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Exact analytic solutions are obtained for the nonlinear Schrodinger equation which describes the 
transformation of a constant-amplitude cw signal in an optical fiber into a periodic train of pulses. 
These solutions are analyzed for various frequencies and types of initial modulation. The analysis 
shows that an optimum fiber length exists for such a transformation. At  greater fiber lengths the 
field returns to the initial state. It is shown that the waveforms of the fiber output pulses depend 
not only on the fiber length but also on the frequency and type of the initial modulation of the cw 
signal. The fiber-output waveforms calculated numerically from these exact solutions are pre- 
sented. 

1. INTRODUCTION 

It was shown in Refs. 1 and 2 that trains of picosecond 
pulses can be obtained in an optical fiber by exciting it with 
cw laser radiation. The cw signal breaks up into a periodic 
sequence of pulses because the refractive index of the fiber 
material depends linearly on the optical field and because a 
wave of constant amplitude has a modulational instability 
against periodic perturbations. In Ref. 1, however, the evo- 
lution of the solution to the problem after the initial stage of 
perturbation growth was investigated only by means of nu- 
merical experiment capable only of representing the solution 
for a finite number of initial conditions and incapable of ac- 
counting fully for the general laws that govern the phenom- 
enon. The authors of Ref. 2 confined themselves to the initial 
growth stage of the periodic perturbations. In the present 
paper we obtain exact analytic solutions of this problem for 
various types of initial periodic modulation of an initial con- 
stant-amplitude wave and present the pertinent equations 
for the waveforms of the obtained pulses. 

Mathematically speaking, the problem reduces to find- 
ing periodic solutions of the nonlinear Schrodinger equation 
(NSE) and is in this sense of general interest for a large class 
of problems of contemporary mathematical physics. The 
modulational instability of NSE solutions in the form of a 
plane wave with constant amplitude was considered in self- 
focusing in the problem of wave self-modulation in 
a nonlinear dispersive m e d i ~ m , ~  in the theory of waves in 
deep water,6 and elsewhere, but no exact solution has been 
obtained to date, some attempts notwithstandingS7 Numeri- 
cal  experiment^^-^ have identified an important feature of 
the problem, viz., that a solution initially periodically modu- 
lated in the space domine is periodic also in the time do- 
main," so that after a certain time the initial field distribu- 
tion, with weakly modulated constant amplitude, is 
restored, in analogy with Fermi-Pasta-Ulam restoration.' 
Our exact solutions confirm this conclusion in the case of a 
simple harmonic initial modulation and can determine the 
cases in which it holds for more complicated types of modu- 
lation. 

Given the initial conditions, the NSE can be solved by 
the classic formalism of the inverse scattering p r ~ b l e m . ~  

Nonetheless, in the case of periodic initial conditions one 
encounters a number of singularities that must be taken into 
account by special methods using finite-band (N-band) op- 
e r a t o r ~ . ' ~ - ' ~  The general explicit equations obtained'' by 
this method, however, are difficult to analyze and do not 
solve our problem. We have searched for solutions by direct 
methods, partly based on the results of numerical simula- 
tion. The methods themselves are too cumbersome to de- 
scribe here. We focus our attention here on the simplest anal- 
ysis of the solution and also on the results and conclusions 
that follow from our exact solutions as applied to wave prop- 
agation in an optical fiber. The solutions themselves are rela- 
tively simply verified by direct substitution in the initial 
equation, and require no additional clarification in this 
sense. 

The plan of the exposition is as follows. In Sec. 2 we 
formulate the problem of generating picosecond pulses in a 
single-mode optical fiber at wavelengths close to the absorp- 
tion minimum. In Sec. 3 we obtain an exact solution of this 
problem for simple harmonic modulation of the input signal. 
In Sec. 4 we discuss problems involved in modulation by a 
composite signal in the presence of higher harmonics of the 
fundamental frequency, and a solution is presented for the 
relatively simple case of modulation by the first two harmon- 
ics. The waveforms of the fiber output pulses numerically 
calculated from our solutions and simple estimates based on 
them are reported in Sec. 5. In Sec. 6 we summarize the 
results. 

