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The electric dipole moment (EDM) of the electron, together with the hyperfine coupling, induces 
an EDM in atoms and molecules with closed electron shells. Experiments with 129Xe and T I F  
have yielded bounds on the EDM of the electron ( d  / e l  = (0.4 + 1.4) cm; 
(0.9 1.3) . cm) and on the T-odd scalar electron-nucleon coupling constant. 

A recent experiment1 yielded a very stringent bound on interaction ( 3 ), has the form 
the electric dipole momen; (EDM) of the 1 2 9 ~ e  atom: 

dv=  C (OIVln>(nlerlO>+(OlerIn>(nlV(O) . ( 5 )  
d (lZgXe) = (-O,3+I.I) .10-26/ ej  . C M .  (1 )  n Eo-En 

This in turn leads to bounds on the electron-nucleon2s3 and 
nucle~n-nucleon~-~ T-odd coupling constants and on the 
EDM of the proton3. It was noted in Ref. 6 that because of 
the hyperfine (HF) interaction the electron EDM can also 
induce a dipole moment in atoms and molecules with closed 
electron shells, in particular in the xenon atom and the T I F  
molecule. However, up to now no real computation of this 
effect has been made. 

Such a computation is given here. It is of interest, in our 
opinion, also from the viewpoint of atomic theory. The 
method of calculation that we use has allowed us to find the 
EDM of an atom subject to a T-odd scalar electron-nucleon 
interaction. Moreover, we have estimated the correction, 
due to the HF interaction, that is to be applied to the T- 
invariant effects of nonconservation of spatial parity in 
atoms, as a function of the spin of the nucleus. 

It is convenient to begin by considering a mechanism 
that gives rise to the EDM of the atom, not connected direct- 
ly to the hyperfine interaction-a direct coupling of the 
EDM of the electron to the magnetic field of the magnetic 
moment of the nucleus. The interaction of the EDM of an 
electron d with a tensor electromagnetic field F,, we write in 
the following relativistically invariant form: 

A naive evaluation of the expression ( 5 )  would give 
d, -Z 'a2(m/m, )d. The simplest way to see this is to look 
at the contribution from the last term in (4):Y2(0) -Z/a3,  
(y)  -Za ,  where a is the Bohr radius. However, we take ac- 
count of the fact that in the nonrelativistic limit the operator 
( 3 ) is proportional to the spin: 

d 
V=--u([pH]-[Hp]). 

2m 
(6 )  

Since the matrix element r does not act on the spin variables, 
the total spin vanishes for atoms with complete shells, not 
only in the ground state 10) but also in intermediate states 
In). Therefore in this limit the expression (5)  reduces to 0. 
More precisely, when we sum over complete shells an addi- 
tional small quantity -Z 'a2 must appear in the expression 
ford.. 

In fact, even for relatively small values of Z *a2 the situ- 
ation turns out to be much more favorable. The reason is that 
in a relativistic treatment the matrix element (sl12( V IplI2, 
becomes infinite in the limit of a point nucleus. In the case of 
a finite radius r, for the nucleus this matrix element contains 
a relativistic amplification factor 

d - 
H d  = -$~SOHV$F~~. 2 (2 )  which tends to 1 asZ2a2-0, but even for z2a2 = 0.16 (we 

have Xenon in mind) is significantly different from 1, 
Here R (Xe) = 2.7. This amplification factor, which is singular as 

f Q j ~  a function of r,, is missing from the remaining matrix ele- 
~ . = ( i ~ a , - ) ,  3 1 ? j = ( O  -1  -I) 0 ments. Therefore the compensation for the contributions 

- from the closed p,,, and p3/, subshells leads to the appear- 
Y = Yt yo, f and g are radial wave functions, a,, is a s ~ h e r i -  ance of a multiplier R-1 in the expression for d,, which the 
cal spinor_, j and I are the total and orbital moments of the ofxenon is by no means numerically small, even though 
electron, 1 = 2j - I, a,, = 1/2(yt, yv-y,y, 1, and they, are it vanishes as Za2-0: 
Dirac matrices. We now easily find that the interaction of 
the EDM with the magnetic field has the form: dv- (R-1)Zk2 (mlm,) d. ( 8  

V=-idyH, (3 )  From now on we shall take account of only the term which is 

where is the magnetic field the nucleus with magnetic singular in r, in the expression for the dipole moment of the 
atom. The expression R-1 corresponds to the summation of 

moment M: 
the leading terms in ln(a/2Zr,) in the perturbation expan- 

3 (Mr) r-Mr2 8n 
-- ~6 (r). (4 )  sion for a small parameter Z 2a2. Therefore the accuracy of 

3 such a computation as Z *a2-0 is 

The expression for d,, the atomic EDM induced by the Z2a'/ (R- 1) -1n-' ( a / 2 Z r 0 ) .  (9 )  

872 Sov. Phys. JETP 62 (5), November 1985 0038-5646/E 5/110872-04$04.00 @ 1986 American Institute of Physics 872 



In the real situation, where R-1 k 1, the accuracy is of order 
z2 f f2 .  

