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The instability of one-dimensional nonlinear periodic waves with respect to two- and three- 
dimensional perturbations in weakly dispersive media is analyzed. The analysis is aimed toward 
problems of waves in magnetized plasmas and of Rossby waves in a rotating fluid. A variety of 
two- and three-dimensional nonlinear equations describing these waves is taken into account. 
Equations corresponding to the so-called isotropic, anisotropic, hybrid, and vector models are 
analyzed. Dispersion relations for long-wave perturbations are derived for these models, which 
cover most of the basic types of weakly dispersive waves in magnetized plasmas. Periodic waves 
are generally stable (unstable) with respect to transverse perturbations if the corresponding 
solitons are stable (unstable) in a given model. The stability of oblique perturbations is analyzed. 
Such perturbations may be unstable if transverse perturbations are stable. 

I. INTRODUCTION 

Periodic waves rank along with solitons as the simplest 
elements in the theory of nonlinear steady-state waves in 
dispersive media. At a given scale length ( a  characteristic 
wavelength), the amplitude of a periodic wave may be much 
lower than that of a soliton. Experimentally, therefore, peri- 
odic waves are generally more common than solitons. The 
observation of periodic waves has been reported in many 
studies of plasma confinement in a magnetic field. For exam- 
ple, periodic drift waves have been observed in Q machines - - - 
(laboratory devices with an alkali-metal plasma), as de- 
scribed in the review by Bu~hel 'nikova.~ 

In the present paper we are interested in the stability of 
nonlinear periodic waves. Specifically, we will discuss waves 
with a weak dispersion ("weakly dispersive waves" or, in the 
conventional t e r m i n ~ l o g ~ , ~  "waves in weakly dispersive me- 
dia"). In a plasma, the weakly dispersive waves might be the 
many varieties of gradient waves, including the drift waves 
mentioned above and also ion acoustic and magnetosonic 
waves. Also weakly dispersive are long Rossby waves in a 
rotating fluid; these waves are analogous to drift waves in a 
plasma. Our purpose here is to determine the stability of 
these and similar waves under the assumption that the waves 
are one-dimensional, while the perturbations which arise are 
two- or  three-dimensional. In this sense our approach is sim- 
ilar to that of Refs. 4 and 5, with the distinction that those 
other papers dealt with solitons, while here we are concerned 

The function u = u(r , t )  characterizes the wave field, and 
R = R [ u ]  is some linear functional of u. We assume that the 
coordinate and the time, like the function u itself, are nor- 
malized in some appropriate way. 

In the case of the two-dimensional model of Kadomtsev 
and Petvia~hvil i ,~ we would have r = ( x , y ) ;  R can be taken 
to be the expression 

R=adu,/dy, (1.2) 

where the function v, satisfies the equation 

du,/dx=du/dy; (1.3) 

and the quantity a = + 1 gives the sign of the dispersion 
(a = 1 for waves with a positive dispersion and a = - 1 for 
waves with a negative dispersion). The generalization of 
Eqs. ( 1.2) and ( 1.3 ) to the case of a three-dimensional mod- 
el of the Kadomtsev-Petviashvili type are equations of the 
type 

R=o div v,, (1.4) 

dv,/dz=Vlu. (1.5) 

Equation ( I. 1 ) with R as in ( 1.2) or  ( 1.4) applies pri- 
marily to media with isotropic wave properties.'6 In this 
sense, these equations correspond to isotropic models (two- 
or three-dimensional). For very anisotropic media, e.g., a 
magnetized plasma or a rotating fluid, we must also deal 
with two-dimensional equations of the type (1.1), with 

with periodic waves. R=csd3u/dxdy2. 
To simplify the discussion we analyze some model (1.6) 

equations, and we then determine which physical problems Here, as in ( 1.313 we have a = f 1, but the relationship 

we can study with these equations. ~h~ nonlinear equations between this quantity and the sign of the wave dispersion is 

which we discuss here are a set of two- and three-dimension- generally single-valued (Section 6 below). In  problems 

al generalizations of the ~ ~ ~ ~ ~ ~ ~ ~ - d ~  vries equations. we involving magnetized plasmas, we also run into three-di- 

put the equations in two groups: those which do not contain fnensional generalizations of Eqs. ( 1.1 ) and ( 1.6). Here we 

a vector nonlinearity (the so-called scalar models) and those have 

which do contain a vector nonlinearity (vector models). We R=oA,du/dx, 
write the equations of the scalar models in the general form 

(1.7) 
where A, = ' / dy2  + */dz2. We will call the two- and 

duldt+uduld~+d~uldx~=R. ( 1.1 ) three-dimensional models described by Eqs. ( 1.1 ) , ( 1.6), 
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and ( 1.7) "anisotropic models." Equations of the type in 
( 1.1 ) and ( 1.7) were first derived by Zakharov and Kuznet- 
SOV.' 

Also of substantial interest for the case of a magnetized 
plasma is the so-called three-dimensional hybrid model, in 
which R is a combination of terms of the type in ( 1.2) and 
(1.61, i.e., 

where v, satisfies a relation like ( 1.3 ), 

a n d a ,  = + 1, a, = + 1. 
All of the scalar models listed here can be analyzed by a 

common approach in a hybrid model, with subsequent 
changes in notation, if it is assumed that P can take on the 
value 0 in addition to the values f 1. In this approach, a 
two-dimensional isotropic model corresponds to the case 
a, = f 1, a, = 0, while a two-dimensional anisotropic 
model corresponds to the case a, = 0, a, = + 1. The trans- 
formation from these two-dimensional models to the analo- 
gous three-dimensional models is made by introducing the 
change of notation b' 2/6'z2-+V, or 6' '/6'y2-+V, '. 

In problems involving a magnetized plasma and a rotat- 
ing fluid, a two-dimensional equation with a vector nonlin- 
earity of the type [cf. (1.1 ), (1 .6)]  

arises, where 

and ,u is a constant coefficient. For a magnetized plasma we 
are also forced to deal with a large family of three-dimen- 
sional equations with a vector nonlinearity. The simplest of 
these equations is 

where u, satisfies 

Equations ( 1.10)-( 1.13 ) correspond to so-called two- and 
three-dimensional vector models. 

In Section 2 we outline our approach for studying the 
equations of the scalar models. In  Section 3 we derive disper- 
sion relations for the waves described by the scalar models, 
and we analyze these relations in Section 4. In Section 5 we 
discuss the effects which stem from a vector nonlinearity. In 
Section 6 we determine the relationship between these mod- 
els and certain problems in the physics of magnetized plas- 
mas. The results are summarized and discussed in Section 7. 