2. STATEMENT OF PROBLEM 

It was shown in a number of papers (see, e.g., the review 
by Hasegawa and Kodama,I3 V y ~ l o u k h , ' ~  and Mollenauer 
and StolenL5) that a wave excited in a single-mode quartz- 
glass optical fiber at frequencies close to the minimum ab- 
sorption and to negative group dispersion, at relatively low 
total radiation power, should exhibit nonlinear behavior due 
to the nonlinear dependence of the refractive index of the 
quartz on the wave field: 

where no is the refractive index of the fiber material and n ,  is 
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a nonlinear coefficient. Since the group dispersion is small in 
this frequency range, the electric-field values at which Eq. 
( 1 ) must be taken into account are much lower than the self- 
focusing threshold, and the field itself can be approximated 
by the equation" 

E (r ,  x, t )  =Re[cp (x, t)  R ( r )  uxp i(kx-ot) 1 ,  (2) 

where x is the longitudinal coordinate, t is the time, w is the 
excitation frequency, k is the wave number, R ( r )  is the radi- 
al eigenfunction of the linear problem, and p(x, t )  is the en- 
velope of the optical field. Neglecting absorption in the fiber 
and higher-order dispersion, the function p(x, t )  should sa- 
tisfy the NSE (Ref. 13). 

which has been rewritten here in dimensionless form by 
changing to the new variables 

where 

q is a normalization factor that determines the connection 
between the signal amplitude and the characteristic tempo- 
ral and spatial changes of the field in the fiber. 

To simplify the analysis, we introduce a function u ( 6 , ~ )  
connected with $by the relation 

In this case only a weak dependence on the variable f re- 
mains the function u, and the equation for the latter takes the 
form 

Equation (5)  admits of a soliton solution 

where T,, is the coordinate of the center of the soliton. As 
applied to propagation of optical pulses in a fiber, the soliton 
is the subject of many papers (see the literature cited in Refs. 
12-15, and also Ref. 16, where solitons in a fiber were first 
considered). 

Equation (5)  has in addition a very simple solution in 
the form of a complex constant u = exp ip, which describes 
a stationary wave of unit amplitude and arbitrary phase p .  It 
is known1-' that this stationary solution is unstable to long- 
wave periodic perturbations, and that these perturbations 
increase exponentially as the wave propagates along the fiber 
(as f increases). In fact, let the wave entering the fiber be 
weakly modulated: 

u= [I+ C a, (a) cos jx (r-ra) ] exp ip. 
,=I  

where the a, are the Fourier coefficients of the periodic mo- 
dulation and are assumed to be small during the initial 
growth state ( la, 1 ( 1 ), x is the external-modulation fre- 

quency, n is the number of harmonics of the fundamental 
frequency in the input signal, and TO, is the initial phase of 
the jth harmonic. Substituting ( 7 )  in (5 )  and retaining the 
terms linear in a,, we can show then that these coefficients 
are given by 

a j ( i )  =A,[jx/2+i (1-j2x2/4) "llexp (6&) 

+Bj[jx/2-i (I-jZxZ/4) "Iexp (-6,E) 

=A,  esp (iaj+6,E) +Bj exp(-ia,-6,g), (8 

where 

tg a,=26,/j2x2, 6,=jx (I-j2x2/4) ' i 2 ,  

6, is the growth rate of thej-th harmonic of the perturbation 
and is real in the frequency interval 0 < j x < 2; A, and B, are 
real constant coefficients for the initial values ofg and satisfy 
the conditions. 

The instability growth rate 6, is a maximum at ?c = fi, 
and in investigations of the perturbation growth in modula- 
tional instability it is customary to retain only the fundamen- 
tal harmonic of the perturbation with this value of x. The 
remaining 6, are pure imaginary in this case. In the case of an 
optical waveguide it is possible to have the input cw radi- 
ation modulated beforehand at a specified period and ampli- 
tude. Taking this circumstance into account, we shall inves- 
tigate below the solutions of Eq. (5)  at arbitrary values of x. 
We shall see that preliminary modulation permits control of 
not only the pulse repetition period but also the waveform, 
duration, and peak amplitude. 