The singular matrix element in the operator V is 

Using the identity 

which follows from the radial Dirac equation at small dis- 
tances, we can express the matrix element ( 10) via the ma- 
trix element of the operator yd ( r )  : 

The identity ( 12) holds to within a correction term -Z2a2/ 
4. We note that to this precision the result does not depend 
on the specific method of computing the finite dimensions of 
the nucleus (cf. the calculation of the weak interaction in 
atoms7). The matrix element (sIl2 1 y a ( r )  /p l  12) contains the 
above-mentioned relativistic amplification factor R due to 
the growth of the relativistic wave functions Isll2) and Ip,/,) 
near the nucleus. A straightforward calculation shows that 
the matrix element (s,/,/ V Ip,/,) also contains a relativistic 
amplification factor 

(13) 
This is closer to unity than is R (R,(Xe) = 1.29), since it 
remains finite as r,+O. 

The EDM of the xenon atom, subject to the T-odd inter- 
action of the electron with the nucleons, 

was calculated By comparing the formulae (12) 
and ( 14) we infer that the EDM of xenon, as induced by the 
interaction V, may be derived from the results of 
without further calculation. We now need only to take into 
account the contribution from p,/,-electrons, reducing to 
the substitution R+R - R, =;R - 1; in the case ( 14) of 
pure contact interaction the contribution from thep,/,-elec- 
trons is absent. 

We shall employ this strategy of keeping terms that are 
singular in r,,, also in calculating the EDM of atoms when we 
treat simultaneously the hyperfine interaction 

U= 1 e 1 [ra] M/r3 (15 )  

and the T-odd interaction of the EDM of the electron with 
the nuclear field (cf. ( 2 )  ):  

W=-dyoZE=- - d Z l e l  yo=n. (16) 
r2 

Here 

The EDM of the atom induced by this interaction arises in 
third-order perturbation theory 

where the ellipsis stands for the set of permuted terms. We 
note immediately that the effect 

arising in the second-order approximation has the order of 
magnituded,, -Z -2a2Z ,a2(m/m, )dandmay beneglect- 
ed compared to (8 ) .  

The matrix elements of the operators Uand Vare not in 
themselves singular with respect to r,. One may suspect, 
however, that an r,-singularity arises in sums of the form 

(nIUlk) (k lWIO)  T: Eo-Ek 
(18) 

because of the contributions from high energy intermediate 
states ( k  ) . 

We therefore consider the correction 

,o,=C lk)(klWIO) 

k Eo-Ek 

to the wave function 10) in the region r k  r,. Applying the 
operator H - E, and making use of the completeness condi- 
tion, we easily arrive at the Dirac radial equations for this 
correction: 

Here we have omitted the mass and energy of the electron, 
which are negligible for r - r,, and we have also assumed that 
for small distances we may write the wave function of the 
ground state in the form. 

Here j and I refer to the state 10); we note that the orbital 
moment of the correction 16) is i = 2j - 1. The driven solu- 
tion of (20) has the form: 

The homogeneous solution ry- ' is less singular as r-0 and 
at small distances is negligible. A singular homogeneous so- 
lution r - y - ' appears as consequence of an accurate formu- 
lation of the boundary conditions on the nucleus. However, 
it is significant only in the immediate neighborhood of the 
nucleus, and its relative contribution to the matrix element 
(n 1 U 10) is on the order of Z 'a2/2. 

It is convenient to introduce the effective operator 

873 Sov. Phys. JETP 62 (5), November 1985 V. V. Flambaum and I. B. Khriplovich 873 



By makinguseof (15), (22),and (21) weseethat asr-+Owe 
have pa U/r a l/r3 and the matrix element ( s I I2 /  %' lpIl2) 
diverges as r-0. Using (22) we find, after some simple but 
rather lengthy transformations, 

We can derive this result in another way, using the equations 
for the correction to the wave function that arises from the 
hyperfine interaction. Here the solutions have the form 

We note that the terms in (17) containing the matrix ele- 
ments r between the intermediate states In) and I k ) are neg- 
ligible since these terms have no singularities with respect to 
10. 

By comparing (24) and (12) we see that the contribu- 
tion dominates. The final value of the matrix element of 
the mixture is 

We now note that ( 17) and (5 )  both vanish in the nonrelati- 
vistic limit for closed electron shells. The sum of the Woper- 
ators over all the electrons is proportional to their total spin, 
which is zero in the ground state 10) and in the states r10). 
Thus we again find that the contributions of thepIi2 andp,,, 
electrons cancel. We reflect this by substituting R--tR - 1 in 
the final solution. 

