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Under certain restrictions on the structure of the wave packet, the equations of motion of a 
particle in the field of a wave packet are exactly reduced to a universal mapping, regardless of the 
relation between the particle velocity and the group velocity of the packet. I t  thus becomes 
possible to find the region of stochastic dynamics, a kinetic equation, and the steady-state distri- 
bution of the particles. Some consequences for the basic types of waves in plasma are discussed. ' 
The phenomenon of a group resonance between particles and a wave packet is described and 
analyzed. 

1. INTRODUCTION 

A description of the dynamics of charged particles in 
the field of wave packets is one of the central problems in the 
theory of low-density plasmas. Its formal content can be ex- 
pressed by an equation, seemingly quite simple, which would 
be written in the one-dimensional case as 

The basic properties of Eq. ( 1.1 ) depend on the structure of 
the wave packet, which is determined by the parameters E n ,  
k, , and w ,  . In turn, this structure reflects the particular 
physical situation. 

Is is possible to simplify Eq. ( 1.1 ) and draw general 
conclusions regarding the dynamics of particles under rath- 
er general assumptions regarding the right-hand side of this 
equation? A simplification of this sort was first proposed by 
Vedenov et al.' and Drummond and  pine^,^ who thereby 
laid the foundation for the quasilinear theory of plasmas. 
That simplification consisted of a transformation from the 
description of the particle motion by means of the ordinary 
differential equation ( 1.1 ) to a kinetic equation (also called 
a quasilinear equation) 

where the diffusion coefficient D,(v), found by an averaging 
procedure, is 

If the fields En had random phases, or if Eq. ( 1.1 ) con- 
tained some other random element, it would be possible to 
make the transformation from ( 1.1 ) to ( 1.2) through some 
suitable technique for deriving a Fokker-Planck equation. In  
reality, a low-density plasma has the distinctive feature that 
the statistical element of the dynamics must appear as a re- 
sult of nonlinear processes, not as a result of collisions, 
which are infrequent and have a long scale time. 

The problem of the transformation from ( 1.1 ) to a ki- 
netic equation thus basically reduces to one of determining 
(in the present terminology) the conditions for the onset of 
chaos in the dynamic system ( 1.1 1. The first such qualitative 
condition was formulated by Vedenov et al.' That condition 

is that there are no particles which are trapped by any of the 
waves of the packet on the right side of ( 1.1 ) (or, more 
precisely, the number of such particles is quite small). Al- 
though this condition appears to have an unexceptional 
physical content, it has turned out to be quite difficult to 
verify explicitly. The great difficulites which arise here lead 
to an equally great latitude in the choice of other physical 
hypotheses for introducing a statistical d e ~ c r i ~ t i o n . ~ - ~  At 
this point we can assert that the attempts which have been 
made over the course of more than 20 years to revise the 
quasilinear theory by one approach or another have been 
caused primarily by the absence of any reliable conditions of 
a general nature for the onset of chaos in system ( 1.1 ) (see 
also the criticism of renormalization ideas by Galeev et ~ 1 . ~ ) .  

Our purpose in the present paper is to 'present some 
exact results on the appearance of chaos in system ( 1.1) and 
the exact form of the corresponding equation under certain 
restrictions on the shape of the wave packet (these restric- 
tions, however, are physically quite general). Some qualita- 
tive ideas on the subject were published previously in Ref. 7 
and, in more general form, in Ref. 8. Exact results for the two 
limiting cases of time-like and space-like wave packets were 
first derived in Ref. 9. These cases correspond to the inequal- 
ities vgu ,  and v)v,, where u is the velocity of a particle, and 
v, is the group velocity of the wave packet. We will pursue 
the development of the method described in Ref. 9, which 
leads to a universal description of the onset of chaos for arbi- 
trary relations between v and v, (including the region 
u - v, ) . This more general result has several important phys- 
ical consequences, which we believe will force changes in 
certain a priori ideas regarding the range of applicability of 
the quasilinear equation. 

Furthermore, there are two other physical situations 
which should be approached in a way different from that 
which is often taken. The first of these situations involves 
determining the region in which particles interact strongly 
with the wave packet. We will show below that the interac- 
tion is strongest at velocities v close to u,, where chaos sets 
in. We thus see the importance of studying the region u -u, . 