3. SIMPLE INITIAL HARMONIC MODULATION 

We consider first the simplest situation, in which 
0 < x < 2 and n = 1, i.e., the initial modulation is purely har- 
monic and has a real growth rate 6,. We consider for the time 
being only growing perturbations, and set the coefficient B,  
in (8 )  equal to zero. To obtain perturbations with pure expo- 
nential growth we need, as seen from (81, composite modu- 
lation, i.e., both in amplitude and phase, with a ratiocr, ofthe 
modulation depths. This constraint permits an exact NSE 
solution with initial condition ( 7 )  to be found. If, however, 
pure amplitude or pure phase modulation is used, the solu- 
tion will be close to that obtained and the waveform of the 
produced pulses in the end will depend little on the type of 
modulation. The exact (and only) solution of Eq. (5)  as 
f-t - a, which has a limit (7 )  in which B, = 0 and n = 1, is 
the function 

'/zpxZ ch 6, (Z-Eo,) +ips1 sh 61 (E-bi) I exp icp', (9 )  
p ch 61 (;-gal) -COS x ( t - 7 0 1 )  

where 

and the constant f,, is connected with A ,  by the relation 
A ,  = S exp( - Slf0, ) . We shall not present here the method 
used to obtain ( 9 ) ,  but we can verify by direct substitution 
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that this function is indeed the solution of the NSE. 
It can be seen from (9) that the initial (6- - m ) sta- 

tionary state expip acquires as a result of the instability de- 
velopment a modulation whose depth increases nonlinearly 
to a certain maximum at { = to,, followed as {+m by a 
return to a stationary solution with a different phase u 
= exp i [p  + Ap,(x)] ,  i.e., the solution (9) restores the 
field to its initial unit amplitude, but with a phase rotated 
from the initial value by Ap, ( x )  = 2arccos(x2/2 - 1).  In 
the concluding state of the process as {--+a, the linear term 
of the expansion of (9) in the small parameter 
exp[ - a,({ - lo,) ] again coincides with ( 7 ) ,  but in the 
latter we now have A, = 0, B = 6, expS,{,,, and the phase 
has a new value p + Ap, (x ) .  Thus, the exponentially de- 
creasing term of (8),  which has usually been neglected in 
papers on modulational instability, has a real physical mean- 
ing. 

As x+0, the period in T increases to infinity and in the 
limit we obtain from (9)  an NSE solution in the form of a 
rational fraction: 

1+2i(E-Eel) 
u(E, T)=[ 1-4 I exp icp'. (10) 

~ -~~( 'G- 'GOI ) '+~(E-EO~)  

For this solution, the distribution of the field in T takes 
the form of a singleadark" pulse against the background of a 
cw signal whose form changes with changing {. As {-+ m the 
pulse vanishes and the initial stationary field is restored. 
Such a solution, however is realized as S,+O, and the initial 
perturbation has a power-law rather than exponential 
growth. This solution can hardly be obtained in pure form in 
optical waveguides. Nonetheless, the waveform of the gener- 
ated pulses, as shown by calculations, comes close to (10) 
even at x 5 0.5, and this equation can be used in practice for 
approximate calculations, recognizing that the pulses repeat 
with a frequency x. 

We take special notice of the case x = a, when the 
instability growth increment S, is a maximum. This is pre- 
cisely the case previously dealt with in studies of modula- 
tional instability. The solution (9)  takes in this case the 
simpler form 

cos Y 2-(r-ro1) +iY%sh (f -501) exp icp,, 
u(E, .t)= (11) 

cos 1'2 (T-zo1) -72 ch (E-f01) 

and the trajectories described by this solution transform the 
initial state u = exp i ( p  ' + n/2) into the final u 
= expi(p ' - n/2), SO that the total phase rotation angle is 

exactly equal to T. 

4. INITIAL MODULATION BY A COMPOSITE PERIODIC 
SIGNAL 

In the range 0 < x < 1 not only the fundamental, but 
also its harmonic with frequency 2x, is unstable so that the 
first two harmonics must be taken into account in the com- 
posite modulating function. The evolution of such a pertur- 
bation leaves the signal periodic in r and  dependent both on 
the relative phase difference of the two harmonics and on the 
ratio of their initial amplitudes. The exact solution of Eq. 
(5)  in the region 0 < x < 1, which in the limit takes the form 
( 7 )  with n = 2, B, = 0, B, = 0, can be written in the form 

u(%, T )  =[ I -  (G-t iH)lD]exp icp", (12) 

G= (x2/46,) ch G 1  (E-Eel) cos 2% (a-zO2) 

+ (2xz/6,) ch G 2  (E-.E02) cos x ( T - ~ 3 , )  

+ ( 3 ~ ~ / 2 6 ~ 6 ~ ) c h  6, (E-Eli)ch I ~ ~ ( E - E , ? ) .  (12a) 