The numerical calculation3 (cf. also [2]  ) yields the fol- 
lowing expression for the EDM of xenon via the coupling 
constants ( 14): 

d (Xe)  =0.41. 10-201elc~~Z. (27) 

By comparing the matrix elements (26) and (14) and the 
result (27) we infer that 

R- I 
d ( lZ9  Xe) =-1.3.10-3 - d=-0.8 .10-3d. 

R 
(28) 

Using the experimental result ( 1) we find the following 
bound on the EDM of the electron 

d= (0,4+1.4) . /el (29) 

The theoretical error in this result arises from the inexact 
calculation of the terms Z 2a2 and from the error in the Har- 
tree-Fok calculations in Ref. 3 which gave rise to the expres- 
sion (27).  Thus the total error in our calculations does not 
appear to exceed 30-40%. 

The bound (28) is several times weaker than the better 
one derived from experiments on cesium and xenon atoms in 
the metastable 3P2 statess9. We note, however, that the auth- 
ors of Ref. 1 intend to increase the accuracy of their results to 
fourth order. 

Ref. 1 discusses the possibility of measuring the EDM 
of mercury, where the effect of T-invariance is remarkably 
large. Using the proportionality of the matrix elements (26) 
and ( 14) and the calculations with the Hamiltonian ( 14) in 
Ref. 2 we find 

d ("'Hg) =-1.4,10-2d. (30) 

With the aid of the V and %'operators we are led from 
I he EDM of the electron to the P- and T-odd dipole moments 
of polar molecules in stationary states with paired electrons. 
'Using the bounds on the constants in the Hamiltonian (14) 
;is derived from experiments with the T I F  molecule'031L we 
Bnd via (26) that 

d= ( 0 , g t  1,3) .  1 0 - ' ~ ( ~ l  .CN. (31) 

This bound is fully comparable with (29),  but the precision 
of the molecular estimate is better than the atomic. 

Because of the hyperfine interaction, an EDM is also 
induced in atoms and molecules with closed electron shells 
by T-odd interactions between the electron and the nucleonL 

In this case the Hamiltonian of the electron-nucleus interac- 
tion is, in the limit for an infinitely heavy nucleon, 

where A is the atomic number. The EDM of the atom arises 
in the third-order perturbation theory with only the need to 
replace Wby HI in a formula of the type of ( 17). Using (25 ) 
for the correction to the wave function due to the HFinterac- 
tion we find the effective matrix element of the mixture 

Here p is the magnetic moment of the nucleus, in nuclear 
magnetons. We find the finite radius r, of the nucleus by 
using a simple model, assuming that the weak interaction is 
concentrated entirely in a sphere of radius r,, and the hyper- 
fine interaction cuts off at a distance much smaller than r,. 
This allows us to neglect the homogeneous solution of the 
inhomogeneous equation for the correction to the wave 
function arising from the hyperfine interaction. In such a 
model, as opposed to the model for the EDM of the electron, 
it is impossible to write an algebraic expression such as Z 2a2 
that will characterize the accuracy of the estimate. Never- 
theless, this simple model appears to be accurate to within 
- 50%. Besides, we can if necessary improve the accuracy 
without too much difficulty, by solving the equation for the 
hyperfine interaction more accurately. Then, using ( 1 ) and 
(27), we find the bound for the constant k ,  

This bound is tighter than the best of the previously 
existing bounds on the constant / k, 1 5.2 . lop4,  derived from 
experiments with cesium and xenon in the metastable 3P2 

a very similar bound is derived from an experiment 
with the T I F  molecule: 

k,= (3+5) .lo-'. (35) 

To obtain a bound for the constants in a single electron- 
nucleon T-odd interaction 
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we may neglect the HFinteraction. In the lowest nonvanish- 
ing approximation with respect to m; ' the corresponding 
Hamiltonian of the electron-nucleus interaction reduces to 
the form 

The matrix element of the mixture is 

The cesium experiment yields 

kSn=  (-0.3f1,l) . 

and the T I F  experiment yields 

k,,= (2.5c3.8) 

The bounds on the constants k ,, and k ,, that are derived 
from other experiments are far weaker than (38) and (39).  

We note in conclusion that the HFinteraction also leads 
to the nuclear spin dependence of the matrix element in the 
T-invariant interaction of the vector electron and axial nu- 
cleon neutral currents. The corresponding effective operator 
(cf. (23), (24),  and (33) )  is 

Here I is the spin of the nucleus, Q ,  -0.55, and A is the 
weak charge of the nucleus. The dimensionless constant x is 
comparable in magnitude with the corresponding constant 
characterizing the coupling of the vector electron and axial 
nucleon neutral currents. It is less by roughly an order of 
magnitude that the contribution from the anapole moment 
of the nucleus, at least, in the case of non-paired protons.'4 

The authors are grateful to 0. P. Sushkov for his excep- 
tionally helpful discussions. 
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