Now we discuss the work which has been done pre- 
viously on the stability of nonlinear periodic waves described 
by these model equations. To  the best of our knowledge, 
there has been no previous study of the stability of the waves 
described by the anisotropic, hybrid, and vector models. On 
the other hand, the stability of periodic waves has been ana- 
lyzed in the isotropic model (the Kadomtsev-Petviashvili 
model). This analysis was begun by Infeld et ~ 1 . ' ~ ~  (see also 
Ref. 10) and pursued by Kuznetsov et al." This series of 

papers was preceded by a study of waves in the one-dimen- 
sional Korteweg-de Vries model, begun by Whitham', (see 
also Ref. 13). Theoretical research on the stability of one- 
dimensional solitons in this model has also influenced the 
development of the theory of the stability of periodic waves 
in the Kadomtsev-Petviashvili model. Noteworthy among 
these studies is the paper by Kadomtsev and Petvia~hvil i ,~ 
which demonstrates that such solitons are stable with re- 
spect to two-dimensional perturbations in media with a neg- 
ative dispersion, but are unstable in media with a positive 
dispersion. 

The analysis in Refs. 8 and 9 dealt with long-wave per- 
turbations; i.e., the physical results of those studies were de- 
rived through a series expansion in the small wave numbers 
of the perturbations. In  this approximation, and if small 
terms on the order of the expansion parameter are ignored, 
the frequency of the perturbations is found to be proportion- 
al to the wave number, so that we can introduce the concept 
of a "characteristic perturbation velocity," which has the 
same meaning as the group velocity (or phase velocity) of 
waves with a linear dispersion law. Whitham12 showed that 
long-wave perturbations in systems described by the 
Korteweg-de Vries equation have three real characteristic 
velocities. In  other words, it follows from Ref. 12 that in 
such systems there are three branches of stable long-wave 
perturbations. Whitham" derived expressions for these 
characteristic velocities; this was equivalent to calculating 
the frequencies of the corresponding perturbation branches. 

An important feature of the characteristic velocities 
which Whitham foundI2 is that when we go from the case of 
periodic waves to the case of a chain of infinitely remote 
solitons two of the three velocities, which are identical in 
magnitude and opposite in sign (i.e., which have the same 
square), vanish. In this sense we can assume that one-dimen- 
sional perturbations of a soliton are characterized by two 
zero frequencies. We are then led to ask how these zero fre- 
quencies of a soliton will change in the case of two-dimen- 
sional perturbations. This question was answered by 
Kadomtsev and Petvia~hvi l i ,~  who showed that two-dimen- 
sional long-wave perturbations of a soliton are also charac- 
terized by two frequencies which have a common square, 
and the sign of this square is determined by the sign of the 
dispersion of the medium, in accordance with the discussion 
above. The result which Kadomtsev and Petviashvili found 
regarding the instability of long-wave perturbations in me- 
dia with a positive dispersion (as mentioned above) means 
that there are two imaginary characteristic velocities. We 
thus see the relationship between the results of Whitham12 
and Kadomtsev and Petvia~hvi l i .~  

Clearly, however, the situations discussed in Refs. 6 and 
12 are different limiting cases of the overall problem of the 
two-dimensional stability of periodic waves. This was point- 
ed out some time ago by Infeld et al. ,ss9 who derived a disper- 
sion relation for long-wave perturbations, which turned out 
to be cubic in the perturbation frequency, as in the one-di- 
mensional case. Analyzing this equation for several particu- 
lar cases, Infeld et al.8s9 concluded that periodic waves, like 
solitons, are stable in a medium with a negative dispersion, 
while they may be unstable in a medium with a positive dis- 
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persion. 
In contrast with Refs. 8, 9, and 12, Kuznetsov et al." 

used the inverse scattering technique. They reported that in 
Kadomtsev-Petviashvili systems one-dimensional periodic 
waves are unstable if the dispersion is positive, while they are 
stable with respect to transverse perturbations if the disper- 
sion is negative. As we mentioned earlier, similar results fol- 
low for the case of long-wave perturbations from the earlier 
studies by Infeld et a/.'-lo (however, those earlier results 
were not discussed or even mentioned in Ref. 11 ) . 

Let us analyze Eqs. ( 1.1 )-( 1.13) above by expanding 
in small wave numbers. In this regard, our closest predeces- 
sors are Infeld et al.'f9 It is clear from the discussion above 
that our analysis differs from Refs. 8 and 9 in that we are 
considering a broader set of models. This set also includes 
the Kadomtsev-Petviashvili model, studied in Refs. 8 and 9 
and also in Ref. 11. We are thus in a position to test the 
results of Refs. 8 and 9 and to get an idea of how general the 
results of Refs. 8, 9, and 11 are. Our analysis provides sup- 
port for the general dispersion relation derived in Refs. 8 and 
9 and for the expressions considered in Refs. 8 and 9 for the 
perturbation frequencies in limiting cases. However, we also 
analyze some other types of oblique perturbations, and we 
find that periodic waves described by Kadomtsev-Petviash- 
vili models may be unstable with respect to oblique perturba- 
tions in media with a negative dispersion. This result means 
that the conclusions which Infeld et al.8.9 and Kuznetsov et 
al." reached regarding the stability of such waves in media 
with a negative dispersion apply only in particular cases. 

2. APPROACH FOR STUDYING THE NONLINEAR EQUATIONS 
FOR SCALAR MODELS 

We assume 

The function u, describes an initial one-dimensional steady- 
state wave which is propagating along thex axis at a velocity 
u,; i.e., we have u, = u,( l ) ,  where 6 = x - v,t, and the func- 
tion fi characterizes a two-dimensional ii = ii(f,y,t) or 
three-dimensional ii = ii(f,y,z,t) perturbation of the wave. 
According to ( 1.1 ), the function u, satisfies the equation 

where the prime indicates a derivative with respect to f .  
Equation (2.2) is the steady-state Korteweg-de Vries equa- 
tion. It describes two physically distinct types of wave, soli- 
tons and periodic waves.'.2 In the case of interest here, that 
of periodic waves, we can take u, to be the f ~ n c t i o n ' . ~  

uo=b d n s x ,  s), (2.3) 
where dn is the Jacobi elliptic function of modulus s2, 
f = (b /12) lJ2f ,  and b = 3vo/(2 - s2 ) .  We assume vo>O, 
b > 0, O(s2< 1. According to ( 1.1 ), the perturbed function fi 
satisfies the equation 

where d /d t  R = R [ii]. In accordance with the 
discussion in Section 1, we restrict the discussion to the case 
in which R is as in (1.8),  and u, is as in (1.9). 

