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A chain of two-level atoms is considered in which the wave functions ofthe excited electron states 
of neighboring atoms overlap. The intensity threshold for optical nonlinearity in such systems is 
lower than for isolated atoms. A mechanism is discussed which accounts for the large optical 
nonlinearities observed during resonant formation of excitons. 

The interatomic distances in many compounds are such 
that appreciable overlapping can occur only between the 
wave functions of excited electron states in neighboring 
atoms-the overlaps between excited and unexcited states or 
between two unexcited states can be neglected. Because of 
the overlap of the excited wave functions, the energy re- 
quired to excite an atom with at least one excited neighbor is 
quite different from the excitation energy required for an 
atom with unexcited neighbors. Thus an incident electro- 
magnetic wave of frequency resonant for an atom with unex- 
cited neighbors cannot resonantly excite atoms with excited 
neighbors. In other words, the effect of the wave is such that 
two adjacent atoms cannot both be excited. Optical nonlin- 
earities in polyatomic systems of this type therefore show up 
at lower incident intensities than is the case for isolated 

In the resonance approximation the nonresonant terms 
in the Hamiltonian ( 1 ) are discarded. We assume that all the 
atoms are in the ground state when no electromagnetic wave 
is present, so that no two neighboring atoms can be simulta- 
neously excited after the wave interaction is turned on. This 
circumstance permits us to adopt the following formalism to 
determine the form of the resonant part of the Hamiltonian. 
If we define the operator 

the familiar anticommutation relations for Fermi operators 
show readily that the eigenvalue of 6, is equal to 1 only if 
atoms n - 1 and n +! are unexcited; in all other cases it 
vanishes. We can use G, to rewrite the Hamiltonian as 

N 

atoms. I?,= { E  (an+an+bntbn)-h(a.+b.+e-'~'+bnane7"')8.). 
In this paper we consider a closed chain of N identical, 

n- I 

periodically spaced, two-level atoms in which the wave func- (4 )  
tions of the excited electron states overlap for neighboring in which only the resonant contribution appears. The opera- 

atoms. We analyze the behavior of the system in an intense tor &, in (4 )  ensures that atom n will not interact resonantly 

radiation field whose frequency is resonant for an atom with the wave provided at  least one neighbor is excited, be- 
with unexcited neighbors. cause the eigenvalue of 6, then vanishes. 

The Hamiltonian is given by The unitary transformation 

+ ~ a , + a , a ~ - ~ a ~ + ~ } .  leads to the time-independent expression - N 

E='I, (Ei-E,) ,  ?v='/2dIu80. (1  ~ ~ ~ = x  {& (antan+bn+b,.) -h(antb.++bna.) e n ) ,  
Here a, + is the creation operator for an electron in the , = l  

excited state of atom n,  and b, is the hole creation operator 
(electron annihilation operator) for a ground-state hole of &=E-'I2Fi(fi, (6 )  
atom n; a, and 6, annihilate excited electrons and ground- for the Hamiltonian (4 ) .  
state holes in atom n, respectively, and E ,  and E ,  are the We find the ground-state wave function by the vari- 
energies of the ground and excited states of an atom with ational technique by writing 
unexcited n2ighbors; d,, is the matrix element for the dipole Y 

transition; Z?, is the electric field amplitude of the wave (we I y)=n yn(l+r.a.,+b,+&?.) 10). 
may takeR real without loss of generality); T determines the n=i 

interaction between adjacent excited atoms due to overlap- where x ,  and y, are the variational parameters and 10 > is 
ping of the excited electron wave functions. Since the chain is the ground state of the system. The role of G, in ( 7 )  is to rule 
closed, a,+, + a,+ = a, + a , .  We neglect possible reso- out states with two adjacent excited atoms. This pecmits us 
nant energy transfer from one atom to another. to derive an expression for functions of the type (Y  If IY) in 

Since in our case terms of determinants. The normalization condition is 
( 2 )  I2~-fio)l-lhj<<T, fro N 

<pi z ) = s ~ y n 2 = l .  ( 8 )  
the wave interacts resonantly with atoms having unexcited 

n = t  
neighbors and nonresonantly otherwise. where 
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Formula (9)  implies that S is a sum of terms containing 
different combinations of the factors x, (n = 1, 2, ... , N). 
If a term contains X, then it cannot contain x, or 

% + I 2 .  
Similar expressions hold for the matrix elements needed 

to calculate (Y IH, IT): 