The second physical situation in which we need to take 
a more accurate look at earlier representations involves the 
criterion for an overlap of resonances. We will show that the 
condition for the onset of chaos in the motion of a particle in 
the field of the wave packet is not the same as the condition 
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for the resonances of two neighboring wave packets to over- 
lap (this is the reason for the difficulty of actually ensuring 
the Vedenov-Velikhov-Sagdeev condition of the "absence of 
trapped particles" ' ) . 
2. UNIVERSAL MAPPING 

We write the equation of motion of a particle as a pair of 
Hamilton's equations for the variables p, x :  

N 

i=e  En cos (k.x-o.t), i=p/m=v.  (2 .1)  

where 2N + 1 is the number of harmonics in the wave pack- 
et. We make the following simplifying assumptions regard- 
ing the structure of the packet: 

k,=k,+nAk, o,=oo+nAo, E,=Eo, (2.2) 

where n is an integer. Expressions (2.2) mean that dispersive 
effects are weak and that the spectral characteristics of the 
wave packet are uniform and symmetric. Conditions (2.2) 
are discussed in detail in Ref. 10. 

We introduce 

Substitution of (2 .2)  and (2 .3)  into (2 .1 )  yields 

b=eEo cos ex cos nk,  l - ~ k p i m - ~ u .  (2.4) 

The change in the energy $ = mv2/2 of the particle is deter- 
mined by the equation 

N 

C=eE,v cos 0 C  cos nE. 

We now assume Ak # 0 (the case Ak = 0 was discussed 
in Ref. 8 ) ,  and we introduce the new variable 

w=m(v-v,) 1 v-v,1/2, (2 .6)  

where v, = Aw/Ak is the group velocity of the wave packet. 
The quantity Iwj represents the energy of the particle in a 
coordinate system moving at the velocity v,. The relation- 
ship between v  and w is 

v=v,+sign w (21 w ] I m )  'I9. (2 .7 )  

Differentiating (2 .6)  with respect to t ,  we find 

w=mlv-v,ld. 

From (2 .4 )  and (2 .7)  we find 

Combining (2 .8)  and (2 .9 ) ,  we find 

w = ( m / A k )  l@,ld=(mlAk)$zi sign w. (2.10) 

Using (2.8)-(2.  lo),  we can rewrite the system (2 .4)  as 

dw eEo 
-=- d0 ko v (w)-v*  (2.11) -- cos 0 sign wFN (g) , - - 
d'; Ak dE Ak v ( w )  -v, 

where 
N 

FN(E) = coi nl .  vo=oolko 
n=-s 

and the functional dependence v  = v ( w )  is determined with 
the help of (2.7). The quantity v, is the phase velocity of the 
central mode of the wave packet. I t  is not difficult to see that 
system (2.11 ) is a Hamilton's system with the Hamiltonian 

eEo H (w, 8, E )  =Ho ( w )  - sign w - sin ~ F N  ( E )  , 
Ak 

where the variable 6 serves as the time; i.e., 

The last simplification, which corresponds to the phys- 
ical situation and which will be discussed in more detail be- 
low, is the assumption that N is large. We can therefore re- 
place the function F, ( 6 )  in (2.11 ) and (2.12) by 

F (';) = lim F N ( g )  =2n 6 (E-2nn). 
N + c o  9,=-m 

The system (2.11 ) becomes 

d w 
-- -eE,,L cos €I sign WE 6 (g -2nn) ,  

"=-m 

-=- 
I m '" 

koL [ I + sign w -) (0.-u,)] . (2.14) 
dg 2 x  21 wl 

The quantity L = 2a/Ak is the length scale of the system. 
We can transform from Eqs. (2.14) to finite-difference 
equations. For this purpose we introduce a sequence of val- 
ues of the independent variable 6, = 2 m  and a sequence of 
functions 

Integration of (2.14) over the interval (6, - 0 , 6 ,  + , - 0 )  
yields 

A 

UI,,+,=U,,+~E~LS,,,+~ cos On, 0,+,=0,+~ ( w n + , ) ,  (2.15) 

where the quantity 

is a nonlinear oscillation frequency of the particle in the field 
of the wave packet. In deriving mapping (2.15) we took into 
account the circumstance that the system is in free motion 
on the interval g, + 0 , 6 ,  + , - 0 ,  and we introduce the op- 
erator s,,, + , . To explain the meaning of this operator, we 
note that on the right side of the first equation in (2.14) a 
product of two generalized functions appears. This product, 
analyzed in Ref. 11, is determined unambiguously only for 
some fixed class of functions in whose space the generalized 
functions operate. The reader is referred to Ref. 9 for a dis- 
cussion of this question for equations of the type in (2.14).  
In our symmetric case we can assume ?,,, + , = 1 ,  which is 
clearly valid under the condition eE&( I w 1 .  The same con- 
dition s,,, + , = 1, can be extended to the case of arbitrary 
values of the quantity eE,,L, by treating it as a definition of 
the limit N-+ w . 