H=1/2 sh (E-EoI)cos 2% (7-tO2) +sll ( g - $ , , Z ) ~ ~ ~  x ( T - T , , ~ )  

- (%/6,62) [61 ~h 61 (E-E, , )  cli 6, (:-to:) 
-sL ch 6i (E-Eoi)sh f i 2  (E-CSo2) I ,  (12b) 

D= ( 3 1 4 ~ )  [COS % (T+t,i-2Tae) f '/" COS x ( ~ Z - ~ T O ~ - T O I )  1 
+ (1/26j)ch 61 ( E - ~ ~ I ) c o s  2% (T-TOZ) 

+ ( I /&)  ch (E-EC2)  cos i~ (a-TH) 

- ( 2 1 3 ~ )  {[x2(2x'-5) 12816zl~h 61 (E-Eol)~h 62 (%-to?) 
+dl bt ( ~ - E O I ) S ~ ~ ~ , ( E - E O Z ) ) ,  ( 1 2 ~ )  

where 

and the constants {,, and gO2 are connected with the initial 
amplitudes in the expansion of (7)  by the relations 

Ai=61 exp (-61E01), Ae=6, exp (--6,Eo2) 

It can easily be shown that the final state of the field deter- 
mined by the solution ( 12) as {-+ m is also a wave with unit 
amplitude, and the total phase rotation in this case is equal to 
the sum of the rotations due to the elementary solutions ( 9)  : 

Arpz ( x )  =AT, ( x )  +Aql ( 2 x ) ,  ( 1 3 )  

so that 

The quantitites lo, and go, in solution ( 12) are in effect 
centers of two elementry solutions (9)  whose nonlinear in- 
teraction leads to the solution ( 12). When the centers coin- 
cide, {,, = {,, = 0, i.e., if A ,  = S,, A, = S,, the solution 
( 12) with phase p " = 0 is symmetric relative to reversal of 
the sign of {: 

If the centers of the elementary solutions are separated by a 
larger distance along the { axis, ( 12) breaks up into a sum of 
two elementary solutions (9) ,  each with its own phase p ', 
just as in the case of two-soliton solutions of the NSE, when 
the distances between the soliton centers exceed the charac- 
teristic dimensions of both of them. 

We note that at x = 2 / 6  the growth rates of the two 
harmonics are equal, 6, = 6 ,  = 4, and solution ( 12) be- 
comes simpler. We writedown here only the symmetric solu- 
tion (lo, = go, = 0):  

= - ch2 '/5E+P (T) ch '/,5-C (7) +iF (7) sh '/5E 
exp icp", ( 14) 

ch2 ' / 5 t f 5 / ' F  (7) ch '/5E+C (7) 
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The total phase rotation effected by solution ( 14) is exactly 
equal to 27. 

In the case rO, = T/X, rO2 = 0 we can take the limit as 
x-0 in ( 12). We then obtain a second solution of the NSE, 
in the form of a rational fraction of order higher than ( 1 1 ) : 

For simplicity, we have put lo, = go, = 0 in ( 15). 
If the modulation frequency falls in the interval 

0 < x < 2/n, where n is an integer, n harmonics of the funda- 
mental frequency of the modulation are unstable, and n- 
mode solutions of more complicated structure containing 
separatrices can exist in addition to those considered. The 
construction of exact analytic solutions of this type is possi- 
ble in principle, but is apparently made difficult by the rapid 
increase, with increasing n, of the complexity of both the 
calculations and the final equations. A simpler approach in 
this case is numerical calculation of such multimode solu- 
tions on the basis of the initial equation (5) .  Typical solu- 
tions of this kind in numerical experiments are cited, for 
example, in Ref. 6 .  We note here, however, that account 
must be taken of a number of features of these solutions 
when it comes to their implementation, since for n > 2 a 
small change of the initial conditions of this problem can 
alter greatly the subsequent evolution of the field, leading 
eventually to a complicated solution that is difficult to ana- 
lyze. 

1) For containing separatrices solutions, the first term 
of the expansion of the solution as &-+cc is a sum of n ele- 
mentary exponentially increasing perturbations of type (7) ,  
where Bj = 0 and the coefficients A, = 6, exp ( - 6 , { ,  , ) are 
arbitrary. Accordingly, as &-FCC the solution consists of n 
elementary exponentially decreasing perturbations of form 
(7), where A, = 0, B, #O, and the phase p differs from its 
initial value. 

