( t )  = h sin wt. We 
assume that the strong static magnetic field H, is parallel to 
h ( t )  and that the necessary conditions for Fomin's adiabatic 
approximation E = f12/wZ (1 are satisfied ( f l  = a,,, is the 
frequency of the linear longitudinal resonance in the A and B 
phases, and w, = 1 ylHo is the Larmor frequency). In Eqs. 
( 1 ), V = V,,, is the dipole energy in the A and B phases, 
averaged over the period of the Larmor precession: 

We take Ho to lie along the z axis; p = S, - S, where S, is 
the projection on the z axis, w ,  = 1 yl h, and k is the Leggett- 
Takagi (LT) relaxation coefficient. We use dimensionless 
quantities-spins are in units ofso, while the dipole energy is 
divided by XH i. 

In this case, distortion of the longitudinal geometry is 
tantamount to self-excitation of the transverse spin compo- 
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nent S, (in other words, the fluctuations in S, grow in am- 
plitude) ." Assuming P( 1, S- 1, and using 
S, = (S2 - S i  ) ' I 2 ,  we get the following equations from 
Eqs. ( 1 ) for small S, : 
For the A phase, 

Qa2 
6SL = - - 6S, sin 2@, 

4 0 ,  

@+Fa(cos 2@) b+' /2~A2 sin 2@=-ala  cos a t ;  (4 )  

for the B phase, 

=- 0 1 0  COS a t ,  (6 )  

where T, = kflf, ~ 2 . 1 0 ~  s-' and T, = k f l i  = lo4 s-'. 
In view of Eqs. (3)  and ( 5 ) ,  we take the longitudinal 

geometry to be unstable in the A and B phases if and only if 

sin 2@<0 (7 )  

and 

sin @ (1+4 cos @) >O, (8 )  

respectively, where @ denotes solutions of the nonlinear 
equations (41, ( 6 )  such that @ (0 )  is a minimum in V and 
@ (0)  = 0. We will analyze the existence of solutions of Eqs. 
(4 ) ,  (6 )  satisfying (7 )  and (8 )  by using numerical results 
found for these equations in Refs. 3 and 4. In particular, the 
results in Ref. 3 imply that as the field "amplitude" a, in- 
creases, bifurcations may occur in the A phase. The nature of 
the bifurcations depends on the frequency w-transitions 
may occur from small oscillations @ of frequency fl, to os- 
cillatory behavior of @ with period equal to a multiple of the 
period of the driving force, or to random motion with a cor- 
relation time -2n-/a. We note that the "negative friction" 
in the interval ~ / 4  < @ < 3 ~ / 4  is responsible for the rotation 
or crossing of the pendulum (4 )  through the maximum 
"height" flf, /4. As a result, the pendulum is not confined to 
the region defined by ( 7 ) ,  and for all the cases considered in 
Ref. 3 the right-hand side of (3) averages to zero over times 
t)2a/flA, 2n/w. For the A phase we thus conclude that: 1) 
The longitudinal geometry is stable, because the distorting 
fluctuations do not grow in amplitude if the static field is 
sufficiently strong; 2)  The results in Ref. 3 are not correct5 
unless a strong stabilizing static field is present. 

The above arguments do not suffice to determine if the 
longitudinal geometry is asymptotically stable. However, 
they do indicate that it is stable for times - 1/c2w,, which 
may be comparable to the upper time bound for the validity 
of the Leggett-Takagi equations. We will therefore consider 
only these times. 

Similar arguments based on the results in Ref. 4 for the 
B phase show that strong static magnetic fields also stabilize 
the longitudinal geometry in the B phase. 

2. ANALYSIS OF THE STABILITY OF RAPID OSCILLATIONS 
OF THE ORDER PARAMETER 

It is well known that if r(0, w, = 0, V has a minimum 
at @(0) ,  and &(0)  = A%fl, then the pendulum equations 
(4 ) ,  (6 )  admit solutions of the form @ = At + O(f12/wi ), 
which describe quasiuniform rotations. Such a rotation can 
be induced in superfluid 3He by instantaneously changing 
the static field H,  by an amount / A H  I comparable to H,. The 
order parameter then starts to rotate with angular frequency 
A = lyAH 1 ,  and the spin oscillates at frequency 212. This 
phenomenon has been referred to as longitudinal nonlinear 
"ringing."' In the rest of this paper we will use the LT equa- 
tions to analyze stability for nonlinear ringing in a resonant 
ac field. The analysis will be carried out in two steps. First, in 
this section we examine the stability problem for fast rota- 
tions of the order parameter d, then in the next section we 
investigate the stability of the longitudinal geometry. 

