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The transition probability amplitude is expressed as a Feynman path integral to derive concise 
asymptotic estimates for the ionization probability of a bound atom by a stochastic electromag- 
netic field of finite spectral width. The results are used to analyze: a )  tunnel ionization of an atom 
by a stochastic field; b )  multiphoton ionization by electromagnetic radiation of finite spectral 
width; c )  ionization by a constant electric field superposed on a stochastic field. The expressions 
for ionization by a quasi-monochromatic (stochastic) field describe both tunnel and multiphoton 
ionization in a unified way. They imply in particular that when the spectral width is finite, the 
field amplitude must satisfy both upper and lower bounds in order for perturbation theory of 
arbitrary fixed order to be valid. As a result, the ionization probability does not obey a power-law 
dependence on the intensity for relatively weak fields. I t  is shown that weak superposed stochastic 
fields cause the ionization probability to increase rapidly (exponentially) in constant electric 
fields in a manner that depends significantly on the decay rate of the correlation function of the 
stochastic field. 

The basic properties of the decay of bound charged- 
particle states (electrons in atoms, negative ions, etc.) in 
time-varying electric fields were determined first by Kel- 
dyshL and subsequently in Refs. 2-7. When a monochromat- 
ic field of frequency w acts on a bound particle, the decay 
process is sensitive to the magnitude ofthe product y = wr,. 
Here r0 = (2m10)112/e&0 has the dimensions of time 
(where m and e, are the atomic mass and charge, I, is the 
bound state energy, and F, is the amplitude of the electric 
field); it is equal to the absolute value of the "imaginary" 
tunneling time to which the equations of classical mechanics 
are continued analytically. This continuation arises natural- 
ly in semiclassical estimates of the transition probability, for 
which the semiclassical approximation has proven to be ex- 
tremely 

For y( 1 the system responds quasistatically to the ex- 
ternal field, i.e., the ionization probability can be found by 
averaging the tunneling decay probability of the bound state 
over the field period 2r/w for a specified ac field 
F = F, coswt. For y )  1 the response is dynamic and many- 
photon transitions are involved. In this case F ( t )  oscillates 
rapidly over the characteristic times for the quantum transi- 
tion. The transition can be interpreted naturally as a photo- 
electric effect in which n, = I , / h  photons are absorbed 
(no) 1 in the semiclassical approximation), and the power- 
law field dependence W a  ( F,) of the probability agrees 
with the result found from noth order perturbation theory. 

Because the laser beams used in multiphoton ionization 
experiments are not monochromatic (the amplitude and 
phase vary randomly), the probability of multiphoton ioni- 
zation was calculated in Refs. 8-16 with allowance for the 
random behavior of the ionizing field. However, the results 
in Refs. 8, 9, and 11-13 rest heavily on the assumption that 
the field fluctuations are quasistatic. The transition prob- 
ability was calculated by averaging the result found in Refs. 
1-7 for Fo = const over a Rayleigh distribution P( F,). Al- 
though the fluctuations in F were not assumed to be quasi- 

static in the formulation of the equations in Refs. 10 and 14, 
all the specific results there pertain to the quasistatic case 
because the decay of the field correlation function 
( F ( t )  F ( 0 ) )  was neglected. The transition from tunneling 
to multiphoton ionization in a stochastic field was found to 
be describable in terms of a universal parameter 7 = Fro,  
where iS is the central frequency of the quasi-monochromat- 
ic radiation and 7, = (tim/etF2)L'3, where F 2  is the mean- 
square field strength. I t  is remarkable that 7 is independent 
of the atomic parameters. The transition probability 
Waexp{ - 2n0 F ( y ) ) ,  where the function F (7) is also 
universal. l3  

However, in accordance with the general conclusions in 
Refs. 1-7 we expect that the response of a system to a sto- 
chastic field of central frequency iS and spectral width a 
should also depend on the additional dimensionless param- 
eter 6 = a?, (here a- ' is the characteristic decay time of the 
correlation function ( F ( t )  F (0 )  ) ) .  The results of the qua- 
sistatic theory8-l6 should be valid for ((1. For 62  1, the 
probability for direct (nonresonant) ionization should de- 
pend significantly on the spectral width of the ionizing radi- 
ation. In strong fields whose spectrum is so wide that the 
concept of central frequency 5 is meaningless, we expect 
that the behavior will depend only on the single universal 
parameter 6 = a(fim/eo2Fi ) 'I3. 