Let us specify the space-time dependence of the pertur- 
bations. We assume (cf. Refs. 8 and 9 )  

(ii, R, u,)=(ii,  R, Cr)exp [ - i ( B t - K r ) ] ,  (2.5) 

where ii = ii ( f ) ,  R = R ( f ) ,  and & = iS, (6 )  are periodic 
functions (their period is the same as that of the initial 
wave); fl is the perturbation frequency; K = (K, ,Ky ,Kz ); 
r = (l,y,z); Ky  and K, are the wave numbers of the pertur- 
bations along y and z; and K, is the average longitudinal 
wave number of the perturbation, also known as the Bloch 
quasimomentum. From (2.4), (1.8), and ( 1.9) we then find 
the following equations for the functions ii, R, and & : 

C,'+iK,v,=iK,ii. (2.8) 

By analogy with Refs. 8 and 9, we assume that fl and K 
are small parameters, and we solve Eqs. (2.6)-(2.8) by ex- 
panding in fl and K. We write ii, R ,  and tiz in the form 

- u=ui+u2+u3+. . ., R=R3+. . . , G,=u,z+ u,,+.. . . (2.9) 

The function u, satisfies the relation 

(Qul)'=O. (2.10) 

In the next approximation we find from (2.6)-(2.15) 

vT2'=iK.uI. (2.12) 

Finally, in the highest-order approximation which we will 
consider here, we find the following system of equations for 
u,, R,, and u,, from (2.6)-(2.8): 

vZs1=i (K,u2-K,vZ2). (2.15) 

All of the unknown functions ui (i = 1, 2, 3)  and uzi 
( i  = 2, 3 ) are periodic in f .  It  can be seen from (2.12) that 
the condition that uz2 be periodic is equivalent to the vanish- 
ing of the average value of u, over the period of the initial 
wave: 

(u,>=O. (2.16) 

Here and below, angle brackets are used to represent this 
average, 

(...>-4 (...)as/$ as 
and the integrals are taken over the period of the initial wave. 
Analogously, we find from (2.15) and the condition for the 
periodicity of u,, 

K,(u~>-K,(u,~>=O. (2.17) 
h 

The functions Qui are also periodic. Consequently, we find 
from (2.13) and (2.14) 

SZ(U~>-K,(QU,)+~,K,(U,~>=O. (2.18) 

Yet another useful integral relation (an  orthogonality con- 
dition) can be found by taking an average of (2.12) with a 
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weight of u,; using (2 .14) ,  we would thus have 
i (uo [ (Q-KxQ) uz-2K.~211+01Kzu,z]) 

+ (3K2-02K,2) (uOuI1)=O. (2.19) 
Our problem thus reduces to one of calculating the functions 
u, ,  u,, and v,, from Eqs. (2.10)-(2.12) under the auxiliary 
conditions (2.16)-(2.19).  

3. DERIVATION OF A DISPERSION RELATION FOR SCALAR 
MODELS 

Using the periodicity condition and the auxiliary condi- 
tion (2.161, we find from (2.10) the following expression for 
u , :  

where A is an arbitrary constant. Substituting (3 .1)  into 
(2.11),  (2.12),  we find 

uZz1=iAKzuo1. (3 .3)  

Solving (3 .2 ) ,  we find the following expression for u,: 

Here 

B and C are integration constants and the integral is to be 
understood as a function of its upper limit. Analogously, Eq. 
(3 .3 )  and the auxiliary condition (2.17) imply 

u,,=iAK,(uo-(uo>) +(u,)K,/K,. (3 .6)  

Using (3 .4) ,  we find that the condition that v,, be peri- 
odic implies 

aiiA+Q (a12B+a13C) =O. 

Here 

and the quantities I,,, are defined by 

d I d dnm 
Im =(snzcn2-(--)) d d n  d n d d n  ' 

where sn = sn ({ , s ) ,  cn = cn({,s)  are the Jacobi elliptic 
functions. Analogously, using (3 .4)  and ( 3 . 6 ) ,  we find from 
(2.18) 

where 

az1=AQI3+2olKz2K,v0h/ (2-s2),  

u ~ ~ = A I , - K ~ ~ u ~ /  (2-s2),  u ~ ~ = A I - ~ ,  (3 .11)  

A=QK,+o1Kz2, h=E ( s )  lK  ( s )  ; 

and K ( s )  and E ( s )  are the complete elliptic integrals of the 
first and second kinds. Finally, we find from (2 .19)  

aaiA+Q (u, ,B+u~~C) =O. 

Here 

3 K . l ~ ~  
aSs=QK,(2-s2) I-, + - + 3oIK,2M-I. 

2-s2 
From (3 .7 ) ,  ( 3 .  l o ) ,  and (3 .12)  we find the dispersion 

relation 

Substituting a, from ( 3 . 8 ) ,  (3 .11) ,  and (3 .13) ,  and carry- 
ing out some manipulations, we find the following cubic 
equation in R (cf. Ref. 8 )  : 

(a3Q2-d1u0202K,2) (Kx62+o1Kz2) 

+ a,QK,uo (KxR+4011~,2/3) 

+ aOuo3K,P+ (boolKi2-dO~Oo2Kyz) ( K S ~ o ) 2  

+ C ~ U ~ ( J ~ ~ K , ~ = O .  (3.15) 

Here 

a3=& (2-s2) d/s4, a2=3hZ+~413Z, aO=-4 (1-s2) Z /  (2-Sz)2, 

bo=4{h[U(2-s"-5(1-s2) 1--sL(1-s2)1113)/3(2-sz), 

cO=4g2/3s4, di=4gh/l5s4 (2-s2) ,  (3.16) 
do=2h[3ht13(2-sZ) 1/15 ( 2 - ~ ' ) ~ ,  

where 

d= ( I -h)  [h- ( 1.-s2) 1, 

and the quantities I, and I, are related to s2 and A by 

I1=[2h- ( I - sZ )  ]Is4, I,=[h(2-s2)-2(1-s2) ] / s4 ,  (3.18) 

according to (3 .9 ) .  
Using (3.17 ) and ( 3.18 ) , we can also express all of the 

coefficients in (3.16) in terms of s2 and A. Using the defini- 
tion of A and the asymptotic expressions for the complete 
elliptic integrals K ( s )  and E ( s ) ,  we find 

We can thus find limiting expressions for the coefficients in 
(3.16) in the limits s-1 and s-0. In the limit s-1 we find 

as=az=4hz, a,=-4 (1-sZ) ' ,  
(3 .20)  

bo=co= 16h2/3, di=do=8h2/15. 

When s-0, on the other hand, we find from (3 .16)  

(3 .21)  
co=3s4/16, dl=3s4/32, d,=15s4/64. 

With K, = 0 (or 0, = 0 )  we find from (3 .15)  
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A dispersion relation of this type (with u, = 1 ) was derived 
by Infeld et a1.8 Although we are using the same notation 
(a3 ,  a Z ,  etc.) as in Ref. 8 for the coefficients in Eq. (3.22), 
our coefficients differ from those of Ref. 8 by numerical fac- 
tors. 

IfwesetK, =K, = O  ( o r a ,  =a2 = 0 )  in (3.15), i.e., 
we assume that the perturbations are one-dimensional, this 
equation reduces to 

a31?~a2woR2Kr+aow,3K+3=0. (3.23) 

Using (3.16) for the coefficients a,, a,, and a,, we can put 
this dispersion relation in the form 

K , W ~ ] {  [A- ( I - s 2 )  ]R + s2 (1-s2)  
[ ( I - h ) Q  +- 

2-s2 2-s2 

in agreement with the results found by Whitham.I2 [Infeld 
et aI.8310 also went through the transformation from (3.22) 
to (3.24).] 