2 )  The total phase rotation Ap, ( x )  of a solution con- 
taining separatrices as < changes from - cc to a, is equal to 
the sum of rotations effected by the elementary solutions 
(91,  i.e., 

regardless of the ratio of the coefficients A, specified in the 
initial conditions. 

3 )  If the coefficients A, = 6, are chosen such that all 
go, = 0, the total solution becomes symmetric with respect 
to the variable 6, i.e., a phase p is obtained such that 
u ( 6 , ~ )  = U* ( - {,T). If the value of 6, , are widely spaced 
along the { axis, the total solution breaks up into a sum of 
elementary solutions (9). 

We have considered above a situation in which all the 
B, in (7) and (8)  vanish identically, so that the solutions 
containing separatrices can be separated. In the same case, 
when the initial state does not lie on the separatrix trajec- 
tory, the total solution becomes multiply periodic in the vari- 
able 6, and in the general case the periods are incommensu- 
rate, so that the solution is in some sense chaotic and the 
initial state of the field is not restored. Therefore in the case 
of n-mode solutions with n>2 restoration of the initial state, 
analogous to the Fermi-Pasta-Ulam restoration in excita- 
tion of a system of nonlinear oscillators, will take place only 
for solutions containing separatrices. 

5. NUMERICAL RESULTS AND ESTIMATES 

We consider first the case of simple harmonic modula- 
tion of the input signal. The pulse waveform calculated from 
(9) is shown in Fig. 1 for different values of x. The pulses 
have minimum widths and maximum amplitudes at { = 9,,. 
The fiber length needed to obtain a specified pulse waveform 
is determined by the average pump power and by the ampli- 

FIG. 1. Fiber output-pulse waveform for simple harmonic modulation of 
the input signal. The parameters are: g - go, = 0 (solid curves), + 0.75 
(dashed) T,, = 0, K = 0.5 ( a ) ,  1 (b), v5 (c),\13 ( d ) .  
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FIG. 2 .  Waveforms of single fiber output pulses in the limit of large modu- 
lation periods (x-0). Parameters: r,, = 0, l - lo, = 0 (solid curve) 
f 0.5 (dashed). 

tude and frequency of the initial modulation. All the esti- 
mates that follow are for a quartz single-mode fiberI3 at a 
radiation wavelength A = 1.55 pm.  At this wavelength 
quartz has no- 1,5, n 2 z  1 , 2 . 1 0 - ~ ~  (m/V),2 a group-velocity 
dispersionD = ( 2 ~ c / A  2,  (a 2k /dm2) = - 16ps/nm.km,so 
that a 2k /dm2 z - 2. s2/m. The depth ofthe initial mo- 
dulation determined from the linear expansion ( 7 )  is 

M (g) =A, esp  6,E=6, exp 61 (E-Eo~) .  

The modulation depth for agent 5 obviously depends on x. 
We chose for the estimates the value x = a, at which the 
growth rate is a maximum. In this case the inverse of the 
pulse duty cycle, i.e., the ratio of the repetition period to the 
width of each pulse at half-maximum peak power, is approx- 
imately 6. An initial modulation depth M ( 6 )  5% corre- 
sponds to g - tJo, =: - 3.0, and at a pulse repetition period 
of, say, 6 ps we have q z  1.33.104, the fiber length needed to 
obtain the narrowest pulse is about 260 m, and the average 
cw input power for a fiber with 2OPm2 cross section is 1.9 W. 
The length of each pulse is in this case 1 ps. The inverse duty 
cycle of the pulse also increases with decreasing x,  and is 
equal, for example, to 20 at x = 0.5. At the same time, how- 
ever, the growth rate 6 ,  decreases and the fiber length need- 
ed to obtain pulses of optimum waveform also increases. We 
note also that there exists a maximum limit ~ 2 5 0  ps on the 
pulse repetition period,' owing to the presence of the com- 
peting stimulated Brillouin scattering in the fiber. As the 
modulation frequency x decreases, a cw signal background 

FIG. 3. Fiber output pulse waveform for initial modulation by two first 
two harmonics of the frequency x = 2 / 6 .  The parameters are: < = 0 
(solidcurves), k 2 (dashed), T,, = n/x ,  X T ~ * / T  = 0 (a) ,  + (b ) ,  (c) ,  4 
(d l .  

is produced between the pulses and has an amplitude close to 
that of the pump, while the waveform of the individual 
pulses, to within an accuracy of z 3 % ,  take the form de- 
scribed by Eq. (10) even at x 5 0.5. The waveform of these 
pulses is shown in Fig. 2. There is no background between 
the pulses at the fixed frequency x = 6. Thus, for simple 
harmonic modulation the wave form and the inverse duty 
cycle of the fiber output pulses can be controlled by varying 
the average power of the cw input and the frequency of the 
preliminary modulation. 