To determine the time interval of the sequence of 
6-function pulses by means by the relation A{ 
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= 6, + - {, = 2n-, we start with the equations 

Akx(t , )  -Aotn=2xn, Akx(t,+,) -Aotn+,=2n(n+l). 

From (2.1 ) we find 

x(tn+1) -x ( tn)  =vn+i (tn+,--t"). 
From the last two equations we find 

At=~t,+,-t,I=2nlAkJv,+,--~,J=L(m/2~w,+,~)'~. (2 .17)  

We will call the mapping (2 .15)  a "universal" map- 
ping. It preserves the measure in the ( w , 8 )  phase space. Us- 
ing the definition?,,, + , = 1, we can put the mapping (2 .15)  
in the form 

w,+,=w,+eE0L cos O n ,  

O,+,=O,+koL[sign w,+,+ (mI2I w,+,l)'" (v,-v,) I .  (2 .18)  

With Aw = 0 we have, according to ( 2 . 6 )  and ( 2 . 16 ) ,  - - 
w=b=& sign v ,  o ( g ) = ~ [ k ,  s i gn&-oo( rn /2 (g l ) ' " ] .  

(2 .19)  
After substitution into ( 2 . 18 ) ,  expressions (2.19)  lead to a 
so-called L-mapping: 

K + l = & v + e ~ o ~  cos On, On+, 

Relations (2.19)  and (2.20)  describe the dynamics of a par- 
ticle in the field of a wave in x-space p a ~ k e t , ~  which arises 
under the inequality A k u s A w .  

Under the condition u, = v,, which is characteristic of 
oscillations of the acoustic type, we find w = k& from 
(2 .16) .  The associated mapping reduces to a simple phase 
rotation, i.e., a linear oscillator. In this case the dynamics of 
the particle is trivially stable. 

3. REGION OF CHAOS 

Let us examine the mapping (2 .18) .  We can analyze the 
boundary of the onset of chaos in this mapping by a fairly 
standard approach if we impose the restriction eE& 4 1 w 1, 
which implies that the energy perturbation is small. For this 
purpose we need to determine the quantity 

K=~dO,+l/dO,--l I =eEokoL2(v,-voI ( r n / 8 ( ~ ( ~ ) ' " l s i n  81. (3 .1)  

The condition for chaos is K 2 1 or, in a more convenient 
form, 

S20ZQLZIsin @Ilk,  I v-u,J 3Bl, (3 .2)  

where 

Q,2=eEoko/m, Q=k,l v,-uol. ( 3 . 3 )  

Except in that region of phases 8 in which chaos sets in, 
condition ( 3 . 2 )  leads to the following velocity interval for 
the chaos region: 

Iu-ugI < (QOZQL2/k,)  ' / I .  (3 .4)  

Under the conditions u)u, and u,>v,, expression (3 .4)  be- 
comes the expression derived in Ref. 9. 

For expression (3 .4)  we can draw some conclusions 
which are important for applications: 1 ) the velocity inter- 
val of the chaos region is symmetric with respect to the pack- 
et group velocity u,. 2 )  This interval is bounded, and its 
boundary is proportional to E A'3. 3 )  At  v, = u,, there is no 

region of chaos. 
Let us examine some limiting cases of condition ( 3 . 4 ) .  

When we have u(u, and v&u,, that condition becomes the 
inequality 

K,=Qo2T221, T=2n/Ao,  

which was derived in Ref. 7 .  If u - v,, we find from ( 3 . 4 )  and 
(3 .3)  

This condition was presented in Ref. 8 and, in a form closer 
to that given here, in Ref. 12. In the same s t u d i e ~ , ~ . ' ~  the 
existence of a restriction on the velocity in the stochastic 
hearing of particles was first mentioned. An analogous result 
for a similar model with v, = 0 was recently published by 
Fuchs et a1. l 3  

Let us assume v,%u,, as is frequently done. We then see 
easily from (3 .4)  that chaos always sets in for velocities v 
near v,, while it may not set in for u near u,. In connection 
with this comment, let us consider the expression for the 
phase velocity of the nth harmonic of the packet. From ( 2 . 2 )  
we have 

on oo+nAo 
U p h  ( n )  = - = 

k ,  k o f n A k  ' 
At small values of n ( n A o  <a,, n A k  < k , )  we have 
up, ( n )  -vo, so that the typical wave phase velocities are 
comparable in magnitude to the phase velocity of the central 
mode of the packet, u,. At large values of n ( n A o  >a,, 
n Ak  > k,) we have up, ( n  ) - v, . We denote by No a charac- 
teristic number which distinguishes between the cases of 
large and small values of n.  In the case discussed above, the 
number of harmonics in the packet is N-CO; i.e., we have 
N%No. This result means that for essentially all the waves of 
the packet we have up, ( n )  z v , ,  provided that Ak #O. 