In accordance with the discussion in Section 1, disper- 
sion relation (3.22) describes wave perturbations in an iso- 
tropic model, while Eq. (3.15) with (al ,u,)  + O  describes 
them in a hybrid model. If, on the other hand, we set K, = 0 
(or u, = 0)  in (3.15), we find 

This dispersion relation describes wave perturbations in an 
anisotropic model. We can also consider the case of purely 
transverse perturbations, i.e., perturbations for which we 
have K, = 0. In this case, our general dispersion relation 
(3.15) reduces to a quadratic equation in fl: 

where 

Ci=g213 (2-s2)Ad. C2=gh./15 (2-s2)'hd. (3.27) 

The coefficients C, and C, are positive for all s2 on the inter- 
val under consideration here, O<s2g 1. In the limit s2+1 we 
have 

while at s<  1 we have 

C,=3s4/32, C2=3s4/64. (3.29) 

Let us analyze these dispersion relations. 

4. ANALYSIS OF THE STABILITY OF WAVES IN SCALAR 
MODELS 

4.1. Longitudinal perturbations. (K, = K, = 0) .  Ac- 
cording to ( 3.24), longitudinal perturbations of periodic 
waves are characterized by frequencies f l  = fl,,,,, , where 
(cf. Refs. 12, 8, and 9 )  

All three roots are seen to be real, so that these waves are 
stable against longitudinal perturbations. 

In the limiting case of highly nonlinear waves, s - t l ,  we 
find from (4.1 ) 

Qi,  ,=+K,V, ( I - s Z )  /A, I?3=-Kx~0. (4.2) 

We see that in this limiting case the frequencies R,,, have 
identical squares (cf. the discussion in Section 1 of the re- 
sults of Ref. 12). These roots are small in comparison with 
fl, and vanish at s = 1. We also see that in our approxima- 
tion the large root fl, does not depend on the parameters s 
and A. It is found from small-oscillation equation (2.4) 
when we neglect nonlinearity and dispersion; i.e., it is found 
from an equation 

aaiat=v0n'. (4.3) 

In the limit of slightly nonlinear waves, s< 1, we find 

Qi=K,u,/2, I?,=Q,=-K,w, (4.4) 

instead of (4.2) from (4.1 ) . A distinctive feature of this case 
is that two of the three perturbation frequencies are equal. 
This property, like the properties of solutions (4.2), dis- 
cussed above, will be used in our analysis of oblique pertur- 
bations in Subsection 4.3 below. 

The one-dimensional stability of periodic waves de- 
scribed by a Korteweg-de Vries equation, which we are 
treating in this section of the paper, has also been discussed 
by Kuznetsov and Mikhailov,I4 who used the inverse scat- 
tering method. They offered a proof that such waves are 
stable.I4 That conclusion agrees with the results which we 
discussed above and which should be credited to Whitham, l 3  

although there is no mention of Whitham's results in Ref. 14. 
4.2. Transverse perturbations. Now, in contrast with 

Subsection 4.1, we set K, = 0, but we allow K,,, K, $0, so 
we are dealing with transverse perturbations. Such perturba- 
tions are described by dispersion relation (3.26). We know 
that in the limit s-tl the nonlinear periodic waves described 
by a function of the type in (2.3) correspond to a sequence of 
solitons which are spaced quite far apart.'., In this case, dis- 
persion relation (3.26) reduces to the dispersion relations of 
soliton perturbations, which have been analyzed previously. 

For an isotropic model (for Kadomtsev-Petviashvili 
models) Eq. (3.26) yields 

According to Ref. 6, in a model of this type solitons are stable 
if u, = - 1 (in a medium with a negative dispersion), while 
they are unstable if a, = 1 (with a positive dispersion). It 
can be seen from (4.5) and from the condition C, > 0, men- 
tioned earlier, that the same comment applies in the case of 
periodic waves if we are speaking in terms of the transverse 
perturbations of these waves with which we are concerned in 
the present subsection. This circumstance was pointed out in 
Refs. 8,9,  and 1 1. In the limiting cases s = 1 ands( 1, expres- 
sion (4.5) with (3.27) and (3.28) can be written 

The upper equation in (4.6) agrees with Ref. 6. The pertur- 
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bation frequency (or growth rate) is quite sensitive to the 
oscillatory part of the amplitude of the initial wave, which is 
characterized by the parameters; the frequency decreases in 
proportion to sZ in the limit s-0. 

For an anisotropic model, (3.26) leads to 

Q2=vo2C2u21i;Z. (4.7) 

In a model of this type, the condition for the stability of 
periodic waves, like that for solitons, with respect to trans- 
verse perturbations is also determined exclusively by the 
sign function a, (it does not depend on the magnitude of the 
parameter s ) .  According to (4.7) and the condition C, > 0, 
when a, = - 1, there is an instability, while at (+, = 1 the 
solution is stable. Consequently, if a, characterizes the sign 
of the wave dispersion (as we will see in Section 6, this may 
not be the case!), the stability picture is precisely the oppo- 
site of that in the case of an anisotropic model. By analogy 
with (4.6), we find from (4.7), (3.27), and (3.28) 

In the cases = 1 this result agrees with Refs. 4, 15, and 16, 
which dealt with the stability of solitons. We see that, as in an 
isotropic model, we have ( s g  1 ) 101 -s2 for slightly nonlin- 
ear waves. 

It follows from the complete equation (3.26) that in a 
hybrid model periodic waves are stable with respect to trans- 
verse perturbations for all s and K, /K,  if (+, = - 1, a, = 1, 
while they are unstable if a, = 1, a, = - 1. If, on the other 
hand, we have a, = a,, the stability condition depends on 
both K, /K, and s (and also on v,) . Let us examine the case 
a, = (+, = - 1 in more detail. From (3.26) we find, in place 
of (4.6) and (4.8), 

The s dependence of the stability criterion is seen to be of 
only a quantitative nature. For qualitative estimates we can 
ignore this dependence, writing the instability condition as 
(cf. Ref. 16) 

K:> ~ , / v d " .  (4.10) 

If a, =a, = 1, the signs of the right sides of (4.9) are 
switched. In this case, the instability should occur at 
K, ,> Ky Y:". 

4.3. Obliqueperturbations. Since the general dispersion 
relation (3.15), for oblique perturbations is quite complicat- 
ed, we consider the limiting cases of these perturbations cor- 
responding to values of the parameter s2 in the interval 
1 - s2( 1 (perturbations of highly nonlinear waves) or s2< 1 
(perturbations of weakly nonlinear waves). 