In this paper we develop a semiclassical theory for the 
decay of bound particle states in time-varying stochastic 
fields for a wide range of spectral widths, i.e., for arbitrary 
values of the parameter 6, which depends on the decorrela- 
tion time of the field intensity. We express the transition 
probability amplitudes as Feynman path integrals to derive 
concise, exponentially accurate asymptotic expressions for 
the ionization probability of particles bound by short-range 
forces. In the limit 6< 1 (a-0) these results reduce to the 
results of the semiclassical theory.'-l6 We consider the fol- 
lowing three problems: 

a )  tunnel ionization of a particle by a stochastic electric 
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field; 
b )  multiphoton ionization by electromagnetic radiation 

with a finite spectral width; 
C)  ionization by a constant electric field superposed on 

an additional stochastic field. 
For ionization by a quasi-monochromatic (stochastic) 

field, our results yield a unified description of both tunnel 
and multiphoton ionization. In particular, they imply that if 
the finite spectral width is fixed, the results of fixed-order 
perturbation theory for the probability of multiphoton ioni- 
zation are valid only if the field is bounded from below as 
well as from above. The leads to nonalgebraic dependence of 
the ionization probability on the intensity in relatively weak 
fields. We show that even a weak superposed stochastic field 
abruptly (exponentially) increases the ionization probabil- 
ity in constant electric fields. This effect depends significant- 
ly on the decay rate of the correlation function of the sto- 
chastic field. 

The results obtained for ionization of particles bound 
by a short-range potential are known to accurately describe 
ionization processes in real atoms and ions ( to  within expon- 
entially decaying  term^).^.'^ Our results may therefore be 
useful in interpreting experiments on multiphoton ioniza- 
tion of atoms and ions by wide-band laser radiation. This 
area of research has received new impetus in recent years 
with the development of high-power multimode lasers 
which generate fields comparable to the intratomic 
fields.ll,15.17-19 

Our results may also be of interest in studies of ioniza- 
tion caused by widely fluctuating electric fields which have a 
broad spectral composition. Such fields are present in turbu- 
lent plasmas and are also of interest in astronomy.20s21 

1. GENERAL EXPRESSIONS FOR THE IONIZATION 
PROBABILITY IN A STOCHASTIC FIELD 

We consider a particle which is bounded by short-range 
forces with binding energy I, in a stochastic electric field 
F ( t ) ,  which we take to be a Gaussian stationary random 
process with the correlation function 

The probability amplitude for the particle to be in a free state 
of momentump at time t is6 

Here G(rl,t,;r2,t2) is the Green's function for the particle in 
the field E( t ) ;  it can be expressed as a Feynman path inte- 
gra122 

t 

m .  
L= - r2+eoxF ( t ) ,  

2 
where L is the Lagrangian for the particle for a field F ( t )  
directed along the x axis; r and r are the spatial and velocity 
coordinates of the particle; the short-range binding potential 
is localized near r = 0. To get the ionization probability we 
must square ( 1 ), take the absolute value, and average over 

all possible instances of the random process F ( t ) .  Since the 
integral in (2 )  is over all possible trajectories, which in gen- 
eral do  not obey the classical equation of motion mx 
= e p ( t ) ,  we can perform the averaging by using the famil- 

iar expression for the generating functional for Gaussian 
random processes.22 We find 

< IA ( p .  t )  /')a dr, j d r 2  i d t r  j d f l e x p {  i ;  ( t r - Y )  

"0' j j + - dti dtzB (ti-&) xz ( t i )  2 2  ( t z )  
2 A  ,,, f r r  

ie - P I  dtl J f dtzB (ti-t2) xi ( t i )  x2 ( t2 ) .  
f i r ,  f , !  

( 4 )  

The remaining calculations are carried out in the fol- 
lowing sequence. The functional integrals in ( 3  ) are evaluat- 
ed by the method of stationary phase. The equations for the 
extremal trajectories can be found by equating the functional 
derivatives SS/Sr,( t)  and S S / m 2 ( t )  to zero, which yields 

mi,, ( t )  ( t )  =0, r,= { y ,  z), ( 5  
f 

m%=m&= d t l B ( t - t i ) x i ( t i )  
A t ,  

t 

- ed dtiB ( t - t i )  r2 ( t i ) .  ( 6 )  
f i  t , ,  

Equations ( 5 )  imply that the components of i, ( t )  and i 2 ( t )  
normal to thex axis are conserved: ill ( t )=i , ,  , i,, ( t )  

The action functional Scan  be calculated from ( 5 ) ,  ( 6 ) ,  
and the relation 

d * *  
r2= - ( r r )  -rr. 

d t  

On the extremal trajectories we thus find that 
m .  m 

S = - r i l [ r i L  ( t )  -r iL ( t ' )  ] - - r Z L [ r z L  ( t )  -rzl (t l ')  I 
2 2 

We can substitute ( 7 )  into ( 3 )  and use the saddle point 
method to evaluate the integrals containing rapidly varying 
exponentials. The estimate for the integrals over i, ( t )  and 
i, ( t )  gives the conditions 
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mril=mr2~=plr PI= {pur p Z ) ,  

m i ,  ( t )  =mi, ( t )  =p,. 

