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It is shown that the theory of space charge waves in intense electron beams can only be relativistic. 
The dispersion characteristics of linear and nonlinear space-charge waves in these beams are 
analyzed and, in particular, a strong dependence of the dispersion relation of the slow wave on its 
amplitude is found. The excitation of the slow wave in an intense beam via the process of a simple 
decay type of Cherenkov instability is considered. The existence of two saturation mechanisms for 
the instability is demonstrated. For currents below the vacuum limiting current, the saturation 
mechanism is trapping and strong turbulence of the beam. At high currents, saturation is due to a 
nonlinear frequency shift without randomization of the beam. The dependence of the beam radi- 
ation efficiency on the current is investigated. The efficiency is found analytically in the ultrarela- 
tivistic limit. 

1. INTRODUCTION is the electron plasma frequency of the background plasma. 
Nevertheless, in this case, the Cherenkov beam-plasma in- 

Space charge waves play an important in plasma stability can develop in the system which, as is well known, 
electrodynamics and dense electron beams. These waves are does not occur when an upper limit is imposed on the plasma 
very important in a number of applications, associated with density3: 
microwave generation, beam transport and methods of col- 
lective particle acceleration. At present, the theory of space ~ , 2 < k L i Z ~ 2 y 2 .  (4) 
charge waves for nonrelativistic, i.e., low-current beams, is 
well developed (see, for example, Ref. 1 ). For intense 
beams, however, the situation changes, mainly because in- 
tense beams can only be relativistic. I t  is conventional in the 
literature, to define an intense beam as one with current 
greater than the vacuum limiting current.' If the beam is 
magnetized, then the quantitative high current criterion is 
described by the inequality 

where o, is the electron plasma frequency of the beam, u is 
the velocity of the electrons, y  = ( 1 - u 2 / c Z )  - ' I 2  and k,, is 
the minimum transverse wave vector (typically of the order 
of the inverse of the transverse dimension of the drift tube). 
When ( 1 ) is satisfied, the beam can propagate through the 
drift tube only if its space charge is neutralized. 

Nevertheless, there exists a limitation on the current 
even in the case of a neutralized beam. This is the so called 
Pierce current.' It is known that when the inequality 

is satisfied, an aperiodic instability develops in the beam, 
shutting down the current. Therefore, the domain of exis- 
tence of an intense neutralized beam is determined by the 
inequalities 

i.e., this domain is fairly broad only when y2 )  1. 
When a beam is injected into a drift tube filled with a 

plasma, there exists an additional, more stringent limitation 
on the beam current, which is also related to relativity. Neu- 
tralization in this beam takes place only if o; > w t  , whereo, 

This condition, combined with ( 1 ), yields the following sta- 
bility domain for an intense neutralized beam: 

y>ob2y-'/kL12u2> 1. ( 5  

Therefore, in what follows, we will assume y )  1. The electro- 
magnetic properties of intense, highly relativistic beams are 
investigated in the present work. The dispersion characteris- 
tics of linear and nonlinear space-charge waves in relativistic 
beams and the interaction of these waves with slow electro- 
magnetic waves in the system are considered. It will be 
shown that the dispersion characteristics of the space-charge 
waves in relativistic beams, depend strongly on the ampli- 
tude of the waves, in contrast to the nonrelativistic case. 
Moreover, this dependence is important for dense beams 
with currents above the vacuum limit. This circumstance is a 
major factor determining the nonlinear dynamics of the 
Cherenkov beam instability in the system. For low-current 
beams, with currents below the vacuum limiting current, 
electrons are trapped in the field of the wave excited by the 
beam itself, and strong turbulence develops. For intense 
beams, in contrast, the instability develops without leading 
to randomization of the beam and the instability saturates 
due to a nonlinear shift in the frequency of the slow space- 
charge wave, as well as detuning of the Cherenkov reso- 
nance. 