Real packets, however, have a finite N ,  so that the valid- 
ity of condition ( 3 . 4 )  requires further analysis for real pack- 
ets. This analysis will also tell us whether chaos sets in at 
up, ( n )  >u,. 

Finally, we note that the ordinary condition for the 
overlap of resonances, K ,  2 1 ,  is valid only if these reson- 
ances are sufficiently "immobile" with respect to each other 
in phase space. The condition for this can easily be found 
from our initial equations, ( 2 . 4 )  and ( 2 . 3 ) :  A k x ( A w ,  i.e., 
U O , .  

For simplicity we consider the case 

K,=max K=Qo2QL2/k, v - u ~ ~ ~ B  1. (3 .5)  

We can then find the following estimate" for the phase cor- 
relation: 

2n 

- exp[iko (u-v,) t l exp  ( - t / z , ) ,  (3.6) 

where the time scale for the loss of correlation is 

~ , = 2 A t / l n  K O ,  (3 .7)  

and At is the time between two successive steps of the map- 
ping. Substituting expression (2.17) for At into ( 3 . 7 ) ,  we 
find 
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K0>1. (3.8) 

It can be seen from (3.8) that in the limit v-v, the time 
scale for the loss of phase correlation tends toward infinity, 
although chaos condition (3 .5)  [or (3.1 ) 1 holds better as 
the quantity Iv - v, 1 becomes smaller. The reason is the 
strong interaction between the particle and the wave packet 
in the region v - v, . We will examine the dynamics near u, in 
moredetail below. We will also mention the obvious fact that 
an increase in L (i.e., in the dimensions of the region of the 
motion) is also accompanied by an increase in the time 7 , .  

4. KINETIC EQUATION 

Let us assume that condition (3 .5) ,  for chaos in the 
phases 6, holds. The loss of phase correlation in (3 .6 )  allows 
us to transform to a kinetic description of the motion of the 
particle, by means of a distribution function F(w, t ) .  

We consider the velocity region in which the perturba- 
tion is small, i.e., eE&<w or, equivalently, 

Q,(k,L)"'<k,l V - V , ~ .  
(4.1) 

This condition, combined with (3 .4) ,  yields the following 
inequality for the field: 

Ro<R (koL)"'=I u,-vo 1 (kO3L)'" .  (4.2) 

This inequality is expressed exclusively in terms of the pa- 
rameters of the wave packet. 

By virtue of condition (4.1 ), we can then use a Fokker- 
Planck-Kolmogorov equation for the function F(w, t ) :  

(4 .3)  
where ( (...) ) means an average over the phase 8, Aw is the 
change in w in one step of the mapping ( Aw = w, + , - w, ), 
and At is the time interval between two successive steps of 
the mapping. In this case, the quantity At depends on the 
variable w in accordance with (2.17).  To find the correct 
expressions we should thus put mapping (2.18) in a sym- 
metric form (see 53.1 in Ref. 12).  

We denote by x ,  and x ,  + , two successive points in the 
cross sections of a trajectory at which two successive b-func- 
tion perturbation pulses act. We replace these points by 

On the interval ( x ,  + L /2 ,  x ,  + , ) the particle moves at a 
velocity v, , while on ( x ,  + , , x ,  + , + L / 2 )  it moves at 
v, + , . We can thus write 

Using (2.15) and (4 .4 ) ,  we find the following result, which 
holds to within small terms of second order in the parameter 
eE& /w: 

which is in general a consequence of the principle of detailed 
balance. l4 

Substitution of (4 .5 )  and (4 .6 )  into (4 .3 )  yields the 
kinetic equation 

aF(w,  t )  1 d 
=-A 

dF(w,  t )  
D ( w )  a w  9 

at 2 dw 
D ( w )  =e2E ,2L( (w / /2m) '12 ,  (4 .7 )  

which is meaningful in the w region determined by condition 
(3 .4 )  and definition (2 .6):  

I wl <wo= ( m / 2 )  (Ro2QL2/k0) '" .  (4 .8)  

The boundary condition should have the form of the condi- 
tion that no particles stream across the boundary w, (Ref. 
15);  i.e., 

A steady-state solution of Eq. (4.7) is thus 

F ( w )  =const=p/2wo, I w(Gw0, (4.10) 

where p is the number of particles in region (4 .8 ) .  
I t  should be stipulated that the boundary w, is "impen- 

etrable" for particles in a somewhat crude sense, since condi- 
tion (3 .4)  establishes the boundary only when chaos is light- 
ly developed. The possible existence of weak and slow 
processes which cause diffusion of particles into the region 
lwl> w, is not ruled out. We will not discuss such processes 
here. There is also some "fine structure" in the distribution 
function Fnear  the point w = 0 ,  which we will discuss below 
in connection with the phenomenon of group resonance. 

