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Induced nonradiative nonadiabatic molecular transitions are considered which are activated by 
dipole-active vibrations interacting with low-frequency laser radiation. The populations of a two- 
level electron system interacting with "hot" vibrations are calculated by the nonequilibrium 
density matrix technique. The time dependence of the populations is shown to be determined by 
the nonmonotonic time dependence of the nonadiabati~: transition probabilities. 

1. INTRODUCTION 

Recent experiments on the interaction of infrared laser 
pulses with molecules have led to the observation of induced 
nonradiative transitions (NT),  in which the laser-excited 
vibrations induce electron transitions between two electron- 
vibrational terms. According to Refs. 1 and 2, such induced 
"inverse nonradiative transitions" should be accompanied 
by luminescence whose intensity and time profile are deter- 
mined by the induced NT probability and the dependence of 
the latter on the properties of the laser pulse. Unlike ordi- 
nary "cold" nonradiative transitions, induced NT's are vi- 
brationally "hot" due to the interaction of dipole-active mo- 
lecular vibrations with the infrared laser radiation, and the 
hot vibrations participate in the nonadiabatic t ran~i t ion.~ 
Two cases can occur in practice-either the selection rules 
break down, or else they forbid a direct interaction of an 
electron with the dipole-active vibrations. In the latter case 
one must analyze the anharmonic coupling between the di- 
pole-active vibration and other vibrational modes interact- 
ing directly with the electron. For simplicity, in what follows 
we will limit ourselves to the case when direct electron-vi- 
brational (e-V) interaction is allowed. 

The selective excitation of dipole-active vibrations was 
discussed in Ref. 4, where it was shown that the threshold for 
complete randomization of the molecular vibrations must lie 
above the dissociation threshold for a given mode. For the 
nonradiative transitions of interest to us, the nonadiabatic 
region [in which term crossings (quasiintersections) occur] 
must thus lie below both the dissociation threshold and the 
threshold for total randomization of the molecular vibra- 
tions. 

In the theory of nonradiative transitions, the role of the 
accepting modes is played by fully symmetric vibrations 
which are coupled to the electrons much more strongly than 
other vibrations, which promote the transition but are not 
fully ~ymmetr ic .~ However, the promoting modes are much 
more important in induced nonradiative transitions, because 
their effective coupling constant with the electrons contains 
vibrational occupation numbers which depend on the pump- 
ing intensity. 

Below we develop a theory of induced nonadiabatic 
NT's based on the nonequilibrium density matrix technique. 

2. BALANCE EQUATIONS AND EXPRESSION FOR THE 
INDUCED NONRADIATIVE TRANSITION PROBABILITIES 

We consider a moleucle with two electron terms 1 and 2 
such that the optical transitions between them form an elec- 
tron-vibrational (e-V) absorption band. The incompletely 
symmetric mode Q is assumed to be dipole-active, and both 
it and the completely symmetric mode q contribute to the 
halfwidth of the band. When IR laser radiation of resonant 
frequency w, and field amplitude 

F ( t )  =f ( t ) F ,  sin out 

excites the molecules, the Q mode is excited and its contribu- 
tion to the NT may be greater than for the "cold" fully sym- 
metric mode q (here f(t) specifies the form of the laser 
pulse). The induced nonradiative transitions may thus com- 
pete, and we will see below that under certain conditions 
they may be much more probable than ordinary nonradia- 
tive transitions. The Hamiltonian for the e-V system is of the 
form 

2 2 

-eF( t )  Q+Vi2;++V2,;-. (1 

Here HQ and H, are the Hamiltonian for the uncoupled Q 
and q modes; R2Qy and w2qy are the coefficients of the e-V 
interaction function for the ith electron state; R and w are 
the frequencies of modes Q and q respectively; the E~ are the 
energies of the electron terms. Thelast  two terms in ( 1 ) 
define the nonadiabaticity operator L, where for simplicity 
we set V, ,  = const. The operators A i  and i ,  are related to 
the Pauli matrices u, ( a  = 1,2,3) by 

The populations n ,, n, of the electron levels are given by 

Here the nonequilibrium density matrix p ( t )  satisfies the 
Liouville equation with total Hamiltonian W + H,,where 
H, describes the other vibrational modes of the polyatomic 
molecule and their anharmonic coupling to modes Q and q. 

We carry out the usual unitary shift transformation6 
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inside the trace operator to select a multiphoton vertex: 

Here we have written 

where P andp are the momentum operators for the Q and q 
modes. We limit the analysis to second order in adiabatic 
perturbation theory, i.e., the equations of motion for the 
populations n,, n, will be considered to second order in the 
nonadiabaticity operator Z. ( I t  is easy to see that the off- 
diagonal elements of the density matrix give corrections to 
n,, n, which are of higher order in 2.) 

In the Markov approximation we find 

ril ( t )  =WZ1  ( t ) n 2 ( t ) - - I V I Z ( t ) n l  ( t ) ,  (4 )  
ri, ( t )  =-Ti1 ( t ) .  

Here W,,  ( t  ) and W,, ( t  ) are the probabilities for an induced 
nonradiative transition from term 1 to 2 and from term 2 to 1 
per unit time: 

m 

1v l 2  W ( t )  = " - 2 R e  I dr exp {-i ( c , - - E ~ )  r / f r -rr )  
A2 

0 

J v12t2 W,,  ( t )  - - . 2  ~ e \  dr exp {i ( ~ ~ - r ~ )  r /A-rr)  
A2 

0 

where we write 

(,4>,=2-' Sp{A e s p  [-fi (H,+H,+f7,)] ), 
(6)  

f7,=Ui H,U, x i ,  ( t )  =S+ ( t ,  0 )  nl,S ( t ,  0 ) ,  

and the evolution operator S(t,O) satisfies the equation 

Equation (4)  is valid for k r ,  % I-,, , where I- is the trans- 
verse relaxation constant for the excited electron state. 