The analysis of the nonlinear dynamics of the beam in- 
stability allows us, as shown below, to investigate the effi- 
ciency with which the energy of the beam relativistic elec- 
trons is transformed electromagnetic radiation as a function 
of the beam current. In the ultrarelativistic limit, this depen- 
dence will be found analytically. I t  will be shown that as the 
current increases the electromagnetic component of the mo- 
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mentum of the beam mode grows rapidly, leading to a de- 
crease in the radiation efficiency of the intense beam. The 
decrease in the efficiency with the current in the long-wave- 
length limit is much faster than in the short-wavelength lim- 
it. 

2. DISPERSION OF RELATIVISTIC SPACE CHARGE WAVES 
IN THE LONG-WAVELENGTH LIMIT. 

Consider first the simplest case of oblique waves in an 
unbounded beam, propagating along an infinitely strong ex- 
ternal magnetic field. The corresponding linear dispersion 
relation is3 

where w is the frequency of the wave and k  is the longitudi- 
nal component of the wave vector along the external magnet- 
ic field [Eq. (6)  is also valid for a waveguide filled uniformly 
by the beam]. We seek a solution of Eq. (6)  in the form 

where (6x1 4 I. Then in the long-wavelength limit ( k  -01, 
Eq. (6)  yields a one-parameter equation 

where 

Here I, is the beam current and I, is the limiting vacuum 
current (see Eq. ( 1 ) ) . 

The roots of Eq. ( 8 ) are 

where the plus sign is associated with the fast positive-energy 
wave, while the minus sign describes the slow negative-ener- 
gy wave. In the low-current casepg 1 and the roots have the 
usual form a,., = 1. Forp)  1, in contrast, we have 

6,=1/p, &=-p. (11) 

Note that the root 6 ,  = 1/p, as could be expected, corre- 
sponds to the dispersion relation w = k c. 

By using Eqs. ( 9 )  and ( lo ) ,  we can convert the inequa- 
lity Sx( 1 into an explicit form, which determines the maxi- 
mum value of the function 6: 

where I, is the Pierce limiting current (see Ref. 2 ) .  Further- 
more, as can be seen, the transition to the limit k 4 means 
that the displacement current is small compared to the high- 
frequency beam current, i.e., k  ; ( k  :, ?. Note, also, that the 
physical meaning of the termp6 in Eq. (8 )  is related to the 
electromagnetic nature of the space charge waves, charac- 
teristic of relativistic beams only. 

Let us proceed now to nonlinear space charge waves in 
the long-wavelength limit. Equations describing the nonlin- 
ear waves are conveniently written by using the Lagrangian 
coordinates z(t,zo) and v(t,zo) of the beam electrons where 

zo and v are the position and velocity of the electron which 
was at the point z, at time t-+ - CC, namely, i.e., the ampli- 
tude of the wave was zero. By introducing dimensionless 
time and coordinates 

v-u 1 
q = y a  , Y O = ~ I I Z O  

and expressing the longitudinal component of the electric 
field of the wave via the space charge perturbation in the 
beam, we can write the following system of relativistic equa- 
tions of motion 

wherep is the amplitude of the space charge perturbation in 
the beam divided by the density of the unperturbed beam. 

The relativistic properties of system (14) are deter- 
mined by the parameter p and manifest themselves in two 
ways. Firstly, there exists a term containing pdg/dr, and 
related to the electromagnetic nature of the waves. Secondly, 
the multiplier ( 1 - pr1)3'2 is associated with the dependence 
of the electron mass on the velocity perturbations, which is 
absent in the linear theory. 

The first integral of Eq. ( 14) is 

reflecting momentum conservation in the space charge 
wave. The first term in ( 15) is the mechanical momentum 
and the second term describes the momentum of the electro- 
magnetic field, which is substantial only in the high-current 
case. It should be emphasized that the electromagnetic mo- 
mentum is not the free-radiation momentum. 