S= 

We thus minimize the function 

ixN 

i x ~ - l  ixN-2 0 
ixN-2 

' .  i s3  

0 ix3 1 i x ~  
i 1 ixl 

ix, ixl 1 

where p is a Lagrange multiplier. 
Since the atoms are all identical, we must have 
xl=xz=. . .=xx=x, y1=y2=. . .=y.v=y (12) 

at the minimum point. This simplifies the calculations con- 
siderably by reducing the problem to evaluating nth order 
determinants of the form 

It is easy to see that the D, satisfy the recursion relation 

D, ( x )  =Dn-i ( 2 )  +x2Dn-z ( 2 )  (14) 

The substitution D, = (22) - " D, ', where z = 1/2ix, yields 
a new recursion formula for the D, ' which coincides with the 
one for Chebyshev polynomials.1 Since D l  = 1 and 
D 2  = 1 +x2,wethusget  

The extremum equations for W contain functions 
which for x l  = x, = ... = x, = x can be expressed in 
terms of the D, (x)  as follows: 

We find the dependence ofx onA and E by substituting ( 16)- 
(18) into 

dW/d~ , ,~=0 ,  dW/dym2=0. (19) 

S=D.v ( x )  +x2DN-2 ( x )  , (16) 

dS/dxn2=Dx-2 (2) , (17)  
0, m=n, n f  1 

Here the derivatives are evaluated at x1 = x 2  
- - ... =x, =x,yl =y2  = ... =y, =y.  

In the limit N) 1 we have 

dZS - - 
dxm2dxni 

and the polarization of the atomic chain is 
N 

P=(Y I dl. (a.+bn+e-Lw'+bna.e'wt) 1 Y )=Po eos ot, 
n=i (21) 

DN-1 ( X I ,  m=n*2 (18) 
Dn-,,,+ ( I )  DN+m-n-2 ( x )  , IGmGn-3  

Analysis of Eqs. (20) and (21) reveals that the approxima- 
tion 

( x )  DN+,-,-z ( x )  , n+36mQV 

describes the parametric coupling between Po and A / E  quite 
accurately (Fig. 1 ) . Formula (22) differs from the one for 
isolated atoms (see, e.g., Ref. 2) because of the factor 3 mul- 
tiplying theA term, which is known to be responsible for the 
optical nonlinearity. We thus conclude that the intensity 
threshold for nonlinearity is roughly one-third of the value 
for isolated atoms. 

We note that the decreased nonlinearity threshold 
should show up to some degree in all polyatomic systems in 
which the wave functions of the excited electrons overlap for 
neighboring atoms. Even the simplest case of two coupled 
atoms ( N  = 2) is of interest in this context. If the overlap 
forbids a resonant transition to a state in which both atoms 
are excited, the polarization is given by 

~,/2=d,,h ( ~ ' + 2 h ' ) - ' ~ .  (23) 

FIG. 1. Parametric dependence of IP, I/N on /Z / E .  The solid curve 1 gives 
results from Eqs. (20)  and (21);  curve 2  is for isolated atoms; curve 3 
describes the function (22) .  
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We see readily by comparing the results for a chain and 
for N = 2 that the observed nonlinearities should be larger 
for a coupled-atom chain. This is because each excited atom 
in the chain prevents its two neighbors from being excited, 
whereas each atom has only one neighbor for N = 2. Large 
nonlinearities should therefore be observed in materials in 
which a single excited atom can suppress excitation of many 
other atoms. 

The enhanced nonlinearity may be very important for 
light interacting coherently with crystals in the exciton re- 
gion of the spectrum. In particular, if the excitons are strong- 
ly coupled, optical nonlinearities should be observed in crys- 
tals with a sufficiently strong exciton-exciton interaction. 
The nonlinearity will be particularly pronounced when 
weakly coupled excitons are produced resonantly in semi- 
conductors. We conclude from our analysis that excitons 
generated by an intense electromagnetic wave should be spa- 
tially correlated, i.e., their wave functions should not over- 

lap. Because the volume occupied by weakly coupled exci- 
tons in semiconductors is greater than the volume of the unit 
cell, optical nonlinearity in these systems will be observed 
for relatively weak incident intensities. This mechanism is 
apparently responsible for the large nonlinearities observed 
experimentally in Refs. 3 and 4 at exciton frequencies. 

I am grateful to V. N. Arutyunyan for his interest in this 
work, and to A. G.  Aronov, A. Zh. Muradyan, E. U. 
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