4.3.1. Oblique perturbations of highly nonlinear waves 
(1 - s2g1). Using (3.20), we find that at 1 - s2(l disper- 
sion relation (3.15) becomes [cf. (4.2), (4.6), (4.8), (4.9) ] 

For small values of K, and Ky , such that we have 

K,', K,,%08<K+)v0, (4.12) 

Eq. (4.11 ), like the dispersion relation (3.24), for longitudi- 
nal perturbations has two small roots R,,, and one large root 
R, [cf. (4.2) 1 .  In this case the terms with K f and K j have 
only a slight effect on the large root R,, so that R, can be 
assumed given to be approximately by the second relation in 
(4.2), while the effect of these terms on the small roots R,,, 
may be extremely important. When these terms are taken 
into account, we find from (4.11 ) the following equation, 
instead of the first equation in (4.2) : 

It  is clear from a comparison of (4.13) with (4.6), (4.8), and 
(4.9) that for very nonlinear waves (4.13 ) may be regarded 
as a generalization of the expression for the square of the 
frequency of transverse perturbations to the case K, #O. In 
addition, Eq. (4.13) makes it possible to study the transition 
from Whitham's one-dimensional  result^'^ to the two-di- 
mensional soliton results of Refs. 6 and 15, as we mentioned 
in Section 1. 

It follows from (4.13) that highly nonlinear waves be- 
come unstable if 

The instabilities which arise under condition (4.14) are the 
same as those discussed in Subsection 4.2 for the cases = 1. 
In this sense, condition (4.14) may be thought of as the con- 
dition for the applicability of the approximation of purely 
transverse perturbations with s = 1. Whether the instabili- 
ties described by the models which we are discussing here 
will be manifested in a medium with a given dispersion rela- 
tion is determined by the same factors as discussed in Sub- 
section 4.2. 

We now consider perturbations with K, and Ky much 
larger than those corresponding to condition (4.12). It fol- 
lows from (4.1 1 ) that the roots R,,, are small in comparison 
with a , ,  increase with increasing K, and Ky , and may be- 
come comparable to R, at sufficiently large values of K,  and 
Ky . In this case, the solutions of (4.1 1 ) are found by expand- 
ing in the small parameter ( 1 - s2) '/A ,. In lowest order, we 
find R = R:,,,, , where (cf. Refs. 8 and 9 )  

Q:" = - K x ~ o - ~ l K L 2 1 K z .  (4.16) 

Let us assume that the instabilities associated with condition 
(4.14) do not occur, in accordance with the situation in 
which the left side of inequality (4.14) is negative: 

' 1 3 ~ 1 K , z - Z / i 5 ~ o ~ 2 K V Z ( 0 .  (4.17) 

According to (4.15), the roots R $ )  are real in this case: 
(RIP: ) > 0. Let us also consider values of K, and Ky such 
that one of the roots, say RiO', is equal to the root RiO'; i.e., 
R:" = a?'. If follows from (4.15) and (4.16) that this case 
arises when 
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( K , V ~ + ~ ~ K , ~ / K , ) ~ = - ~ ~  ( 4 / 3 0 1 K , 2 - z l l s ~ o o 2 K , 2 ) .  (4.18) 

We now consider the small term on the right side of (4.11); 
we find that this term leads to 

~ , , ~ = 5 1 : ~ '  $6, (4.19) 

where the small correction S is given by 

In the case of an isotropic model (a, = 0 or K, = . O ) ,  
inequality (4.17) means that the situation corresponds to 
media with a negative dispersion: a, < 0. In this case we find 
from (4.18) and (4.20) 

We see that the condition S2 < 0 holds, so that highly nonlin- 
ear periodic waves in a medium with a negative dispersion, 
describable by a Kadomtsev-Petviashvili model, are unsta- 
ble against oblique perturbations. This result is qualitatively 
different from that for the case of purely transverse pertur- 
bations, discussed in Subsection 4.2. 

For an anisotropic model ( a ,  = 0 or K,  = O ) ,  inequa- 
lity (4.18) corresponds to waves with a positive dispersion: 
a, > 0. In this case we have, instead of (4.2 1 ) and (4.22) 

By analogy with (4.22), we have S2 <O again in this case. 
This result means that waves are unstable in media which 
have positive dispersion and which are describable by an 
anisotropic model for the oblique perturbations which we 
are considering here. Again, we have a qualitative difference 
from the properties of purely transverse perturbations. 

4.3.2. Oblique perturbations of slightly nonlinear 
waves (sZ(l). In the case s2( 1 we find the following disper- 
sion relation from (3.15) and (3.21 ) : 

(R+K,uo) (QK, -1 /2K,2~o+oiK,2)  

= - 3 / 3 2 ~ ' ~ o  [012Kz4-1/zoLK,2uo (Q1i;-t5/2K,2vo+01Kz2) 1. (4.25) 
In the approximation s = 0 we then find three real roots, 
which are mentioned in Refs. 8 and 9 [and cf. (4.4) 1 : 

( 0 )  ( 0 )  ( 0 )  Qi =Q2 =-K,vo, Q3 = K , ( 1 / 2 ~ o - ~ l K z 2 / K , 2 ) .  (4.26) 

In calculating the corrections to these roots which come 
from the terms with s4 on the right side of (4.25), we should 
distinguish between the cases with fl~O'#R:O' and ar0' 
= 0:". Let us find the corrections to the roots in the 

former case. Setting a,,, = RIP! + S, we find the following 
equation for S: 

62=3/32~'vo  ( ' / 2 K x 2 ~ U - ~ l K z 2 ) - 1  

X [ ( s ~ K , ~ - ~ / ~ u ~ K ~ ~ u O  ( 3 / 2 K z 2 ~ O + ~ i K z 2 )  1. (4.27) 

For an isotropic model, with a, = 0 or K, = 0, this 
equation reduces to 

We see that in this model the perturbations of the type under 
consideration here, like transverse perturbations, can grow 
only in media with a positive dispersion: a, > 0. For the an- 
isotropic model ( a ,  = 0 or K ,  = 0 ) ,  we find from (4.27) 

This case corresponds to an instability of waves in media 
with a2 > 0, in qualitative distinction from the case of the 
transverse perturbations discussed in Subsection 4.2 but in 
analogy with the oblique perturbations of highly nonlinear 
waves which were discussed in Subsection 4.3.1. 

Expression (4.27) becomes inapplicable if the condi- 
tion 

holds, as it may in media with a positive dispersion: a, > 0. 
This case corresponds to the equality of all three roots in 
(4.26). In place of (4.27) we then find the following result 
from (4.25) for the isotropic model: 

ti3=- (27s4/128) vO3K,3. (4.31) 
Comparison of (4.31) with (4.28) clearly shows that the 
case in which all three roots are equal corresponds to pertur- 
bations with the maximum growth rate. 

5. VECTOR NONLINEARITY 

Since the problem is complicated, we will consider only 
transverse perturbations in this section of the paper; i.e., we 
set K,  = 0 (cf. Sections 2-4) .  