For stationary space-charge waves Ip 1 = const. Never- 
theless, even in this case, Eq. ( 14) can be solved analytically 
only in the limit p)1, i.e., when the beam current is much 
higher than the vacuum limit. Only this case will be consid- 
ered here. Let us introduce an electron "momentum" 
p = ( 1 - p v )  - ' I 2  and rewrite the first two equations of the 
system ( 14) in the form 

Next, we write the coordinate y of the electron as a sum 
yo + j ,  wherej is a perturbation which is small ( y( 1 ) when 
p) 1, as follows from the second equation in (16).  This al- 
lows us to linearize with respect to j .  Furthermore, accord- 
ing to the first equation in ( 16), the electron momentum can 
be written 

where a ( T )  depends on time only. With no loss of generality, 
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we can assume (p) = 1, which is achieved by an appropriate 
choise of the constant in Eq. ( 15). 

By substituting ( 17) into Eq. (16) and linearizing with 
respect to j ,  we obtain the following nonlinear equations for 
the amplitudes of the space-charge waves in the ultrarelati- 
vistic limit: 

For a stationary wave 

and Eq. ( 18) yields the dispersion relation: 

the solution of which for p) 1 is 

The spectrum of the fast wave, as expected, does not depend 
on the amplitude A, of the momentum oscillations. For the 
slow wave this dependence is strong and causes a consider- 
able decrease of the phase velocity when A, decreases. It will 
be shown later that precisely this effect determines the dy- 
namics of the development of the beam instability in the sys- 
tem. 

By using Eqs. ( 18) and (20), we get an expression for 
the amplitude of the space-charge perturbation in a station- 
ary wave: 

Ip  I=12Ao/pG(1-Ao')"21. (22) 

This and (21) yield, for the slow wave, 

i.e., the modulation of the density in the slow wave forp) 1 is 
always small. In the fast wave, in contrast, 

In this case, Ip / ( 1 only if IA,I ( 1. Note, also, that consistent- 
ly with (17), and since P> 0, inequality lA,l < 1 is satisfied. 

3. EXCITATION OF SLOW SPACE CHARGE WAVES IN 
INTENSE ELECTRON BEAMS 

Equation (14) describes the properties of the space- 
charge waves propagating in the electron beam. In order to 
investigate the excitation of these space charge waves, one 
should consider the interaction of the beam with a system 
supporting electromagnetic waves with phase velocities less 
than the velocity of light. As a result of this interaction, the 
space charge and electromagnetic waves in the system are 
coupled." Mathematically, the existence of the coupling 
gives rise to an additional equation in (14) describing the 
amplitude of the electromagnetic wave / & I ,  and to an addi- 
tional force acting on the electrons in the beam: 

v + - [ e  e r p  (iy-iqor) +c.c. I} . 
2 

Here, Y is a parameter defined by the specific nature of the 
coupling and 77, is the detuning. In terms of the dimensional 
variables t andz, the detuning equals w, - k,u, where w, and 
k, are the frequency and wave vector of the electromagnetic 
wave, respectively. 

It is important to emphasize that for v )  1, the excitation 
of the beam modes proceeds in the so called Compton or 
single-particle regime, i.e., so rapidly that the properties of 
the beam modes do not have time to manifest themselves. 
Therefore in the following we will assume that the coupling 
is weak, i.e., Y( 1. This excitation regime is usually referred 
as the collective, or Raman regime (in the theory of parame- 
tric instabilities the single-particle regime is called a modi- 
fied decay instability and the collective regime is referred as 
a resonant simple decay instabilitye4' 

Initial conditions for Eqs. (25) follow from Eq. (13) 
(at T = 0 the current is unperturbed) and can be written 

Let us consider the excitation of a slow wave in the linear 
approximation. 