With ( 8 )  we can rewrite ( 7 )  as 

1 1 
S = - ~ , ~ ( t " - t ~ ) + - ~  [ 

2 m 2 
z xi ( t )  -x2 ( t )  1 

m 
- - [ X I  ( t ' )  i, ( t ' )  -zz (t") i 2  ( t f t )  I .  ( 9  

2 

The estimate for the integrals over t  ' and t  " gives the saddle- 
point condition 

Moreover, if t, is a saddle point for the integration over t  ', 
then the complex conjugate t ,* is a saddle point in the inte- 
gral over t ". To within exponentially small terms, we obtain 
the final, concise expression 

for the decay probability of a bound state in a stochastic 
electric field. It is easy to see that together with conditions 
(8)  and ( l o ) ,  Eqs. (6) determine an essentially unique ex- 
tremal trajectory x ,  ( t )  = x,( t)  = x ( t ) .  

We will assume that the correlation function 
( F ( t )F(O) )  = B ( t )  remains a real-valued function of T 

when t  is replaced by ir. Since Eqs. ( 6 )  are linear and homo- 
geneous, we can introduce a dimensionless "imaginary 
time" s = - it /r,; this leads to the following integrodiffer- 
ential equation for T ,  and the extremal trajectory: 

Equations (12) ,  ( 1 3 )  are equivalent to ( 6 ) ;  x  = x~r ,q  and 
the correlation function B ( t )  is of the form 

F2 
B ( t )  = - f ( t ) ,  

2 

f ( 0 )  = 1 ,  and F * is the mean square field amplitude; 

i ( s )  f ( - i t / )  T,= (f im/eo2FZ) '". 

We note that x  does not appear in Eq. ( 12) or condition 
( 13 1; 7, is therefore also independent of x  and is a universal 
function of the parameters of the ionizing field. This fact was 
noted in the quasistatic here we have extended it 
to the general case of a stochastic field of arbitrary spectral 
width. 

The momentum distribution of the ionized particles is 
specified by the quantity x(p ,  ) appearing in ( 1 1  ), and the 
probability has an extremum x  = x,  = (210/m ) ' I 2  at p,  = 0  
(cf. the similar situation in Refs. ( 1-7). 

2. TUNNELING IN A STOCHASTIC FIELD 

Assume that the particle is ionized by a stochastic elec- 
tric field with the correlation function 

1 - 
B ( t )  = - 2 F 2  exp (-oZt2).  (14) 

We first examine the case a  = 0, for which the right-hand 
side of ( 12) is independent of s. Writing 

+ 1 

we then find that Eq. ( 12) describes a "uniformly retarded 
motion" 

where A ,  is a constant. The conditions ( 13) give 

1 
A,=- Ao, Ao=l. 

2 

Substituting ( 16) in ( 1 5 ) ,  we get 

r,= ( 3 ) ' " ~ ~  

and hence 

Of course, the same result follows by integrating the expres- 
sion 

for the tunneling probability in a uniform constant electric 
field F over a Rayleigh distribution function 

(see Refs. 10, 13, 1 5 ) .  
We will now see how these results change when the cor- 

relation function (17)  decays, i.e., a#O. In this case the 
transition probability can be expressed in the form 

where @ (6) is a universal function of the dimensionless pa- 
rameter( = a( f im/e iF2)  ' I 3  and @ ( 0 )  = l .  Asymptotic ex- 
pressions for @(&) in the limits (< 1 and (> 1 follow immedi- 
ately from Eq. ( 12) if we rewrite it as 

I 

For &( 1 we get 

q ( s )  =qo(s)+52ql ( s ) +  . . . ) 8(5) = 1 + ~ z 8 1 + .  . . (22) 
Substituting (22) in (21 ) ,  we find that q,(s) = l /  
2.( 1 - s2) ,  while q, satisfies the equation. 

1 I 
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We find @, from the requirement that Eq. (23) be solvable 
with initial conditions q, ( k 1 ) = 0. To do this we multiply 
(23) by qo(s) and integrate overs from - 1 to + 1; q, then 
drops out of the equation and we find that 
@, = - 2.3-'13.5-'. Consequently, 

The finite decay time of the correlation function 
( F  ( t )  F (0 ) )  thus causes the ionization probability to in- 
crease exponentially. This result is to be expected physically, 
because a faster decay enhances the contribution from the 
higher-frequency Fourier components of the random time- 
dependent field, and fewer high-frequency quanta are need- 
ed for effective multiphoton ionization. 