5.1. Derivation of a dispersion relation in vector models. 
From ( 1.12) and ( 1.13) we find the following equations to 
replace (2.6): 

where 

$ = 3 ~  ( u o - ( u o ) ) ,  x=KVp.  (5.4) 

Using (5.1 1, we find that the analog of Eq. (2.10) in the case 
of a vector model is the equation 

B0Qu1=O. (5.5) 

Correspondingly, in second order we have the following 
equations for u2 acd vz2 [cf. (2.1 l ) ,  (2.12) 1 : 

bovzz=iKzul .  (5.7) 

In third order we have the equations [cf. (2.13)-(2.15) ] 

Dovz3=iK,u2. (5.9) 

From Eqs. (5.7)-(5.9) and the conditions for the peri- 
odicity of the functions v,, , v,, , and u, we find the following 
integral relations, which replace (2.16)-(2.18) in the case of 
vector models with K,  = 0: 
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<ei*vZz> =O. (5.11) 

An orthogonality conditional analogous to (2.19) is found 
from (5.8) by taking an average of this equation with a 
weight (ei* - l) / ix:  

Returning to Eq. (5.5), and using relation (5.10) with 
i = 1, we conclude that expression (3.1 ) for the function u ,  
remains in force. Solving Eq. (5.6) with (3.1) and (5.3), we 
find expression (3.4) for u,, with the following functionf: 

f=bL (Ah,i-Bhl+C')/2. 

Here 

and B and C are integration constants, as in Section 3. By 
analogy with (5.7), in (5.1 1) we find 

z;:,=iAK, (1-(e l*>e-" ' )  lir.. (5.15) 

The condition for the periodicity of the function u,, re- 
lation (5.10) with i = 2, and orthogonality condition (5.12) 
constitute a system of equations for the constants A, B, and C 
which is analogous to system (3.7), (3.10), (3.12), with the 
following coefficients a, : 

Here (. . .) has the meaning 

d l  d  X 
( < ~ > = ( s n '  cn2---(-)) d d n d n d d n  dn3 ' (5.17) 

and the asterisk means complex conjugation. The notation is 
otherwise the same as in Sections 2-4. 

The dispersion relation deta, = 0 takes the form 

where 

Equation (5.20) generalizes the dispersion relation for a sca- 
lar hybrid model with K, = 0 in (3.26) to the case of a vec- 
tor nonlinearity. The transformation from (5.20) to Eq. 
(3.26) is made by expanding in tC, in Eqs. (5.21) and (5.18) 
for p and q and by then letting ,u (or x )  go to zero. On the 
other hand, Eq. (5.20) is a generalization of the dispersion 

relation for perturbations of the corresponding type of soli- 
ton, which was derived in Ref. 4. To go from (5.20) to that 
dispersion relation we should take the limit s-+l. In this 
case, we have a13+w, a12 finite, while the quantities a , , ,  
a,,, and a,,-like I, -are small, on the order of reciprocal 
of the period of the initial wave. In this case, expression 
(5.2 1 ) reduces to the form 

p-I,. (5.22) 

In addition, we need to take the limit s-+l in expression 
(5.19) for I, and also in (5.18) for q and (3.17) for h. For 
this purpose we need to (first) make the standard substitu- 
tions 

dn+l/ch, cn-+llch, sn-shlch, (5.23) 

where ch and sh are the hyperbolic cosines and sine, and 
(second) switch from averages over the period ( (. . .) ) to an 
ordinary integration over the period, thereby explicitly iden- 
tifying the small factor 1/L, where 

We then find 

p=xo/L, q=~i/L, h=~zlL. (5.25) 

where 

tC, = x/ch2{, and the function G is defined by 

The meaning of the quantities x,, x , ,  and X, is analogous to 
that o f a ,  ,, ah", and a, of Ref. 4, while the function G({) is 
the same as that introduced in Ref. 4. Using (5.25), we can 
reduce dispersion relation (5.20) to the form 

which is the same, aside from changes in notation, as the 
corresponding particular case of Eq. (4.8) in Ref. 4. 

5.2. Analysis of the dispersion relation in vector models. 
It was pointed out in Ref. 4 that when the vector nonlinearity 
is large the coefficient X, becomes negative. In this case we 
find a stability picture which is radically different from that 
discussed in Section 4. In particular, in the case of transverse 
perturbations with K, = 0 we find the following dispersion 
relation from (5.28) : 

QZ=4uoxzK,2/Ixo I .  (5.29) 

Equation (5.29) is evidence of the suppression of the insta- 
bility predicted by the two-dimensional anisotropic model 
for a large vector nonlinearity. This result was found in Ref. 
4 in an analysis of the stability of solitons. Since the case s+l 
describes both solitons and highly nonlinear periodic waves, 
it is clear that such waves are stable in the limit of a large 
vector nonlinearity. What happens when the parameter x 
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increases for the case of slightly nonlinear waves, with s< l?  
Setting x - 1, we find that under the condition s( 1 expres- 
sion (5.21) forp reduces to 

while q and h are characterized by 

It  follows that under the condition x > 1, with small values of 
s, such that xs2 < 1 (more on this below), we find the follow- 
ing dispersion relation in place of (4.9): 

Here p = 3 p v ~ 2 / 4  is the scale of the particle oscillations 
when they drift in crossed fields in the case of a plasma, or it 
is an equivalent length scale in the case of a rotating fluid. 

With K, = 0, expression (5.32) holds out to the limits 
of applicability of the general starting assumptions of our 
problem (Section 2 ) .  In the case K, #O, in which the contri- 
bution of q is important, we should note that, according to 
(5.18), under the condition pKy 2 1 we have 

where Jo is the Bessel function. In the limit K,p) 1 we have 
q, = l/x2, and instead of (5.32) we find 

It  can be seen from (5.32), (5.34) that in the case of 
slightly nonlinear waves (s.91) the sign of n2 does not 
change, as it does in the case of highly nonlinear waves [cf. 
(5.29) 1. 

6. SOME PROBLEMS OF THE PHYSICS OF MAGNETIZED 
PLASMAS WHICH LEAD TO THE MODEL EQUATIONS 
DISCUSSED HERE 

There are some specific wave modes in a magnetized 
plasma which can be described by the model equations 
which we have been discussing here. Using the dispersion 
relations found above, we can determine which of the corre- 
sponding types of periodic waves are stable, and which are 
unstable, with respect to the simplest case, of transverse per- 
turbations. 

6.1. Waves describable by the three-dimensional isotrop- 
ic model. Although a magnetized plasma is a very anisotrop- 
ic medium, there are branches of slightly dispersive waves in 
it which can be described by a three-dimensional isotropic 
model. Among these waves are low-frequency magnetosonic 
waves (with frequencies below the ion cyclotron frequency). 
In  terms of physical variables, these waves are described by 
the equations 

ah dv, d h  dvL- = - .  -- 
ax ay' a x  a~ 

Here h = 3, /Bo, where B, is the equilibrium magnetic field, 

assumed to be directed along z,  and 5, is the z component of 
the perturbed magnetic field; (v, ,v, ) = (vyi ,vZi )/c,, where 
vyi and vZi are components of the perturbed velocity of the 
ions; E = 1 - C: / U 2  is the dimensionless magnetosonic di- 
electric constant of the plasma; U is the wave propagation 
velocity along x; v = a (mi /me ) ' I 2 ,  where a is the angle 
between the x axis and the wave propagation direction (we 
assume a< 1 ) ; c, and c are the AlfvCn velocity and the veloc- 
ity of light; w,, is the electron plasma frequency; and me and 
mi are the electron and ion masses. 