For this purpose, let 

and linearize Eq. (25) by assuming j( 1. As a result, the 
following dispersion relation is obtained: 

where S,,, are defined in ( 10). It follows from Eq. (27) that 
the maximum value of S is obtained at the resonance: 

where 

where So = v / G  is the growth rate in the nonrelativistic 
theory. It is seen that the relativistic correction to the growth 
rate is always small for v-4 1. Nevertheless, this correction 
strongly affects the synchronism condition between the 
beam and the wave and determines all the nonlinear dynam- 
ics of the instabilities. It is also easy to see that solution (29) 
is valid, provided that 

in agreement with the condition Y( 1. 
Let us now use Eqs. (25) to investigate the nonlinear 

dynamics of the slow space-charge waves in intense beams. 
This question has a fundamental importance for microwave 
electronics, since it affects the generation of intense electro- 
magnetic waves. It is in this context that this question will be 
addressed. 

Let us introduce several auxiliary quantities. We ex- 
ploit Eq. (26) to find the first integral of Eqs. (25), 

where P is the momentum of the beam mode given by 
Eq. ( 15 ) . Expression (3  1 ) reflects the conservation of the 
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FIG. 1 .  The time dependence of the momenta P,, 
P, , the radiation efficiency P, and the wave ampli- 
tudes for cases (a)  p = 0.5 and (b) p = 2. 

total momentum of the beam-electromagnetic wave system. z=20 s = 30 

It can be seen that a change in the mechanical momentum of 
the beam 2.. . 

7 Zn 

I 
Pw=1/8p(I~IZ-I~012) (33) 

and the electromagnetic momentum of the beam mode 

P,=bzpz/8, (34) 

where (plis the amplitude of the space-charge wave. During . . 
the excitation of the slow wave, when the detuning is given 
by Eq. (28), P, < 0, P, > 0, i.e., the beam is losing its me- 
chanical momentum in favor of the electromagnetic wave. - 

In the nonrelativistic microwave electronics the excita- 25 

tion efficiency of an electromagnetic wave is characterized , , _.... 
by an electronic efficiency coefficient equal to the negative of 
Eq. (32). In the case considered, however, the efficiency is 
given by the quantity (33), because the mechanical part of 
the momentum is wasted in electromagnetic momentum P, 
of the beam mode. It will be shown below that the drastic -07r 
decrease in the radiation efficiencv of intense beams is di- I :A 
rectly related to the latter quantity. 

Eqs. (25) have been solved numerically for E, = 0.01 
Y = 0.3 and different values ofp.  Fig. 1 shows the T depen- 
dence of the amplitude of the electromagnetic wave I E I  as 

mechanical momentum of the beam mode P,, the electro- 
well as of the amplitude of the space-charge wave JpJ ,  the 

magnetic part of the momentum P, and the radiation effi- 
ciency P,. Figure 2 shows the phase planes ( 7 7 , ~ )  of the 
electron beam. D 

The saturation mechanism for the when FIG. 2. The phase planes of the electron beam for (a) p = 0.5 and (b) 
p < 1 is self-trapping, due to the reflection of the beam from p = 2 at different times r. 
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it into system (25) and linearizing with respect to j ,  we have 

FIG. 3. The dependence of the beam radiation efficiency on the high- 
current parameters p (the long-wavelength limit, curve 1 )  and p (the 
short-wavelength limit, curve 2) .  

the humps of the potential of the slow wave. The beam be- 
comes highly turbulent. This is a nonrelativistic process.' 
The relativistic nature of the beam electrons and the electro- 
magnetic character of the beam mode forp < 1, are manifest- 
ed only via quantitative changes. As an example of the self- 
trapping and beam turbulence, we show in Fig. la the results 
of the calculations for p = 0.5. 

Qualitative changes occur for p > 1. Fig. lb, corre- 
sponding t op  = 2, shows that the saturation of the instabil- 
ity takes place at low density modulation ( Ip 14 1 ) of the 
beam, when there is no self-trapping. Earlier we showed that 
the frequency of the slow wave depends strongly on the am- 
plitude for large values of p [see Eq. (21 ) ]. Therefore, the 
saturation of the instability for largep is always related to a 
nonlinear frequency shift. We will consider this process ana- 
lytically in the following. 