If x < 1, the wave entering the fiber can be modulated by 
two harmonics. In this case it becomes possible to control the 
waveforms of the output signals not only by varying the mo- 
dulation frequency and the cw signal power, but also by the 
phase shifts T,, and T,, of the two modulation harmonics, as 
well as by the parameter f a ,  - go, that is equivalent to the 
ratio of the modulation depths of the harmonics. We consid- 
er below only the dependence of the pulse waveforms on r,, 
and TO2 for the case H. = 2 / 6 .  Figure 3 shows the pulse 
waveforms calculated from Eq. ( 14). It can be seen from the 
figure that in two cases, T,, = n/x, r0, = 0 and T,, = T/X, 
TO2 = T / ~ x ,  the pulse waveform at the fiber output is sym- 
metric about T within each period. The highest amplitude 
and the smallest width of the pulse occur at T,, = T/ 

X, 7-02 = 0. 
If smaller values of x are chosen, the pulse becomes 

more peaked its amplitude increases and its width decreases. 
The pulse waveform as x-+O, calculated with the aid of Eq. 
( 151, is shown in Fig. 4. The sharper maximum, however, 
vanishes rapidly when6 is varied within + 0.2 from the val- 
ue at 6 = 0. For a given fiber length it is therefore necessary 
in this case to set the modulation amplitude accurately. In 
the case considered, the modulation depths of the two har- 
monics are the same: 

FIG. 4. Waveforms of single pulses of complex waveform as x-0. Param- 
eters: { = 0 (solid curve), + 0.5 (dashed). 
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M I  ( z )  =Jf2 ( t )  =A, esp 6,g=A2 esp  6,g=6, esp 6 !5 ,  

where 6, = 6, = 4. For the pulses shown in Fig. 3a, the in- 
verse duty cycle is 16. To maintain a pulse repetition period 
of 6 ps, the value ofq must be 2. 1.104. TO obtain the optimum 
pulse waveform at the same 260 m fiber length the value of { 
should be - 7.4. This yields a required cw signal power 
~ 4 . 7  W and a modulation depth M,(() ~ 0 . 2 2 % .  

The present analysis shows that in the case n = 2, at a 
specified modulation frequency, variation of the average 
power, of the modulation depth, and of the number of har- 
monics can produce the three pulse types shown in Figs. lc, 
3a, and 3d. In addition, it is possible to modulate the pulse 
waveform by varying the parameter(,, - (,, that is equiva- 
lent to the ratio of the modulation depths M, (6) and M , ( { ) .  
For smaller K, however, when n > 1, the variety of fiber out- 
put pulse waveforms increases. This effect can be used, for 
example, in communication lines and permits alteration of 
the transmission code by a very slight change of the initial 
conditions. We note also that if necessary the length of the 
pulses generated can be lowered to several dozen femtose- 
cond~. 

6. CONCLUSION 

This technique for converting cw radiation in an optic 
fiber into a train of short pulses uncovers new possibilities 
for developing optoelectronic devices based on optical fi- 
bers. Besides production of ultrashort pulses, we point out 
here the possibility of converting IR radiation into sideband 
frequencies that differ from the central one by the modula- 
tion frequency. The fiber can thus be used to tune the fre- 
quency of IR radiation. The results of the present paper can 
be used also in the theory of optical communication. The 
possibility of obtaining pulses having a prescribed form gov- 
erned by the type of modulation of the input cw radiation 
makes it possible to specify the transmission code. The exact 

solutions (9)-(121, (14), and (15) which we obtained for 
the NSE may of themselves be useful also in other physical 
problems with periodic initial conditions, viz., in the theory 
of two-dimensional self-focusing, in the theory of sea waves 
and so on. 
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