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The diffusion approximation is used to analyze the vibrational distribution function of a system of 
anharmonic oscillators which are excited by external sources and deexcited by interactions with a 
trace gas. Analytic expressions are derived for the time derivatives of the vibrational populations 
and for the interaction pumping efficiency as functions of the external source power and relaxa- 
tion times. 

INTRODUCTION d. f. d[Al  
,A=-[II,,,-II,1+i,-K,f,[B1----, 

In recent years workers in various areas of physics have [A1  dt 
become interested in nonlinear vibrational relaxation of 
highly excited molecules. For example, Zel'dovich and Ov- 
chinnikov' studied the vibrational energy distribution in 
molecular crystals excited by infrared radiation; vibrational 
populations for molecules excited by an electrodischarge CO 
laser were analyzed in Ref. 2; the vibrational relaxation dy- 
namics for diatomic molecules excited by radiation pulses 
was considered in Ref. 3; the influence of nonlinear relaxa- 
tion processes on the molecular disssociation rate well away 
from equilibrium was investigated in Ref. 4; nonlinear vibra- 
tional relaxation was examined in Ref. 5 for molecular gases 
expanding adiabatically in a supersonic nozzle. The list of 
papers dealing wth vibrational relaxation in highly excited 
molecules could be extended to include work on gas dis- 
charge physics, quantum electronics, plasma chemistry, and 
atmospheric physics in which applied aspects of this prob- 
lem have been considered. 

Landau and Teller6 developed the first theory of vibra- 
tional relaxation, which was based on the harmonic oscilla- 
tor model. This theory has proven to be very successful in 
describing vibrational relaxation for systems not too far 
from equilibrium. For highly excited systems, in which the 
average stored vibrational energy is much greater than the 
translational and rotational energy of the molecules, the an- 
harmonic nature of the molecular vibrations greatly alters 
the relaxation process and the Landau-Teller theory breaks 
down.'m8 An anharmonic relaxation theory based on the 
"diffusion" approximation was developed to treat this case.g 
In this paper we generalize the theory in Ref. 9 to cover the 
situation when vibrational excitation in a system of anhar- 
monic oscillators is accompanied by quenching (loss of ener- 
gy from the excited particles). In practice such quenching 
may be due to dissociation processes4 or to chemical reac- 
tions involving excited m~lecules . '~  

1. KINETIC MODEL 

We considr a gas of diatomic molecules A excited by an 
external source; the gas also contains molecules B which in- 
teract with and quench the excited molecules A. The vibra- 
tional distribution function for the A molecules obeys the 
kinetic equation 

where v is the vibrational quantum number, nu is the popu- 
lation flux in "vibrational quantum number space," i, is the 
vibrational excitation frequency of A molecules due to the 
external source, K, is the quenching rate constant for A mol- 
ecules in the v-th vibrational level, and [MI is the number 
density of molecules of species M. The gas can be maintained 
in a nonequilibrium state by vibrationally exciting the mole- 
cules either by infrared radiation or by electron impact in a 
gas-discharge plasma. In the latter case, if we neglect the 
collisions between the electrons and the excited molecules 
we can write i, as i, = n, KO&, where n, is the electron 
density and KO, is the rate constant for excitation of the vth 
level of theA molecules. If we assume single-quantum transi- 
tions, we have the expression9 

for n, + , , where 

v-v nu+, 

Here n:+, , n z ; ,  I I z T  are the components of the popu- 
lation flux due to spontaneous emission (A), vibrational- 
vibrational ( V - V ), and vibrational-translational 
( V - T )  exchange processes, respectively; A, + ,,,, Q u u',u' + I , U  + 1 9 

and P, + ,,, are the corresponding frequencies; E, is the ener- 
gy of an A molecule in vibrational level v; T is the gas tem- 
perature, and k is Boltzmann's constant. We account for the 
anharmonic nature of the vibrations by writing E, = [El  
- AE(v - 1 ) ] v, where AE is the anharmonic energy cor- 

rection. One usually calculates Q and P in the anharmonic 
case by using the approximationsg 
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PC+,, .=Pi, , ( u + I )  exp (fiv-=v), 
( 6 )  

where 6,- and 6,-. depend on the temperature and na- 
ture of the molecules involved in the exchange processes. 