A salient feature of the numerical solutions for large 
values ofp is their ideal periodicity. It can be seen in Fig. lb  
that after the development and saturation of the instability, 
the system returns to its initial state and then the whole pro- 
cess is repeated again and again. The phase densities are 
especially informative; they show (see Fig. 2b) that, as time 
goes on, the beam returns to the initial, unperturbed state. 
This behavior, for systems of type (25), is unusual, since 
even in cases when electron trapping is absent, the beam 
thermalizes gradually. 

Figure lb  also shows the quantity la1 [see Eq. (17) 1. Its 
values were computed by using the expression 

One can see in Fig. l b  that to good accuracy (pl = 2(a(/p2,  
i.e., the approximate formula (23) is valid. 

Figure 3 (curve 1) shows the maximum radiation effi- 
ciency P, as a function ofp. The relativistic effects result in 
a rapid decrease of the radiation efficiency at high currents. 
We will derive below an analytic formula for P, for the case 
p*l.  

4. ANALYTIC THEORY OF EXCITATION OF SLOW 
RELATIVISTIC WAVES IN AN INTENSE BEAM 

Analytic solutions are obtained by assuming the valid- 
ity of the following inequalities: 

By introducing, as before, representation ( 17), substituting 

Here A = a/p and in addition it is assumed that E, = 0, i.e., 
the inclusion of the field is assumed to be adiabatic. 

For p> 1, at the resonance 770 = - p [cf. Eq. (28) 1. 
This allows us to write the solution of system (37) in the 
form 

p=pl (T) egT, A=Al (t) eiwT, (38 

wherep, and A ,  are the amplitudes of the slow wave. Sup- 
pose also that p l ~ l ~ - p ~ ~ p 1 ~ ~ ~ I A ~ 1 ~ 4 1 .  Then by substitut- 
ing (38) into Eqs. (37), we obtain 

and [cf. Eq. (23) 1 

The resulting equations contain the nonlinear detuning, 
which stabilizes the instability. 

The first integral of system (39), for adiabatic initial 
conditions, is 

The solution of Eqs. (39), can be easily found now and has 
the following form 

3 2 -  { l _ [ 1 - s x p ( 4 6 ~ ) ] 2 } ' h  
J p i ( ~ )  JZ=T6p-S 

I f exp (4th) 7 

(42) 
-m<z<m, 

8 ~ 6 ,  (1+p2/4)-"4, 

where 8 is the relativistic increment [see Eq. (29) 1. Equa- 
tion (42) yields the following expressions for the maximum 
wave amplitudes 

The validity of the assumed inequalities forp) 1 also follows 
from these last equations. 

Essentially, Fig. lb  shows the solutions of Eq. (43) for 
nonadiabatic initial conditions. Complete agreement is not 
obtained, of course, since for = 2, the above inequalities 
are marginally valid. Numerical solutions of Eqs. (37), in 
contrast, are in good agreement with the solutions of system 
(25 ) until p = 1. 

By using Eqs. (43), one can obtain an expression for the 
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decreasing branch of Pw (p ) (curve 1 in Fig. 3) : 

The radiation power is given by p2Pw -8/p, and hence de- 
creases as I ;  "' in the high current regime. 

5. SPACE CHARGE WAVES IN "THIN" ELECTRON BEAMS 

Till now, "oblique" waves have been considered in the 
case of a magnetized electron beam, filling the entire space. 
In practice, however, beam propagation in waveguides is of 
interest. All the previous results remain valid, as far as the 
linear theory is concerned provided the beam is uniform 
across the waveguide. Nevertheless, Eqs. (25), in this case, 
are not applicable, since they do not take into account the 
transverse stratification of the beam. The study of the strati- 
fication of the beam is difficult and we will limit our discus- 
sion to the important case when it is absent. 

