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It is shown that the multiphonon capture of an electron by a deep center is governed over a wide 
temperature range by thermally activated tunneling. The capture cross section is calculated in the 
model of a "zero-radius" center interacting with a single mode of local vibrations. The results 
agree with experiment in terms of both the value of the cross section and its temperature depen- 
dence. An applicability criterion is obtained for the "zero-radius potential" model. 

The capture of a free electron by a deep center in a crys- 
tal should liberate an amount of energy at least equal to the 
binding energy E, of the electron at the center. In a number 
of cases it can be assumed that this energy is given up to 
lattice vibrations.' If ~ ~ , t j W ,  where w is the vibrational fre- 
quency, one speaks of multiphonon capture. Underlying any 
treatment of multiphonon transitions in the concept of adia- 
batic potentials (terms) for the motion of the nuclei. For 
simplicity we assume that the leading role in the formation of 
the terms is played by a single mode of local vibrations. Then 
one can describe the transition with the aid of the configura- 
tion diagram illustrated in Fig. 1. Here the terms U, ( x )  and 
U2(x),  corresponding to bound and free electron states, 
touch at the point x, . (We shall call the configurational co- 
ordinate x the "nuclear coordinate".) The touching, rather 
than intersection, of the curves is a general circumstance. At 
the point x, the electron binding energy ~ ( x )  
= U2 ( x )  - U, ( x )  goes to zero, and the electronic level goes 

into the continuum. It is known2 that near this point 
E ( X )  m (x  - x, )2, corresponding to a touching of the curves. 
This means that in a parabolic approximation the potentials 
U,(x) and U2(x) correspond to different frequencies. 
Nevertheless, in the standard model usually used to study 
multiphonon capture U, ( x )  and U2 ( x )  are represented by 
identical parabolas displaced relative to each other (here the 
curves do not touch but intersect). This model has the at- 
tractive feature that the overlap integral of the vibrational 
wave functions, which determines the leading exponential 
dependence of the transition probability on the parameters 
of the problem, can be evaluated e ~ a c t l y . ~  We shall refer to 
this model as the Huang-Rhys model. 

Regardless of the form of the potentials U,(x) and 
U,(x), at sufficiently high temperatures the leading expo- 
nential in the capture cross section will have activational 
character u cc exp ( - &,/kT) with an activation energy E,  

equal to the vibrational energy in the potential U2(x) at the 
point of contact of the terms. At  low temperatures the transi- 
tion is governed by t ~ n n e l i n g . ~ . ~  We show below that the 
temperature region corresponding to a purely activational 
transition is usually inaccessible in practice for deep centers. 
In the actual temperature region the nature of the transition 
is one of thermally activated tunneling. With increasing vi- 
brational energy the probability of the thermal excitation 
falls off exponentially, while the tunneling probability in- 

creases exponentially. The characteristic energy Eo at which 
the transition occurs (the saddle-point energy) is deter- 
mined by the competition of these two processes and de- 
pends on the temperature. We show in this paper that in 
practice the energy Eo is always lower than the energy E,. 
This lets on calculate the tunneling probability by a quasi- 
c la~sical ,~~ '  with the aid of which a result can be obtained for 
any form of the potentials U, ( x )  and U2 (x ) .  

In this paper (in a model described below) we obtain an 
expression for the power of the tunneling exponential as a 
function of the vibrational energy. By averaging the tunnel- 
ing transition probability over the equilibrium distribution 
of the vibrations we find the temperature dependence of the 
saddle-point enrgy Eo and the power @ of the leading expo- 
nential in the capture cross section: acc exp( - @). The ef- 
fective activation energy, given by the expression kT2(d@/ 
d T ) ,  turns out to be substantially small than the energy E,. 
The temperature dependence of the exponent @ and of the 
activation energy is shown in Figs. 2 and 3. 