A change of variables reduces Eq. (6.1 ) to ( 1.1 ), ( 1.5). 
W e f i n d o =  - 1 a t v < l a n d a =  l a t v > l . I t i s t h u s c l e a r  
from Sections 3 and 4 that waves with v < 1 are stable, while 
waves with v > 1 are unstable, with respect to transverse per- 
turbations. 

Yet another wave which can be described by a three- 
dimensional isotropic model is the lower-hybrid-drift wave, 
also called the high-frequency drift wave. Some time ago, 
these waves were studied in detail in the linear and quasilin- 
ear approximations in connection with the instabilities 
caused by a transverse current in a highly inhomogeneous 
plasma17~18 (so-called lower-hybrid-drift instabilities). A 
nonlinear theory of lower-hybrid-drift waves has also been 
discussed in a recent paper. l9 The frequericies of these waves 
typically lie between the ion cyclotron frequency wBi and the 

1/2 lower-hybrid frequency w,, , where w,, =(m,  /me ) wBi. 
Lower-hybrid-drift waves propagate across the magnetic 
field, in the direction of the inhomogeneity of the plasma 
density, the y axis, at a velocity UzwBi/l t , ,  where 
x, = a In n d d y  is the scale length of the gradient of the 
equilibrium plasma density no. G. D. Aburdzhaniya, V. P. 
Lakhin, and one of the present authors (A.B.M.) recently 
showed that such waves are described by the following equa- 
tions in the nonlinear case: 

du, d@ dv, m, d@ 
-=- -=-- (6.2) 
dx dy ' az me dz ' 

Here @ = el q~ /m, U2, where q~ is the electrostatic potential 
of the wave field; vy = Vyl/U; v, = - Vze/U, where V,, is 
the longitudinal velocity of the electrons; E = 1 - w,, /x, U 
is the dimensionless dielectric constant corresponding to 
lower-hybrid-drift waves; and e, is the ion charge. 

Equations (6.2) reduce to (1.1), (1.5) in the case 
u = - 1. I t  is thus clear, in accordance with (4.5 ) , that non- 
linear lower-hybrid-drift waves are stable. 

6.2. Waves described by a three-dimensional anisotropic 
model. One particular wave in a magnetized plasma which 
can be described by a three-dimensional anisotropic model is 
quite well known: the ion acoustic wave, for whose analysis 
this model was originally proposed.' In  terms of physical 
variables, the nonlinear equation for such waves is7 

Here v, is the longitudinal velocity of the ions, c, is the ion 
acoustic velocity, po  is the ion Larmor radius calculated 
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from the electron temperature, and de is the electron Debye 
length. A change of variables reduces (6.3) to ( 1.1) with R 
as in (2.6) and with a = - 1. The corresponding waves are 
therefore unstable, as is clear from (4.7). This result was 
derived some time ago1' for the case s = 1, i.e., the case of 
solitons. 

In a magnetized plasma with hot ions ( Ti > Te , where 
Ti is the ion temperature) there exists a branch of electron 
acoustic waves2' The nonlinear equation for these waves is 
analogous to (6.3), so that one-dimensional electron acous- 
tic waves, like ion acoustic waves, are unstable. 

6.3. Waves described by a hybrid model. The stability of 
solitons of high-frequency magnetosonic waves propagating 
across the magnetic field was studied in Ref. 5. According to 
Ref. 5, these waves are described by the nonlinear equation 

the problem of drift waves, we find a system of equations 
analogous to (6.5) with the formal substitution4 

In this case we find model equations of the type in ( 1.12) and 
( 1.13) with a = - 1. We can therefore use the results de- 
rived in Section 5 in this problem. In particular, we conclude 
that if the vector nonlinearity is sufficiently pronounced 
one-dimensional periodic drift waves will be stable against 
two-dimensional perturbations (Ky # 0, K, # 0).  An analo- 
gous conclusion was reached in Ref. 4 for drift solitons. 

In addition, many other problems involving gradient 
oblique ion acoustic and electron acoustic waves in a magne- 
tized plasma (see Refs. 21-23 for examples of these waves) 
reduce to two- and three-dimensional model equations of the 
types in ( 1.10)-( 1.13), with certain modifications. 

7. DISCUSSION OF RESULTS 

The notation here is the same as in (6.1 ) . Equation (6.4) 
reduces to Eqs. (1.1), (1.8), and (1.9) with a, = - 1 and 
a, = 1. It follows from (3.26) that these waves are stable. 

The following nonlinear equation was derived some 
time agoI6 for drift waves: 

av, aa, 
-=- 

a2 a2 (6.5) 
A,=-+-  ax az ' ax2 ay2' 

Here @ = ei q, /T,  , v,  = Vzi / V, , V, is the electron drift ve- 
locity, E = 1 - V, /U,  q = il In T, / a  In no, and Te is the 
electron temperature. Equation (6.5 ) reduces to Eqs. ( 1.1 ), 
(1.8),and (1.9) witha, = - 1 ando, = - 1. Wethushave 
an instability if Ky > K, . 

G. D. Aburdzhaniya and the present authors recently 
generalized Eq. (6.5) to the case of waves with an arbitrary 
ratio U / c ,  a. We found an equation like (6.5), but with 

po2+po2 (I-u2/cA2a2) -I. (6.6) 

In thiscasewe find Eqs. (1.1), (1.8), and (1.9) witha, = 1 
and a, = 1. This case corresponds to an instability for arbi- 
trary values of K, and Ky , including Ky = 0; this is qualita- 
tively different from the waves of the type (6.5). We might 
also note that in the two-dimensional case (a /dz = 0) an 
equation of the following structure can be found from (6.5) 
and (6.6): 

The dispersion of these waves is negative if U < ac, or posi- 
tive if U >  ac, . At both U > ac, and U < ac, , however, we 
find nonlinear equations of the type in ( 1.1 ) and ( 1.6) with 
a = - 1 from (6.7). This example illustrates the assertion 
of Section 1, that the sign of a in a two-dimensional aniso- 
tropic model (or the sign of a, in a hybrid model) may, in 
general, be different from the sign of the wave dispersion. 

6.4. Waves describable by models with a vector nonlin- 
earity. When a vector nonlinearity is taken into account in 

It is clear from the discussion in the Introduction that 
the problem with which we are concerned here, that of the 
stability of periodic waves in weakly dispersive media, has a 
rather long and substantial history. Our predecessors and we 
have derived fairly extensive results, as outlined in the Intro- 
duction. At this point, however, having presented several 
specific formulas in the preceding sections, we can charac- 
terize in more detail the set of results available. These results 
may be classified as methodological and physical. We will 
discuss the two types of results separately. 