We now discuss the opposite extreme case 6% 1. Then 
since g2Q2({)% 1 (see below), the main contribution to the 
integral in the right-hand side of (21) comes from the por- 
tions of the extremal trajectory nears = k 1. Since the func- 
tion q(s) is even, we therefore get the following expression 
forq(s) nears = - 1: 

Hence 

Imposing the requirement that dq/dz+O and a (6)- w , we 
find that B ( { )  = a ({) so that 

Substitution of (28) in (26) yields the equation 

for a (g) ,  which for 6% 1 implies that 

The condition for (30) to hold is that 6 2@2({) -1n2513g) 1. 
The above-noted tendency of the tunneling exponential to 
decrease as 6 increases thus naturally persists also for 6) 1. 
Figure 1 plots the universal function @ (6) for a wide range 
of g; the values were found by direct numerical solution of 
Eq. (12) [@({) = ( ~ , / 3 ' ~ ~ ~ ~ ) ] . ~ o r f ( l  andg>l ,@(f)  re- 
duces to (24) and (30), respectively. As g - + ~ ,  the tunnel- 
ing exponential (20) tends to zero for fixed F2 due to the 
increase in a .  However, the assumptions used to derive the 
asymptotic estimate (1 1) break down under these condi- 
tions (the extremal trajectory is unbounded and the saddle- 
point method does not apply). Nevertheless, the exponential 
vanishing of the tunneling probability correctly reflects the 
circumstance that for U-+W the ionization probability can 

FIG. 1. The universal function @([) 

be calculated by perturbation theory to first order in the 
particle-field interaction for a stochastic field F ( t ) .  This is 
because the high-frequency Fourier components of F ( t )  
give the dominant contribution to the ionization through the 
single-photon photoelectric effect. For 6 - t ~  and fixed a ,  
Eqs. (20) and (30) are valid i f F 2  satisfies 

which ensures that the stationary-phase method is valid. For 
fields violating condition (3  1 ) the ionization probability is 
described by first-order perturbation theory. 

3. NONRESONANT MULTIPHOTON IONIZATION IN A 
STOCHASTIC FIELD 

We now consider ionization of a bound particle by a 
stochastic field with the correlation function 

B ( t )  =l l2F2 cos (mt)  exp (-02tZ) 

Here Zis  the central frequency of the field intensity distribu- 
tion, which is Gaussian with characteristic width -a. We 
thus need to generalize the results in Refs. 1-7 to nonmon- 
ochrornatic laser radiation of arbitrary spectral width. 

Equation ( 12) in this case takes the form 
1 

d29 - 1 To -- - - - (- ) ' ds, ch[mr0 (s-s,) ] 
dsZ 2 7 0  -, 

x exp (s-s,) " q (s,) . (32) 

We first consider quasistatic field amplitude fluctuations, 
ar0+O. The kernel of Eq. (32) then factors and one readily 
finds the solution 

where $, satisfies the transcendental equation 

The ionization probability is 

W- exp { -2n0$k(7 ) ) ,  n o = I o l h ~ .  (35) 

Equation (34) and formula (35) were derived in Ref. 13 by 
directly averaging the Keldysh formula' for the ionization 
probability (derived for a field of fixed amplitude F ) over a 
Rayleigh distribution P(F ) . 

We next examine how the formula for Wchanges when 
the spectral width is nonzero, 6 = o(firn/e$ F2) 'I3 #0. If g 
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is not too large, so that (6/7) $, (7 )  g 1, Eq. (32) can be 
solved by perturbation theory as discussed in the previous 
section. We find that 

W - ~ X P { - ~ ~ O $  (7, E)  1; (36) 

q(;J)=[T3 (ch 2$k-1) I-'J(V), 

I(?) ='/&$k2 sh2(2$k) +23/i6 sh2 (2$k) -3/&$k ~h (4$k) 

- 2 / 3 $ k 3  sh (2qk) -"/i$k ~h (2$k) f 5/2$R2 ~h (2Qk) 

+'/&$kZ chZ (2$k) +'/3$k4+3$k? 

Expression (36) is valid for arbitrary 7. For 7 4 1  and 
({/7)qk (7) -641, we obtain 

3-'/> 
q(7 ,  a ) = p T  (1 - T y 2 -  (38) 

which of course agrees with (24), and 

The tunneling exponential in (39) contains corrections 
which depend both on the central frequency of the ionizing 
radiation and on the spectral width. 