It is convenient to carry out the averaging in Eqs. (5)  
under the assumption that the vibrations described by H ,  
randomly modulate the frequencies Cl and w of modes Q and 
q (Ref. 7 ) .  We will assume that Cl and w form a random 
Gaussian process,' i.e., 

Q ( t )  =Q+ 652 ( t ) ,  o ( t )  =o+6o ( t )  . 
where 

( R ( t ) i = Q ,  ( ( ~ ) ( t ) ) = o ,  

(6Q(t )? iQ(O)>=K,  ( t ) ,  ( f i ( l ) ( t )Go ( 0 )  ) = K , ( t )  

other model functions (e.g., K,,, ( t )  = K:,, 
X exp( - y,,, J t  ( ) are similar to the ones given below and 
will be omitted. 

We can use Eqs. (6)-(8) to transform the correlation 
functions in (5 )  and obtain 

where 

0, ( a )  =R( t ) s in  mot-R(t-r)sin o , ( t - T ) ,  

A = ( Q  - Q is the Stokes loss parameter, and d, and 
are the transition dipole moment and the Planck occupation 
number for the Q mode. The expression for g ( r )  follows 
from G ( r )  with 

A--a= (q,o-q,@)Z, iT-l l=[exp(f io/kT) - I ] - ' ,  

yl'yz, Q-*o. 

With Eqs. (9)  and ( lo ) ,  the induced NT probability 
( 5 ) at resonance w, -- fl becomes 

[we have assumed in deriving ( 11 ) that r,,T-', where T, is 
the length of the laser pulse]. Here Js ( x )  is the Bessel func- 
tion, and the partial NT probability W, is the contribution 
from s quanta of the laser-excited vibration: 

The transition moment d, becomes "smeared out" among 
the various closely spaced vibrational levels,' and we may 
assume that d, is a random function with a Gaussian distri- 
bution. For large Stokes losses, 

( I - t 2 ) I  n ( l t 2 n )  >I, 

+ ( t  1 ,  H=R(dQ>/d4,  

where ( d , )  is the average transition dipole moment for 

901 Sov. Phys. JETP 62 (5), November 1985 Kovarskil et aL 901 

0 hl 
and the process is uncorrelated, so that H ,  has a dense spec- - 

- 
trum: K ,,, ( t )  = (y1,,/2)S(t) (this is the situation in Sec. 3, - - - - 
where we discuss the experimental results). The brackets in X ' A  .[- - (8) indicate an average over different instances of the ran- - - - - 
dom process SO, Sw, while y ;  ' and y; ' are the relaxation 
times for modes Q and q, respectively. The calculations for FIG. 1. Diagram showing levels and transitions for dia~etylene.~ 
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FIG. 2. Population n, as a function of time < = t /ro forf(t) = exp( - t / 
7,) for CO, laser energy density E = 0.6 ~ / c m '  (7, is the length of the 
laser pulse). 

mode Q, we readily find the expression 

for the induced NT probability from ( 11 ) by averaging over 
the Gaussian fluctuations in the dipole moment. 

Expressions ( 1 1 ) -( 13) for the induced nonradiative 
transition probability determine the populations after sub- 
stitution in (4) :  

t t 

( t )  = J d w i 2 ( t ) e { -  j d v 1  + ( )  } (14) 
0 1 ' 

3. COMPARISON OF THEORY WITH EXPERIMENT 

It will be of interest to compare the above theory with 
experimental results on induced nonradiative transitions for 
diacetylene and benzophenone molecules excited by a pulsed 
CO, laser.9-" According to Ref. 9, a nonadiabatic transition 
is selectively excited in these molecules, and the threshold 
for dissociation via mode Q and the threshold for total ran- 
domization both lie above the quasiintersection level for the 
singlet and triplet terms. In addition, because these mole- 
cules contain many atoms the Hamiltonian H ,  has a dense 
vibrational spectrum. The stimulated fluoresence If, ( t )  ob- 
served in Ref. 9 from the singlet states was due to multipho- 
ton excitation of the triplet molecular state (Fig. 1 ) followed 
by transfer of excitation to the singlet levels. The time behav- 
iorIfl  ( t )  was nonmonotonic and peaked after the short laser 
pulse had terminated (Fig. 2 ) .  Under the experimental con- 
ditions in Ref. 9, the populations n, and n, were determined 

primarily by rapid multiphoton transitions between the lev- 
els, so that If, ( t )  ccn,(t). Figure 2 shows the theoretical 
dependence n,(t) for benzophenone calculated from ( 13), 
(14) with 

The increased relaxation time noted in Refs. 9-1 1 for 
mode Q (y, - lo6 s- ' ) is chiefly responsible for the time lag 
of If, ( t )  relative to the laser pulse. The agreement between 
theory and experiment is fully satisfactory. 

We note in closing that if the molecules are excited by 
continuous radiation, the induced nonadiabatic transition 
probabilities become independent of time and are given by 
the familiar expressions for multiphoton transitions with the 
equilibrium vibrational occupation numbers replaced by 
3 = it + (F0/fiy)*. The N T  probability increases with field 
strength Fa, and for the above parameter values w,,(#)/  
w,,(R) - 10. 

We are indebted to E. E. Nikitin for some valuable com- 
ments concerning Eq. ( 4 ) .  
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