Consider a "thin" beam, namely the beam with a den- 
sity profile given by 

where Sb is the area of the cross section of the beam. r, is the 
transverse coordinate in the cross section of the waveguide 
and r, is the transverse coordinate of the beam. The disper- 
sion relation in the linear approximation, in this case, can be 
written in the form5 

m 

where p, is the eigenfunction corresponding to the eigenval- 
ue k,, and lip, / I 2  is the square of the norm. 

If we use representation (7)  in the long-wavelength 
limit (k  +O), Eq. (46) yields 

where G is a geometric factor. It follows from (47) that the 
linear theory of the space-charge waves in thin beams re- 
duces to the previously described theory, provided the pa- 
rameter p is associated with the quantity 

It is easy to show, that the nonlinear equations for a thin 
beam also reduce to the form (25) with the parameter p 
defined in Eq. (48). Furthermore, with respect to the limit- 
ing vacuum and Pierce currents, the parameter (48) behaves 
like the parameter (9)  with respect to the limiting current of 
the unbounded beam. 

6. SPACE CHARGE WAVES IN THE SHORT-WAVELENGTH 
LIMIT 

The short-wavelength limit is characterized by 
k t > k  :, f or, for a thin beam, k isb s f .  The field of the 
beam mode in these conditions is confined inside the beam, 

i.e., there exists a potential describing this field (the sum of 
the polarization and displacement currents is zero). There- 
fore, independently of the thickness of the beam, the linear 
spectra of the space charge waves are described by equation 

Thus the linear theory of the space-charge waves in the short 
wavelength limit is nonrelativistic, which is natural, since 
the field of these waves is, to a good approximation, a poten- 
tial field. 

It is convenient in the nonlinear theory to use dimen- 
sionless variables different from ( 13 ) , namely 

in terms of which the analog of Eqs. (25) is written 

d& -- dy --v exp ( i q o ~ ) ,  - - 
d t  d.t - q1 

The relativistic properties of system (51 ) are described by 
the parameter 

which differs from ( 9 )  by a factor much less than unity. 
Therefore, in the short-wavelength limit relativistic effects 
manifest themselves at higher currents than in the long- 
wavelength limit. Furthermore, because of (40) and the de- 
finition of T, the detuning, at the resonant excitation of the 
slow wave, is 7, = - 1. 

Equations (5  1 ) are similar to Eqs. (25 ), and therefore 
their numerical solutions will not be discussed here. We will 
only exhibit the dependence of the radiation efficiency on 
parameter p in the short-wavelength limit (curve 2 in Fig. 
3).  It can be seen that in the short-wavelength limit the radi- 
ation efficiency is much higher than in the long-wavelength 
limit. 

Analytic solutions of system (5 1 ) can be found, pro- 
vided 

i.e., in the case similar to (36).  The following system, in this 
case, is analogous to Eqs. (37) 

de - =- dA i v 
d~ 

vp exp ( i q o r ) ,  - + - p = - E exp I ( - iq , t ) ,  a t  2 2 
(54) 

where, as was mentioned earlier, 7, = - 1. 
Equations (54) are solved similarly to Eqs. (37). By 

omitting the intermediate steps, we can write the final result 
as 
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6 4 * 0 p - z { 1 -  ( 1 - exp (413~~)  " 
I P I ' = ~  if exp ( 4 & ~ )  ) I E ~ ' = ~ I P I ' .  

( 5 5 )  

Equation (53 ) yields the maximum amplitudes of the waves 

and the maximum radiation efficiency 

P, ( G )  )i,l =''/a 60F1. ( 5 7 )  

Equation (57 )  describes the decreasing branch of curve 2 in 
Fig. 3. The radiation power is proportional to b, i.e., it in- 
creases as the square root of the current in the high-current 
regime. The latter result makes the short-wavelength limit 
advantageous as compared to the long-wavelength limit. 

"The role of such electrodynamical systems in vacuum electronics is 
played by waveguides with corrugated walls, undulators, dielectric 
waveguides, etc. (For details, see Ref. 3.) 
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