A. Free fast rotation of the order parameter is stable 

Usually, rapid oscillations of pendulums become unsta- 
ble due to relaxation, and in fact we will see that the LT 
relaxation mechanism does ultimately destabilize rapid ro- 
tations of d. Nevertheless, as might be expected, the instabil- 
ity grows much more slowly when d rotates rapidly because 
the relaxation terms depend periodically on the phase of the 
rotation [cf. Eqs. (4 ) ,  (6 )  1 .  

Using the method of slowly varying parameters devel- 
oped by Moiseevg to describe rapid oscillations of a pendu- 
lum, one can show that for A)fl)T the solutions of Eqs. 
(4),  (6)  with w, = 0 are given by 

@=$ ( t )  +a(t )  sin 2$ ( t )  (A-phase), 
(9 )  

(D=$ ( t )  - a ( t )  (sin $ ( t )  ti/, sin 2$ ( t ) )  (B-phase), 

where $ ( t )  and a ( t )  vary slowly with time and satisfy 

where 

It is clear from ( 10) that the "amplitudes" a increase 
with a logarithmic growth rateil - Ta ( 0 ) .  We stress that il is 
proportional to the small parameter a (0 )  ( 1 because of the 
periodic dependence of the LT relaxation terms on the rapid- 
ly changing phase @. The rotation of d is thus damped over 
times 1/A -A2/rf12 greatly exceeding the LT relaxation 
time, and d rotates many ( -A3/rf12) times before signifi- 
cant damping sets in.2' If we consider the motion of d only for 
times t 5 1/A, we can thus neglect the destabilizing relaxa- 
tion terms in Eqs. (4 ) ,  (6 )  and regard free rapid rotation as 
stable. 

B. Frequency broadening of nonlinear ringing induced by a 
periodic series of radio-frequency pulses 

We now assume that o, # O  in Eqs. (4 ) ,  (6 ) .  Clearly, 
the ac field will then significantly alter the rapid rotations if 
its frequency w =: 2A is nearly twice the rotation frequency of 

964 Sov. Phys. JETP 62 (5), November 1985 V. I. Kesaev and A. I. Ugulava 964 



d. We will refer to this as the resonance condition. 
A similar type of resonant pendulum rotation was ana- 

lyzed in Ref. 9 for the case wl(A by the methods of nonlin- 
ear mechanics. It was found that the rotation was unstable, 
regardless of the dissipation mechanism, and this result 
clearly applies to our situation. We will therefore analyze a 
somewhat different NMR problem in which a system is 
pumped by a periodic train of rf pulses; such pulses can in- 
duce stochastic behavior1' in spin systems through the "res- 
onance interaction" effect. We will show that the rf pulses 
may produce a slow frequency broadening of the nonlinear 
ringing. 

Let a train of pulses 
+- ' 

parallel to the static field act on the system, whereg(t) is the 
pulseshape function and rP and Tare the pulse length and 
repetition period, respectively. We assume that the field 
( 11 ) is weak in the sense that w, (o and will consider the 
spin dynamics only for times t 5 1/A, i.e., the pulse train 
terminates before the relaxation starts. If we substitute ( 1 1 ) 
into Eqs. (41, (6)  and impose the initial condition A>@ we 
find that they have solutions of the form (9) in which the 
slowly varying functions a ( t )  and 4 ( t )  = 2$( t )  = a t  satisfy 
the Hamiltonian system 

where q, = fiw,o/fl, and q, = - Jzwlw/2f2,. In de- 
riving ( 12) we have assumed that orf ) l ,  where rf is the 
total rise and fall time of the pulses. 