We will analyze system ( 1)  in the steady-state case, i.e., 
when the A  molecules are excited by a constant external 
source. Assume that the source delivers B, photons per unit 
time to the system. If the vibrations are excited by electron 
impact in an electric discharge, we have B, 
= WE ; ' [ A  ] -'v ,, where W is the power input to the dis- 

charge per unit volume and 77 is the fraction of the energy 
expended in vibrationally exciting the A  molecules. The rela- 
tion 

is obvious. We will henceforth assume that the quenching 
rate constant has a step-function dependence: 

where 8 ( x )  is the Heaviside function and v, is the vibrational 
quantum number for which the vibrational energy is com- 
parable to the energy barrier for the process. In most non- 
equilibrium systems the external source excites only a few 
low-lying vibrational levels (this is true for a gas discharge, 
e.g., because the rate constant K,, decreases exponentially 
as v increases). Moreover, the external source generally does 
not change the total number of particles in the system but 
rather merely redistributes them over the vibrational levels. 
With these remarks system ( 1)  readily yields 

n - " f  uo<ur (8 )  

in the steady-state case. Here v, is the upper limit for excita- 
tion by the source (i,,,, = O), and the vibrational quantum 
number u, corresponds to the dissociation energy of the A 
molecules. According to ( 8 ) ,  FIu0 is related to the quenching 
rate of the A  molecules by the simple formula 

DP 

d[A] /d t=-[A]  [ B ]  LK.~,=-~,[A]. (9)  
u=vo 

If the quenching rate is low enough so that the distribu- 
tion f, is not changed significantly, we can solve the system 
( 1 ) by successive approximations. We choose the solution of 
( 1 ) for noninteracting A  and B molecules (K, EO)  as the 
lowest-order approximation f Lo'. We then find from (8 )  that 

0, 

v=c0 

We can also derive an estimate for IIUo in the other ex- 
treme case when the quenching perturbs f, significantly. In- 
deed, if the constant K(u,) is large enough then every excited 
A  molecule at level u, will be quenched immediately; we may 
therefore take f (u,) as Kk-cc,, and 

I I w  = lim K,f,. 
K + m  

(11) 

We use an energy estimate to evaluate the limit ( 1 1 ). Let 
@, be the net flux of vibrational quanta through the vth 
vibrational level for the A  molecules. Defining the "vibra- 
tional quantum density" E ,  = uf,, we then find from ( 1)  
that 

where @, is given by 

Setting ui < v, and using ( 2 ) ,  we find from ( 12) and ( 13) for 
a steady-state system that 

If there are no dissipative processes, Eq. ( 14) simplifies 
to 

which maximizes the external pumping efficiency of the in- 
teraction between the A  and B molecules. The conditions for 
( 15) and (10) to be valid will be found below; however, we 
note here that in the two extreme cases considered above 
only the absolute value of the rate constant K, is impor- 
tant-its dependence on v plays no significant role. In order 
to solve the equations in the intermediate case, one must 
specify how K, depends on the vibrational quantum number 
v. As noted in Refs. 11 and 12, the dependence of K, on v is 
roughly the same for a large class of endothermal reactions 
involving vibrationally excited diatomic molecules-specifi- 
cally, K, drops abruptly (exponentially) with decreasing v 
for v < u, and increases as a power of v for u > v,. Figure 1 
plots K, versus u for the oxidation reaction NT(v) 
+ 0-NO + N (Ref. 12). Figure 1 shows that the depen- 

FIG. 1. Plot of K(u,T)  [cm3/s] versus u for three different temperatures. 
The dashed curves were calculated using Eq. ( 16); the solid curves show 
data from Ref. 12; curves 1 and 2 indicate the minimum and maximum 
rate constants found from the data in Ref. 12. 
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dence is accurately approximated by 

where v , ~  1 1. Below we will analyze the system ( 1 ) for K ,  
given'by ( 16). As we have noted, this assumption involves 
no loss of generality because ( 16) holds quite generally for 
endothermal reactions involving vibrationally excited mole- 
cules. l 1  