We also consider the velocity distribution function 
F ( u ) .  From (2 .6)  and (4.10) we have 

Distributions (4.10) and (4.11 ) mean that there is an energy 
"plateau" in the coordinate system moving with the wave 
packet; equivalently, there is a velocity "cone" with respect 
to the point v = v,. Such a distribution is unstable, so that 
the label "steady-state'' applied to it should be understood in 
the narrow sense that we are considering only the interaction 
of the particles with the given wave packet. 

Finally, we consider a generalization of the equation of 
motion ( 1 . 1 ) :  

where the quantities E,, k, and o vary slowly along the 
packet and are slightly different from (2 .2) .  At the same 
level of accuracy, we can thus retain the analysis in Sec. 3  of 
the onset of chaos. Condition (3 .4 )  now becomes 

where the quantities 

From (4.5) we find refer tocertain characteristic values ofk for the wave packet. 
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As we mentioned back in Sec. 2, the variables w, 8 serve as 
the action-angle canonical pair of variables. 

Let us ignore the k dependence of v, . The definition of 
the variable w in (2.6) thus remains in force, and an equation 
of w can be found from (2.8) and (4.12) : 

;=el u(w)-vgI Ekcos(kz-wt). 
k 

The corresponding structure of the kinetic equation was 
found in Ref. 12 (56.3): 

dF(w, t )  1 d 
=-- dF(w, t )  

at  2 dw D(w) a w  7 

where we have used expression (3.6) for the phase correla- 
tion. The correlation time (3.8) can be written as follows, 
where we are using the notation in (4.14) : 

1 1  S1,2S2L2 (4.16) 
t, 2L k 1 v (w) -dok/dk 1 

It is not difficult to see that expression (4.15) for D(w)  be- 
comes (4.7) if we set E: = const = E:/2 and make the 
transformation 

Equation (4.15) is the most complete form of the quasi- 
linear equation, written in the space of the generalized ca- 
nonical variable w and incorporating the finite time for the 
onset of phase chaos. To show how the original and ususal 
form of this equation1 can be found from (4.15 ), we consid- 
er, say, the limiting case v(u,. In this cas we have 

wx-mv,2/2+muu,, dw=mv,dv. 

Substituting these expressions into (4.15), we find 

(4.17) 

where T = 2?r/Aw. Expressions (4.17) are the same as those 
found in Ref. 8, while D ( v )  becomes the same as D,(v) in 
(1.2) and ( 1.3) in the limit l/rc-+0. 

5. STOCHASTIC DYNAMICS OF PLASMA PARTICLES 

Let us consider some applications of the results of the 
preceding sections when wave packets interact with particles 
in a homogeneous and isotropic plasma. We know that there 
are three types of waves in such a plasma: longitudinal elec- 
trostatic plasma (Langmuir) and ion acoustic waves, and 
transverse electromagnetic waves. 

For plasma waves the dispersion relation is (Ref. 14, for 
example) 

where wLe = ( 4 ~ n e ~ / r n ) " ~  is the plasma frequency, and 

rd = (Te /4m,  2, the Debye length of the electrons. The 
group velocity of these waves in the long-wave region, 
krd (1, is substantially less than the electron thermal veloc- 
ity, v, -3vT (kr, ) XuT, while the phase velocity ofthe waves 
is substantially greater than the thermal velocity, up, -v,/ 
(kr, ) > v T .  The Landau damping of long plasnia waves is 
thus exponentially weak, so that a packet of plasma waves 
can certainly cause chaos in particles at velocities 
v - up, )uT if the inequality 

holds. This inequality determines the existence of an upper 
bound9 on the energy of a particle in the region of its stochas- 
tic dynamics: 

Expression ( 5.3 ) also determines the boundary for stochas- 
tic heating of particles. In this case the correlation time r, is 

A question which remains unanswered is whether there 
is a region of stochastic dynamics of the particles for veloc- 
ities u - v, (v, if condition (5.2) does not hold. As we men- 
tioned back in Section 3, there is no region of chaos if 
v, = v,. A similar situation can arise in a plasma when parti- 
cles interact with a very broad packet of long ion acoustic 
waves, for which we have 

where v, = w,,rd is the ion acoustic velocity. According to 
(4.13) and (5.5), the region of the stochastic instability is 
the velocity interval 

I v-v,l G (QO2L2ua) 'la (krd) 2'31 (l+k2rd2) I A .  (5.6) 

In the long-wave limit (kr, < 1 ) , interval ( 5.6) is very nar- 
row, and the system of dynamic equations of motion in ( 1.1 ) 
becomes approximately integrable. 