Since we may assume that /2A - w j % 1q 1a5 '2(~)  in 
(12), we see that it describes nonlinear oscillations of the 
phase 4 and slow "amplitude" a. In general, these oscilla- 
tions are unstable. We will consider only stochastically un- 
stable oscillations generated by the interaction among the 
resonances; the analogous instability for Hamiltonian sys- 
tems of the type ( 12) is well under~tood. '~  

Based on the results of Ref. 10, we can show that if the 
Chirikov condition K = co,wrP Ta (0) )  1 for stochastic be- 
havior is satisfied (with c, = 2 and c, = 1 ) then the phase 
becomes chaotic during times T = 2T/lnK, while the distri- 
bution function of the "amplitude" a obeys the Fokker- 
Planck equation 

for times t ) ~ ,  where D = ( q ~ ~  I2/4T, G = - 7 0  /2. Equa- 
tion ( 13 ) yields 

for the first two moments ofp. Since no method is available 

for analyzing (14) in general, we consider the case 
2 z a 4 ( 0 ) ,  2 z a 5  (01, which corresponds to the initial 
growth stage of Z and 2. It is then obvious that 

where Aa = a - a (0)  (a (0) .  The initial growth stage of the 
moments is thus confined to times t( 1/Da3(0). 

We can use ( 15 ) to calculate the shift and linewidth of 
the nonlinear longitudinal NMR for times t ) ~ .  Indeed, ex- 
panding the frequency 214 in powers of a - a (0)  and averag- 
ing over p, we get 

for the shift and linewidth, respectively. Since we consider 
the case when Da3(0)t( 1, ( 16) implies that lu,I > la,/ ,  i.e., 
the broadening completely obscures the shift. The effect of 
the periodic series of resonant rf pulses is thus to slowly 
broaden the frequency of the ringing signal (or else to modu- 
late it stochastically ), as described by ( 16). 

We conclude this section with some quantitative esti- 
mates. If for example we suddenly decrease the field 
Ho z 200 G by an amount AH- Ho and then apply a series of 
rf pulses with h-  10 G, rP - lov5  S, T- s, and 
w z4.106 s-', we find that K- 10. The order parameter will 
thus rotate rapidly in a randomly modulated way, and hence 
the spin oscillations along the ac field h ( t )  will also be sto- 
chastically modulated in the frequency range 2A + lu21. To- 
ward the end of the pulse train, typical values of la,I in the A 
and B phases are la, 1 ~ 6 . 1 0 ~  s-' and lo,, 1 ~ 2 . 1 0 ~  s-I. 

3. STABILITY OF THE LONGITUDINAL GEOMETRY FOR A 
RAPIDLY ROTATING ORDER PARAMETER 

Two cases must be considered: 1) the field Ho changes 
instantaneously at time t = 0 but remains strong enough so 
that the adiabatic approximation is valid7; 2) Ho turns off 
completely and instantaneously at t = 0. Although the rota- 
tion is rapid in either case [see Eqs. (9)  ], additional analysis 
is required to study the stability of the longitudinal geome- 
try. 

Indeed, because the adiabatic approximation holds for 
case 1) (Ref. 7), we can use Eqs. ( 3 )  and (5)  to decide the 
stability question. Substituting @ from (9)  into (3),  (5)  and 
averaging over the fast phase $, we find that the longitudinal 
geometry is stable. 

Since no static field is present, the adiabatic approxima- 
tion breaks down in case 2) and the analysis must be based 
on the full system of Leggett-Takagi equations. 

We first consider the A phase and assume that the field 
is completely turned off at t = 0. Then the phase (9) de- 
scribes the rotation in the plane normal to the ac field, which 
for simplicity we take to be monochromatic. We follow Ref. 
5 and consider the transverse spin (GS, , GS, ) and the longi- 
tudinal order-parameter (adz ) fluctuations, which distort 
the longitudinal geometry. The LT equations then lead to 
the system5 
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GS,=o,SS, sin ot-Q.lbdz cos i D ,  
fig,=-olGS, sin o t ,  