2. DIFFUSION APPROXIMATION 

In order to systematically analyze physico-chemical 
processes involving vibrationally excited molecules, one 
must solve the kinetic equations ( 1 ) numerically for multile- 
vel vibrational systems. Since accurate experimental data on 
the rate constants are not available, a numerical solution of 
( 1 ) will be meaningful only if the values of the rate constants 
are varied, which greatly complicates the problem even in 
the simplest cases. In this paper we employ an analytic ap- 
proach9 which is based on the diffusion approximation and 
reduces the kinetic equations ( 1 ) to a single Fokker-Planck 
differential equation. Expressions (2)- (5)  were analyzed in 
Ref. 9 for steady excitation without particle sinks, and three 
characteristic intervals were found for the quantum 
numbers u: 1)  0 < v < u*, for which "nonresonant" V - V 
exchange between the lower and upper vibrational levels 
gives the principal contribution to II, ; 2 )  v* < v < u**, for 
which "resonant" V - V exchange between close-lying lev- 
els contributes significantly; 3 ) v** < u, for which V - T ex- 
change give the dominant contribution to II, . The distribu- 
tion function f, for 0 < u < u* is closely approximated by 

where f is the Treanor distribution13 and the "vibrational 
temperature" T, is defined by f, = f, exp( - E,/T, ). For 
v* < v < u** the DFis  a gently sloping "plateau" on which f, 
decays by a power law. Finally, the D F  for v** < v  ap- 
proaches a Boltzmann distribution f :- e x ~ (  - E, / T ) .  The 
vibrational quantum numbers v* and v** bounding these 
intervals must be found by considering the balance equation 
for the nonresonant, resonant V - V exchange, and V - T 
relaxation processes. Resonant and nonresonant V - Vex- 
change processes were compared in Refs. 9 and 14, and v* 
for steady excitation was found to be close to the Treanor 
value vT  = E,T/2AET, + 1/2, for which the DFin ( 17) is 
a minimum. The number v** is found by requiring that the 
flux Qr- ' of quanta toward higher v in V - V exchange 
processes should be equal to the total rate L ,  at  which quan- 
ta are consumed in dissipative processes when u = v**. Ac- 
cording to (13) and (14),  

In this paper we consider the case u* < u,  < v** (recall 
that v, determines the characteristic scale of the quantum 

numbers u corresponding to vibrational energy levels whose 
populations are perturbed due to quenching). As noted 
above, resonant V - V exchange gives the dominant contri- 
bution to the flux II,. According to Refs. 9, 14, and 15, the 
diffusion approximation in this case leads to the expressions 

L"~-'= J ~ ~ , ~ v f  exp ( G ~ - ~ V )  ~ V = ~ ~ ~ ~ P ~ , , V ~ ,  exp (6v- ,u) ,  (21 ) 
I 

4hE -3  0 , 1  
y = -- 

T Gv-vQi,o 9 

where Y is the effective frequency of V - V exchange. The 
derivation of Eqs. ( 19)-(2 1 ) in Refs. 9, 14, and 15 requires 
that f, be sufficiently smooth (which is certainly the case on 
the plateau) and that the vibrational levels not be excited 
thermally (this is true for sufficiently low gas tempera- 
tures). Approximation II, + , - II, in ( 1)  by dII/dv.Av, 
neglecting spontaneous emission, and using ( 16) and ( 19), 
we easily get the equation 

for the distribution function f =f ( u ) ,  where 

Ko=K,,+l [ B ]  (u,+ 1) - I .  

Since dissipation does not occur on the plateau, the bound- 
ary conditions for (22) should correspond to quantum flux 
conservation for v<v, (the flux is determined by the external 
source) : 

We can take (23) with u = u, as a boundary condition 
for Eq. (22) .  A second boundary condition follows from the 
vanishing of the net population flux at  u = u** (this is be- 
cause V - T exchange processes consume vibrational quan- 
ta but conserve the total number of particles). The second 
condition for Eq. (22) can thus be written as 

The quantum number v** in (23) is not known apriori 
but must be found (as noted above) by equating Q y -  'and 
L ,Y- 'at u = v**: 

Defining the new variables y = (v/KO) 'f ' v 2  and x = u - v,, 
we can recast Eq. (22) and conditions (23)-(25) in the 
form 

y " = x y " : ~  ( x )  . (26) 

vOy'(0) - y  ( 0 )  =-b, (27) 

y ( 5 , )  =b, exp ( 26v - , x l ) ,  (29) 
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TABLE I. The coefficients a , .  

where This savs that the vibrational auantum flux must vanish for 
 pi,^ the same v = v** at which the population flux vanishes. ~ = V B . K ~ - ' ,  b . = ( - )  e ~ p ( 2 8 ~ - ~ u ~ ) ,  xl=u8'-vo. 