Let us examine in more detail the interaction of elec- 
trons with a packet of electromagnetic waves. For transverse 
waves in an isotropic plasma the dispersion relation is 

W ' = W L , ~ + ~ ~ C ~  , (5.7) 

and the phase velocity is greater than the velocity ofvlight. 
Consequently, there are no phase resonance effects (Ceren- 
kov radiation or Landau damping) .I4 Since the group veloc- 
ity of the transverse waves is less than the velocity of light, 
v, = c2/vP, < C, we can expect chaos for the particles at ve- 
locities v - v, . 

For definiteness, we consider the motion of an electron 
in the field of a packet of circularly polarized transverse 
waves: 

n 

where A is the vector potential of the field in the Coulomb 

949 Sov. Phys. JETP 62 (5), November 1985 G. M. Zaslavskiland A. A. Chernikov 949 



gauge. Corresponding to the motion of an electron in field 
(5.8) is the Hamiltonian 

H= [mZc'+(cP-eA)  'I"-, (5.9) 

where P is the generalized momentum. The Hamiltonian 
(5.9) is a function of the time: 

According to (5.9), the canonical equations of motion are 

. c ec e2 
r = - ( c P - e A ) ,  P  = - V ( P A )  - - O A Z .  (5.11) 

H H 2 H 
Since Hamiltonian (5.9) and the vector potential (5.8) are 
independent of the coordinates y and z, the transverse com- 
ponent P, of the generalized momentum is a constant of 
motion. 

We now assume that the amplitude of one of the har- 
monics, with index n = i, is large in comparison with the 
amplitudes of the other waves ( A i  )An ), and we retain in the 
Hamiltonian only the bilinear terms A,A, which correspond 
to two-photon Compton scattering. This approximation is 
legitimate if the particle oscillation velocity in field (5.8) is 
large in comparison with the transverse thermal velocity, 
i.e., if e lA( )cP , .  In this approximation, the Hamiltonian 
(5.9) becomes 

' I ,  

H= [ t 2 + 2 e ' ~ , ~  A.  eos (*.t-x.~) ] , 
(5.12) 

where 8 is the sum of the rest energy and the kinetic energy 
of the particle, and f l ,  = w, - w ,  and ?t, = ki - k ,  are the 
frequency and wave number of the beats of the electromag- 
netic waves. Equations of motion (5.11) also simplify: 

where B, = x ,  A ,  is the effective magnetic field of the wave. 
Correspondingly, the change in the energy is 

8 = ; 3  X B .  sin ( n e t - x . ~ ) .  
" 

Let us examine the motion of a particle in the field of a 
packet of long electromagnetic waves, with k ,  c g w L e ,  in the 
case in which the beat phase velocity f l ,  /x, is close to the 
packet group velocity, a, / x ,  - v ,  -- (c2k  /wLe<c;  in the re- 
gion v - v, ,  this is a nonrelativistic motion: Ip/ gmc .  Further- 
more, proceeding as in Section 2, we adopt the simplifying 
assumption (2.2) regarding the frequencies f l ,  and the 
wave numbers K, . The equations of motion of the particle 
then remain the same as in (2.14), aside from the replace- 
ment 

Hence, there is a change in the condition for chaos (3.4): 

The stochastic dynamics of the particles in region (5.15) 

will be determined by kinetic equation (4.15), in which we 
should make the replacement 

Ek+eA,Bk/mcZ. (5.16) 

Clearly, the structure of a packet of electromagnetic waves 
differs from the structure considered in Section 2, since the 
phase velocities of all the waves in the packet satisfy 
v,, ( n  ) > c, and the velocities of all the particles satisfy v > c .  
Nevertheless, a packet of electromagnetic waves gives rise to 
chaos of those particles whose velocities lie outside the phase 
velocities of the waves of the packet. 

If condition (5.15) holds, the particles undergo sto- 
chastic heating. To determine this heating rate, we multiply 
(4.7) by w3I2 and integrate over w. We find 

where we have used replacement (5.16), and BL is a charac- 
teristic value of B, for the packet. From (5.17) we see that 
the energy of the particles in the coordinate system of the 
wave packet initially increases in accordance with 

Similar increases in theothermoments, e.g., (w), also occur. 
Since the energy balance must hold, the latter result 

means that we have 

where 8, is the energy density for the wave packet. The 
energy density 8, thus decreases until a steady state is 
reached in the energy exchange between the particles and the 
waves. 