( 1 7 )  
6d,=QA6S, cos iD+QA6S, sin @-r16d ,  cos2 0, 

where @ satisfies ( 4 )  with the initial condition 
A  = IyiHo,RA. The problem clearly reduces to analyzing 
the stability of the trivial solution SS, = SS, = SS, = 0  of 
system ( 1 7 ) .  Under our previous assumptions w , ,  
R ,  <w =. 2 A ,  we readily see that ( 17) describes oscillations 
in the fluctuations which are slow compared to the frequen- 
cy of the ac field (the nonlinear ringing frequency ). We can 
therefore examine the stability at  the trivial point by averag- 
ing Eqs. ( 17)  over a time - 4 a / w  [cf. Ref. 1 1 1 .  We note that 
because the small parameter a,/@ is not present in the 
equations for oscillating d, ( 17)  must be analyzed numeri- 
 ally.^ 

If we apply the averaging technique in Ref. 11 to ( 1 7 ) ,  
we find that the averaged fluctuations satisfy 

to third order in h , / w  - 2fl,  /w .  In deriving ( 18)  we have 
taken @ = wt / 2  as the solution of Eq. (4) .  I t  follows from 
( 18) that the trivial solution of ( 17)  is asymptotically stable, 
because all the eigenvalues of the coefficient matrix for ( 18 ) 
have negative real parts. One can show that the longitudinal 
geometry is also stable if a train of rf pulses acts on the sys- 
tem and the rapid rotation of d becomes stochastically mod- 
ulated, because the large regular component of the rotation 
frequency of d is decisive. The longitudinal geometry in the 
A phase will thus be undisturbed if a strong static field is 
turned off instantaneously. 

Let us now consider the B phase. Here the unperturbed 
longitudinal geometry corresponds to the situation when the 
magnetic field is parallel to the spin S and to the rotation axis 
n of d; this configuration becomes distorted when compo- 
nents n, and S, transverse to the field are excited. Writing 
the dynamic spin equations for the B phase in Fomin's varia- 
bles,'* we find the system 

for the fluctuations that distort the longitudinal geoTetry. 
Here Sg is the projection of the spin onto the movingp axis 
normal to the field, and sin@ is proportional to the trans- 
verse components n,, n, of n; we have used sin Sp=Sp  in 
( 19) .  We observe that ( 19)  involves the magnetic field im- 
plicitly through the field-dependence of the phase a. If the 
strong static field is turned off instantaneously, @ is given by 
( 9 )  and describes a rapid rotation of d about the axis n. 

We cannot use the averaging method in Ref. 1 1  to ana- 
lyze the stability of the trivial point of system ( 1 9 ) ,  because 

the second equation contains no small parameter. We there- 
fore apply the Liouville-Jacobi theorem to find the time be- 
havior of the solutions of ( 1 9 ) .  If M ( t )  is a matrix whose 
columns consist of two independent solutions of ( 1 9 ) ,  then 

t 

det M ( t ) =  d e t [ M ( O )  ] e r p  ( J  S p  ~ ( t ' ) d t ' ) ,  (20) 
0 

h 

where the elements of the matrix P a r e  the coefficients of the 
unknown functions in the right-hand sides of ( 1 9 ) ,  so that 

T r  P = 2 / 1 5 ~ , ( l i - c o s  @) (1+4 cos @) 

Since shortest time scale of the problem is 2.rr/A, it is 
natural to study the behavior of ( 2 0 )  for t ,2a/A, which in 
mathematical terms requires evaluating the limit 

2 
lim J T ~  B ( t ' )  d tr  = 7 Fa ( l )  
1-m 5 

Here we have used expression ( 9 )  for @ and neglected small 
corrections of order a to the right-hand side of ( 2  1 ) . The 
result ( 2 1 )  implies that when the static field is turned off 
instantaneously, the longitudinal geometry in the B phase 
becomes distorted rapidly, well before the rotation of the 
order parameter starts to become damped. Stochastic modu- 
lation of the ringing frequency in the B phase can thus be 
observed only in static fields that remain sufficiently strong. 
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"As in the adiabatic approximation, the angle between S and d is con- 
served,' so that for our purposes it suffices to analyze the time depen- 
dence of the fluctuations in one of the variables, e.g., the spin. 

"In the experiments on nonlinear ringing in Ref. 8, the ringing frequency 
was measured during a time < l/A, so that no instability was detected in 
the rotation. 
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