7.1. Methodological results. We have analyzed the prob- 
lem of the stability of periodic waves in weakly dispersive 
media, describable by the set of nonlinear model equations in 
( 1.1 )-( 1.13), against long-wave perturbations. We have as- 
sumed that the initial waves are one-dimensional, while the 
perturbations are two- or three-dimensional. Separating 
these model equations into two groups-scalar and vector- 
we derived dispersion relations (3.15) and (5.20), the first 
of which describes long-waves perturbations in scalar mod- 
els, while the second does the same for vector models. These 
dispersion relations are the basic methodological results of 
the present study. 

The dispersion relation (3.15) describes long-wave per- 
turbations in the hybrid model, and the dispersion relations 
which follow from it, (3.22) and (3.25), describe perturba- 
tions in the isotropic and anisotropic models, respectively. 
Other important particular cases of Eq. (3.15) are disper- 
sion relations (3.24) for longitudinal perturbations and 
(3.26) for transverse perturbations. Dispersion relation 
(3.24) should basically be credited to Whitham,I2 as was 
pointed out some time ago in Refs. 8 and 9. We credit Infeld 
et a l . * ~ ~  with priority in the derivation of the dispersion rela- 
tion (3.22). Their dispersion relation is written in a different 
notation, and the difference makes it difficult to establish the 
exact correspondence between these equations. Neverthe- 
less, a comparison of the general structure of the two equa- 
tions and of their particular consequences leads us to believe 
that these equations are identical. The same authors should 
be credited with deriving a dispersion relation for transverse 
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perturbations in isotropic model (4.5) for the particular case 
of our Eq. (3.26) with u, = 0 (or K, = 0) .  

Extremely important from the methodological stand- 
point for this problem is the fact that dispersion relations are 
derived without assuming that the wave numbers of the per- 
turbations are small. In other words, these dispersion rela- 
tions give a complete description of the problem of the stabil- 
ity in a particular model. Kuznetsov et al." have reported 
deriving a dispersion relation of this type for the Kadomtsev- 
Petviashvili model. However, the correspondence between 
their dispersion relation and the long-wave dispersion rela- 
tion in (3.22) was not studied in Ref. 11. Consequently, in 
this paper we are unable to compare our methodological re- 
sults with those of Ref. 11. 

Included in our methodological results is the extension 
of the method of a series expansion in small wave numbers of 
the perturbations of the initial wave to the case of anisotro- 
pic, hybrid, and vector models. (This method, originally 
proposed by row land^,^^ has been used by Infeld et ~ 1 . ~ 9 ~  to 
study the stability of waves in the Kadomtsev-Petviashvili 
model. ) 

7.2. Physical results. In addition to deriving these dis- 
persion relations, it was our purpose to study the physical 
properties of the perturbations which are described by these 
equations, primarily to determine the conditions under 
which perturbations can grow in time, i.e., conditions corre- 
sponding to instability of the initial waves. The physical re- 
sults obtained in this direction are characterized by the equa- 
tions given in Section 4 (for the scalar models) and 
Subsection 5.2 (for vector models). Yet another purpose 
here has been to determine the correspondence between 
these models and actual physical situations. In Section 6 we 
supplemented the list of problems in the physics of magne- 
tized plasmas with some new examples, which reduce to 
standard models; these are further results of the present 
study. 

One of the central problems of the theory of the two- 
and three-dimensional stability of periodic waves is the ques- 
tion of whether the stability is unambiguously related to the 
nature of the dispersion of the medium, which we raised 
back in the Introduction. We have shown here that the sta- 
bility is determined not only by the sign of the dispersion but 
also by the particular model and the particular type of per- 
turbation. In agreement with Refs. 8, 9, and 11, it follows 
from our analysis that in the Kadomtsev-Petviashvili model 
and for the case of transverse perturbations, waves are stable 
in media with a negative dispersion and unstable in media 
with a positive dispersion [see (4.5) and (4.6) 1.  In examin- 
ing oblique perturbations of waves in media with a negative 
dispersion, on the other hand, we found that these perturba- 
tions can grow [see Eq. (4.22)] when a certain resonant 
relation between the longitudinal and transverse wave 
numbers is satisfied [see (4.21 ) ] and if the waves are highly 
nonlinear ( 1 - s24 1, but s2# 1 ). Although oblique waves 
were also analyzed in Refs. 8 and 9, the discussion there dealt 
with situations different from that discussed here (the cases 
discussed in those other papers weres2 = 1 and s2 very differ- 
ent from unity!). Consequently the conclusion reached re- 
garding the stability of oblique waves in Refs. 8 and 9 applies 

to a particular case and does not contradict our own conclu- 
sion regarding stability. 

In the case of the anisotropic model, we find the follow- 
ing picture: Transverse perturbations in this model are sta- 
ble if the dispersion is positive or unstable if the dispersion is 
negative [see (4.7) and (4.8) 1. Oblique perturbations, on 
the other hand, may grow even if the dispersion is positive; in 
contrast with the isotropic model, discussed above, in this 
case both highly nonlinear and slightly nonlinear waves may 
be unstable [see (4.24) and (4.29) 1.  

In the case of the hybrid model, the stability of periodic 
waves is essentially a three-dimensional problem. In this 
case, whether perturbations grow depends on both the signs 
of a, and u2 (which characterize the dispersive media) and 
the relations among all three wave numbers [see (4.9), 
(4.10), (4.18), (4.20), and (4.27)]. 

Another specific feature of the picture of the stability of 
periodic waves results from a vector nonlinearity. which 
may be important at high wave amplitudes. The primary 
result which we derived in this case is that a vector nonlin- 
earity, as in the case of solitons, can suppress instabilities 
which have been predicted to occur in the absence of a such a 
nonlinearity [see (5.38) 1. 

It is clear from the discussion above that a study of the 
stability of weakly dispersive periodic waves should begin 
with an identification of the nature of the two- or three-di- 
mensional equations which describe these waves. If these 
equations reduce to the equations which we have discussed 
above or equations our predecessors have d i s c u ~ s e d , ~ * ~ ~ "  it 
becomes possible to make use of the existing results Other- 
wise, additional analysis becomes necessary. 

Finally, we note, as in the papers by our predecessors, 
we have ignored effects which stem from the particular ge- 
ometry of the experimental devices in which plasma is con- 
fined. It frequently happens (in Ref. 3, for example) that 
these devices are cylindrical, so that the plasma confined in 
them is axisymmetric. In this case the azimuthal structure of 
the wave is characterized by a discrete set of wave numbers, 
the smallest being on the order of the reciprocal of the trans- 
verse dimension of the device. Consequently, if the initial 
waves are periodic in the azimuthal direction, as they were in 
Ref. 3, oblique perturbations of such waves with small quasi- 
momenta may be forbidden by these geometric circum- 
stances. Under these conditions, only transverse perturba- 
tions will be possible. However, the finite dimensions of the 
experimental device may also suppress such perturbations. 
Consequently, the instabilities of periodic waves which we 
have been discussing in this paper should be thought of as 
possible but not inevitable. 
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