For transverse wave packets, a question remains unan- 
swered: Under what conditions do the single-photon pro- 
cesses for which the P . A  terms in equations of motion 
(5.11 ) are responsible lead to chaos of the particles? 

6. GROUP RESONANCE 

The phenomenon which is the subject of this section of 
the paper is one of the principal physical consequences of 
this study. The essence of this subject is the group resonance, 
i.e., a resonance between a particle and a wave packet. Such a 
resonance, if it occurs at  all, should occur at particle veloc- 
ities near v, . 

However, the point v = v, is singular, as can be seen 
from (2.6)-(2.11). Near this point, various (even small) 
deviations from conditions (2.2) on the structure of the 
wave packet may have a major effect on the nature of the 
particle motion. We will thus assume that the wave packet is 
finite, and in the n dependence of the frequency w, we take 
the dispersion into account by introducing a term -n2. 

The equation of motion becomes 
N 

where a is small. The last term in the phase comes into play 
only at times t 2 to, where 
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To analyze the motion near the point v  = v, we set 

x=u,ti-bx, i=u,+6u=ug+6i. (6 .3)  

Using ( 6 . 3 ) ,  we can put Eq. (6.1 ) in the form 
N 

.. e 
6x = - E 0 Z  cos {Qt+kobx+atno2(t) -at [n-no ( t )  1'1, 

m ,,=-N 

where n o ( t )  = AkSx/2at  and, as before, 51 = ko(u,  - v,). 
The quantity n o ( t )  reaches its maximum value at the mini- 
mum value oft ,  at which the terms caused by the frequency 
dispersion are important. This time is determined by to. Us- 
ing ( 6 . 2 ) ,  we introduce 

no=no ( t o )  =Ak6xN2/2. (6 .5 )  
It is now obvious that the limiting structure of the right side 
of (6 .4)  is determined by the relation between no and N.  

As a first case we assume no&N or, according to (6 .5 ) ,  

NAk6x<<l. (6 .6 )  

Ignoring the terms in the phase which contain no in (6.4),  we 
write 

Y 

.. e 
bx = - E. cos (Qt+kobx-an2t). ( 6 .7 )  

n=-N 

Except at very early times we can replace the summation in 
(6.7)  by an integral over n  and push the limits to infinity. We 
then find 

Introducing the new variable 

y=Qt+k,bx-n/2- (n14) sign a, 

we finally find 

y+Qo2 (n/Ia I t )  ' " s i n  y=O. (6 .9 )  

The solution of Eq. (6 .9 )  is obvious. I t  describes oscillations 
with a characteristic "frequency" 

Q,(t)  =62, (nl lal  t ) ' " ,  (6.10) 

which decreases as a function of time. 
The physical meaning of this result is easy to see. It can 

be shown that the maximum value of R ,  ( t )  in (6.10) is 

sl,=Q, ( t o )  - R ~ N I ~  (6.11) 

[here it is necessary to use our original equation, ( 6 . 8 ) ,  at 
small t ] .  Substituting to and (6.11) into (6 .9 ) ,  we note that 
we have 

Gx- (elm) NE,  ; 

i.e., the perturbation increases by a factor of about N.  This 
increase is a direct consequence of the fact that the particle is 
in resonance not with a single wave but with N waves, whose 
influence is effectively summed. 

The quantity R ,  given by (6.1 1 ) may be called the "fre- 
quency of the group resonance." The decay of the effective 
frequency 0, ( t )  over time [see (6.10) ] results from a 
spreading of the wave packet. 

Let us summarize the characteristics of a group reso- 
nance: 

1. The resonance occurs when the particle velocity 
equals group velocity of the wave packet." 

2. Near the resonance, the dynamics corresponds to the 
oscillations of a nonlinear pendulum [see (6 .9)  ] with a 
slowly decreasing frequency. 

3. The characteristic frequency R ,  of the group reso- 
nance is equal to the frequency R0  of a nonlinear resonance 
in the field of a single wave, multiplied by the square root of 
the number of waves in the packet. 

4. The oscillation frequency at a group resonance de- 
cays because the wave packet spreads (or it increases if the 
packet condenses). 