Equation ( 2 6 )  and boundary conditions ( 2 8 ) ,  ( 3 4 )  imply 

The derivative y l ( 0 )  in ( 2 7 )  is important because it 
characterizes the interaction between the A and B  molecules 
under nonequilibrium conditions. Indeed, ( 9 )  and ( 19) im- 
ply that the quenching rate of the A molecules is given by 

d[A]ldt=Kc2v-'yf(0) [ A ]  [B]. ( 3 0 )  

Using ( 1 5 )  and dividing ( 3 0 )  by the rate for which the 
A - B  interaction is pumped most effectively by the external 
source, we readily get the expression 

for the pumping efficiency. The quantities d[A]/dt and 7 
are the ones of greatest practical interest for processes such 
as nonequilibrium dissociation or nonequilibrium chemical 
reactions involving excited molecules. 

The quantity y ' ( 0 )  also determines the behavior ofy ( x )  
for x  < 0: 

According to the mathematical formulation of the problem 
( 2 6 ) - ( 2 9 ) ,  y ' ( 0 )  depends only on specific combinations of 
the relaxation parameters P  ,,o, 8,- ., Y ,  the A - B  interac- 
tion rate constant KO, and the intensity B,  of the external 
source: 

Equations ( 30 - (32 )  provide a criterion for assessing 
the similarity of vibrationally excited systems in which excit- 
ed A molecules interact with B  molecules. 

3. RELAXATION WITHOUT V - T EXCHANGE 

If V - T exchange is unimportant ( P  ,,, = O ) ,  the 
boundary condition ( 2 9 )  for Eq. ( 2 6 )  simplifies to 

FIG. 2. The function $(g). 

that y ( x )  is given in the limit x-x, by 

Y ( X - + X ~ )  -xi2 ( I -x , )  ' /144. ( 3 5 )  

We seek a solution of ( 2 6 )  of the form 
rn 

Substituting ( 3 6 )  into ( 2 6 ) ,  we get the recursion formulaI6 
for the coefficients a, : 

. . 

a, = 
l2 [[z ( -?- k - n )  U , A , - ~ - A . - ~ ]  . 

( n S 3 )  ( n f  4)  -6 k = l  2 

Numerical calculations show that la, /a, - , I < 0.5,  at 
least for n up to lo3.  This suggests that the expansion ( 3 6 )  
describes the solution of ( 2 6 )  for all x  of interest ( O g x ~ x , ;  
O< f  g  1 ) . Table I gives the first few coefficients a, , while Fig. 
2  plots the function $ ( f )  needed to find y ( x )  for a given 
value ofx,. In general, the latter depends on the parameter b; 
the dependence x ,  = x ,  ( 6 )  can be found by using boundary 
condition ( 2 7 ) .  Indeed, by ( 3 6 )  

with a and p given by 

FIG. 3. Plot of log Jyl(0)J,r], and x, as functions of log b for b, = 0 and 
v,= 11. 
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FIG. 5. The function 7 (b);b, = lo4, lo2, and 10' for curves 1-3, respec- 
FIG. 4. Plot of log ly'(0) / versus log b; b, = lo2 and lo4 for curves 1 and tively. The solid and dashed curves are for 6,. = 0.5 and 0.25, respec- 
2, respectively; 0 and show values calculated by Eq. (50) with tively; X, 0, and 0 give values calculated by Eq. (52) forb. = 10', lo2, - .  

= 0.5. and lo4, respectively, for 6,- . = 0.5. In all cases u, = 10. 

If we substittue (38) into (27) we easily find the algebraic 
equation 

for x ,  (b )  which can be solved for x ,  (and hence also y'(0) 
and y (0)  ) as a function of b. We calculated a a n d P  in (40) 
by summing the series (39) up to n = 1000; this gave the 
values 

Figure 3 plots y l (0 ) ,  x,, and the pumping efficiency 7 as 
functions of b calculated using Eqs. (38)-(41), ( 3  1 ). It is 
interesting that according to Fig. 3, if b is increased solely by 
increasing the pump power (keeping v and KO fixed), the 
efficiency 7 drops even though (30) implies that the quench- 
ing rate increases. In the limits b--tO and b-too, (38) and 
(40) yield the explicit dependences 

Formulas (42) and the definition of y imply that 

which corresponds to the solution of (26) when the A - B 
interaction does not quench any particles9; in addition, 
n , 4 .  In the opposite limit we have 

which corresponds to maximum pumping efficiency. 
We verified the above analytic formulas by solving (26) 

numerically with the boundary conditions (27),  (28),  (34). 
The easiest way to do the calculation was to choose an arbi- 
trary value x ,  and solve (26) by the Runge-Kutta method 
down to x = 0 to obtain y ( 0 )  and y l (0 ) ,  whereupon (27) 
yields the corresponding value of b. The calculated values 
y (0)  and y ' (0)  agree with the results from Eqs. (38)-(40) 
to within the lo-' relative error in solving Eq. (26). 