If 7,1 and (6/7)$, (7 )  - (&/7) ln (27)41  we get 

Consequently, 

For 7) 1 we can employ the method used to derive (30) to 
find an asymptotic expression for the universal function 
$ ( y , { )  which is more general than (40) (i.e., which is also 
valid for (6 /7 )$k(7)  -(6/7)1n(27) > 1, 617 = ufi .41) .  
In this case $(F,l)  satisfies the equation 

tion probability calculated using noth order perturbation 
theory. However, if 6 f 0 and 

the ionization no longer obeys a power-law de- 
pendence. The critical field Fc, depends nonanalytically on 
the spectral width u. 

It is remarkable that the result for the multiphoton 
transition probability derived by noth order perturbation 
theory is incorrect for weak fields, which are precisely the 
ones for which perturbation theory is generally regarded as 
unconditionally valid. The physical explanation is clear-in 
weak quasimonochromatic fields, the higher frequency com- 
ponents contribute significantly to the ionization in spite of 
their small "weight" in the spectral distribution of the inten- 
sity. The small statistical weight of these components is off- 
set by the fact that fewer photons are needed for ionization. 
In the perturbation series for weak fields it is therefore incor- 
rect to keep only the term of order no = I,/% calculated at 
the central frequency. Indeed, other terms may be more im- 
portant. The asymptotic estimates given in this paper pro- 
vide an effective method for adding all the significant contri- 
butions in the perturbation series for the ionization 
probability. 

Nonresonant multiphoton ionization is usually de- 
scribed by the statistical factor y, which is defined as the 
transition probability in a nonmonochromatic field divided 
by the corresponding probability for a monochromatic field 
of equal intensity.12 The above discussion shows that y de- 
pends not only on the intensity distribution, as is generally 
assumed in the quasistatic t h e ~ r y , " . ' ~ . ' ~  but also on the form 
and decay rate of the field correlation functions, i.e., 

I ~ ( T ,  E)=~14~(\:)rcorr(V- 5 ) .  (44) 
Here yq, (7) is the ordinary quasistatic statistical factor, and 
~,,,, (7,f) is the additional "correlation statistical factor." 
When Eq. (37) is valid we have 

Figure 2 plots the universal function q, (7). 

4. TUNNELING IN A WEAK STOCHASTIC FIELD 
SUPERPOSED ON A CONSTANT FIELD 

We now examine ionization of a particle by a constant 
electric field E on which a stochastic field F ( t )  with correla- 

which implies (40) for (l/y)21n(27)3.41. If (& /  
7)21n(27)3s 1, we find from (42) that 

- 
This result is not valid for F 2-0(7- t~ ) because F must 
satisfy a lower bound of the type (31) to ensure that the 
method of stationary phase is applicable. 

According to (41 ), W- ( 1/8.7)"0 for 6 = 0, i.e., the 
transition probability is proportional to a power of the inten- 
sity and coincides in the limit no). 1 with the average transi- FIG. 2. The universal function p(y).  
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tion function ( 14) is superposed. The procedure discussed in 
Sec. 1 can be used to derive t)le asymptotic formula 

W - exp {- E ~ T ~  + 2 I d r x  (r) } 
h 2fi 

-To 

for the ionization probability. The extremal trajectory x ( r )  
and the quantity 7, are given by the equations 

+ 1 

- d2q  =- @-am3 J ds,p ( s , )  exp[v2m2 ( s - ~ , ) ~ ] ,  
ds ' - 1 

mx 1 x3m2P2 omx 
X = X T O Q ,  rO=-@, a=-- v= - 

~ o E  2 e0fiEd eoE ' 

We assume that the stochastic field is weak ( '/E '(1 ) and 
retain only the first nonvanishing corrections in Eq. (47) 
involving the small parameter a. We find that 

Here 

2 
erfi ( x )  = [ dte". 

0 

For v ( 1 

while for v )  1 

1 
Q (v) = - exp (4v2). 

26v8 (51) 

According to (50) and (51), the addition of the stochastic 
field abruptly increases the probability for ionization by the 
constant electric field. As we have already observed several 

rections to the argument of the tunneling exponential [see 
(51) 1 become larger when the correlation function decays 
more quickly (for v = amx/e&) 1 ) . A similar effect was 
noted recently in Ref. 23, where tunneling in a weak har- 
monic field was studied. 

We are indebted to L. V. Keldysh, V. A. Kovarskii, and 
V. P. KraInov for their interest in this work and for a helpful 
discussion of the results. 
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