Near a group resonance, the dynamics of a particle is 
regular. The boundary of the group resonance can be esti- 
mated roughly from 

6zjg-max 6d-Qg/k,,. (6.12) 

For which values of N will a group resonance occur 
inside the region of chaos? For this to occur, the quantity Sv, 
defined in (6.12) obviously must be below the chaos bound- 
ary set by ( 3 . 4 ) .  We thus find 

N< (QkoZL2/Qo)  "3. (6.13) 

Inequality (6 .6)  also means that the perturbation is smooth, 
since 1 /NAk  is the characteristic width of the perturbation 
pulse for the particle, while Sx is the displacement of the 
particle caused by this perturbation. 

We turn now to a second limiting case, n o ) N  or 

NAkGx>>l. (6.14) 

In Eq. (6 .4 )  we need retain only the term of first order in n ;  
we then write 

Y 

e -- - E,  eos (Rt+ h o b ~ )  cos n4hGx. (6.15 1 
m 

,,=-N 

Aside from some changes in notation, this equation is the 
same as the first equation in ( 2 . 4 ) .  For this equation we can 
immediately write an expression for the region of stochastic 
dynamics, (3 .4) :  

Conditions (6 .16)  and (6 .17)  thus imply a stochastic 
disruption of a group resonance. Such a disruption occurs if 
the number of waves in the packet ( N )  is greater than some 
critical value No. From (6 .14)  and (6 .17)  we have 
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Clearly, in this case we can use the approximation of an infi- 
nitely wide wave packet (N-+ co ) . 

To put expression (6.18) for No in a different form, we 
introduce the oscillation amplitude of a particle in the field 
E,: 

~ ~ = e E ~ l r n ~ ~ ~ .  

We then write 

The second expression in (6.19) shows, among other things, 
that for waves which are almost purely acoustic waves, with 
lv, -v,1-+0, the boundary value becomes infinite 
(NO-+m ), and there can be no stochastic disruption of the 
group resonance. 

7. CONCLUSION 

Let us summarize the phenomenon. The standard anal- 
ysis of the interaction of waves with a particle in a plasma is 
based on two limiting situations, involving either one wave 
or a wave packet. In the latter case, the interaction with the 
group of waves is treated in a quasilinear theory. The heuris- 
tic value of this analysis is beyond question. However, exact- 
ly when one approximation or the other is valid is not settled. 
In reality, we are always dealing with wave packets, and to 
what extent they can be regarded as narrow or broad, and 
just how these assumptions actually affect the dynamics of 
the particle, remain open questions. 

It was shown above that the phenomenon of a group 
resonance, analogous in many ways to an ordinary nonlinear 
resonance (i.e., analogous to the dynamics of particles 
trapped by a single wave), occurs. However, a group reso- 
nance occurs for particles which are moving at a velocity 
near v, -vo. A question which has not been answered is 
whether a resonance exists at v - v, if all the phase velocities 
of the waves in the packet are far from v. If such a situation 
were possible, it would become necessary to reexamine sev- 
eral physical processes, e.g., the propagation and damping of 
electromagnetic waves in a plasma. 

Under certain conditions, which were established in 
this paper, the group resonance is disrupted, and the particle 
dynamics becomes stochastic. In this case, we can use a ki- 
netic equation to describe the evolution. This equation has 
different structures, depending on the relation between the 
particle velocity and v, . The general structure of the kinetic 
equation makes it possible to find the limiting particle ener- 
gy distribution, which in turn creates a nonequilibrium situ- 

ation. These secondary effects will be discussed in a separate 
paper. 

We also note that there have been several studies, begin- 
ning in Ref. 3, in which some type of renormalization of the 
quasilinear theory has been introduced (these studies are 
reviewed by Krommes16). One purpose of the renormaliza- 
tion is to take into account the broadening of resonances 
between a particle and a wave. Postponing to another paper a 
critical analysis of the extreme liberties taken with the deri- 
vation of renormalized kinetic equations in Refs. 3 and 5, we 
simply note that under the restrictions which we have in- 
voked in the present paper the kinetic equation which arises 
has a unique structure. This structure, also called a "general- 
ized quasilinear equation," contains no renormalization of 
any sort. Furthermore, it is an exact consequence of the ini- 
tial equations of motion. 

We are sincerely indebted to S. S .  Moiseev and R. Z. 
Sagdeev for constant interest in this study and for discus- 
sions. We are also indebted to B. V. Chirikov for useful com- 
ments. 

"In the case under consideration here, the center of the resonance corre- 
sponds t o y  = 0, i.e., v = v,. The reason is that the condition that the 
correction Sx be small leads to the inequality lv, - v, (4u,. The wave- 
particle resonance, however, occurs in a way quite different from that of 
an ordinary phase resonance, since the resonance frequency a, decays in 
time because of the spreading of the wave packet. 
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