4. RELAXATION WITH V - T EXCHANGE 

V - Texchange greatly alters the relaxation of reacting 
excited anharmonic molecules. For instance, (26) and con- 
ditions ( 17)-( 29) imply that for b, # 0, all the characteris- 
tic relaxation parameters have a threshold dependence on b: 

Y' (0) I b<b ,=O, Y (0) I bG4 =Y (xi) I b<4,, =by 

Equations (45) describe relaxation for noninteracting 
A and B molecules (vo(v**) and coincide with the results in 
Refs. 9, 14, and 15. Unfortunately, it is not possible to derive 
simple analytic expressions for y l (0 ) ,  y ( 0 ) ,  y (x ) ,  and x ,  
from an expansion of the type (36) when b > b, , because the 
expansion coeffcients depend on x , .  We therefore solved 
(26)-(29) numerically for several values of the parameters 
b, b, , a v -  ., and vO; the results are shown in Figs. 4 and 5. 
We note that as in the case b, = 0 considered previously, Eq. 
(26) was solved by the Runge-Kutta method down tox = 0, 
and the value b corresponding to x,, 15,- ., V,, and b, was 
then found from (27).  Figure 5 shows that ~ ( b )  has a peak, 
i.e., there is an optimum external source power at which the 
pump energy is utilized most effectively in the interaction 
between the A and B molecules. The peak is present because 
for large b, rapid V - V exchange transfers energy to the 
level v** above which rapid V -  T relaxation occurs. We 
note that acording to Fig. 4, ly'(0) I increases with b. 

We can solve (26) approximately i fy(0)  and y ( x ,  ) are 
nearly equal, i.e., if the A - B interaction perturbs the DFf,  
only slightly. Indeed, if we make the Ansatz 

a 

and substitute into (26),  we readily find a recursion formula 
for the a, which is similar to Eqs. (37).  However, because 
thea, now depend onx,  there is little point in calculating the 
a, out to large n; instead, ti is preferable to calculate only the 
first few a, so as to preserve an analytic dependence on x, .  
The first seven coefficients yield the approximations 
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where A = x:8 !,I2 exp( - 6.- +,) .  If 

the boundary conditions (27)-(29) and (48) imply that 

We note that (50) is the diffusion analog of Eq. ( 10). 
It is noteworthy that if b, satisifes 

(where e = 2.7 1828 . - .), (49) holds for all values of b and 
Eqs. ( 50) are valid for b>b, . By the definition of 7 ( 3  1 ) and 
Eq. ( 50), the pumping efficiency reduces to the simple form 

when conditions (49) are satisfied. If b, satisifes (5  1) then 
Eq. (52) is valid for all b>b, , so that we can calculate the 
value 6 which is energetically most favorable from the relax- 
ation standpoint: 

Figures 4 and 5 compare the numerical calculations for 
(26)-(29) with results calculated using Eqs. (50) and (52).  
We see that the agreement is close for large b, . Comparison 
ofthe valuesy(0) andyl(0) found by (48) with the results of 
the numerical calculations revealed that Eqs. (48) are valid 
for A as large as ~ 4 .  The error in y '(0) was less than 5%, 
while that in y ( 0 )  was an order of magnitude smaller. 

As we noted earlier, the fundamental constraint here on 
the validity of the diffusion approximation9 is the requir- 
ment that the vibrational DF of the A molecules must have a 
plateau. Since v* z v , ,  we can express this as the inequality 
v, < v, < u**. Because the vibrational temperature T, in the 
definition of ther Treanor number must be found by piecing 
the distributions (17) and (43) together at v = v, (Refs. 9, 
14, 15), the "plateau condition" constrains the external 

source power: 

These inequalities define the limits within which our results 
are valid. 

CONCLUSIONS 

The present method for solving vibrational kinetic 
problems for anharmonic oscillators can be used to analyze 
diverse physical processes involving excited molecules. For 
example, it will be of interest to use the techniques and re- 
sults discussed above to design and optimize plasmachemi- 
cal systems and to determine how the interaction of the vi- 
brationally excited molecules alters the physical and 
chemical processes in gas laser-plasmas, in the ionosphere, 
and in nonequilibrium gasdynamics. 
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