The dependence of the capture cross section on the 
binding energy E, of an electron at the center is often dis- 
cussed in the literature (the "energy-gap law"; see, e.g., Ref. 

FIG. 1.  General scheme of  the adiabatic terms: 1 ) U ,  (x ) ,  2 )  U 2 ( x ) ;  xC is 
the point o f  contact o f  the terms, x,  is the displacement of  the equilibrium 
position, E ,  is the thermal ionization energy, E ,  is the energy of  the lumi- 
nescence quantum, cop, = E= + AE is the optical ionization energy, E is 
the energy for which the probability o f  the tunneling transition is calculat- 
ed, and a ,  and a,  are the turning points. 
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FIG. 2. Dependence of the power @ of the exponential in the capture cross 
section versus the inverse temperature for various values of the parameter 

8 ) .  It should be emphasized that the transition probability is 
not directly related to E ,  but is determined by the behavior 
of the potential curves in the region above the saddle-point 
energy E,,. A direct connection between the transition prob- 
ability and E ,  arises only when some concrete model used, 
and the actual relation will depend on the choice of model. 

We consider a model in which it is assumed that the 
electron binding energy is given by ~ ( x )  a ( x  - x, ) 2  over a 
wide interval of x values including both the point of contact 
of the terms (x, ) are both equilibrium positions (the mini- 
ma of the potential curves). This means that the "zero-radi- 
us potential" model is used at all values of the nuclear coor- 
dinate right up to the equilibrium value. Such an 
approximation is justified if the depth of the impurity poten- 
tial well for an electron at the center is large compared to the 

energy E , .  The potential energy of deformation is assumed 
to depend harmonically on x .  Then the terms are parabolas 
with different equilibrium positions and different vibration- 
al frequencies. 

If the level and the band edge have different symmetry 
types, the distortion of the terms due to their touching can 
occur only in a small neighborhood of the contact point. 
Then, for a weak electron-phonon coupling the usual 
(Huang-Rhys) model of two displaced parabolas with the 
same vibrational frequencies becomes justified. We have 
mad a comparison of these two models. It turns out that the 
temperature dependence of the capture cross section in the 
case of weak coupling is the same for the two models, but the 
value of the cross section is different. This is because the 
temperature dependence of the cross section is determined 
by the behavior of the terms in the region of the saddle-point 
energy, where the potential curves for the two models practi- 
cally coincide, describing identical parabolas displaced ver- 
tically by E,.  The value of the cross section, on the other 
hand, is determined by the behavior of the terms over the 
entire region above the saddle-point energy up to the point of 
contact of the terms. We note that for weak coupling the 
point of contact of the terms lies in the region of very high 
vibrational energies, where the behavior of the terms can be 
distorted by anharmonicity, and neither model is reliable for 
determining the magnitude of the capture cross section. 

1. EXPONENTIAL DEPENDENCE OF THE MULTIPHONON 
TRANSITION PROBABILITY 

The problem of multiphonon capture separates into two 
parts: calculation of the transition probability P(E)  at a 
fixed system energy E, and the averaging of this quantity 
over the energy distribution of the vibrations. Let us begin 
with the first part of the problem. 

To calculate the transition probability we must deter- 
mine the perturbation that causes the transition. This per- 
turbation could be either the nonadiabiticty operator (if the 
transition is caused by the same local vibrations that form 
the terms) or the interaction of the electron with other local 
or lattice vibrations (with the so-called activating mode9). 
In addition, we need to know the adiabatic electronic wave 
functions of the initial and final states. However, both the 
choice of perturbation and the form of the electronic wave 
function will affect only the pre-exponential factor in the 
expression for the transition probability. The leading expo- 
nential is determined by the overlap of the vibrational wave 
functions corresponding to the two terms between which the 
transition occurs. If the transition probability is written in 
the form 

the argument of the exponential can be determined by the 
Landau m e t h ~ d , ~  with the that s  is given as the 
difference 

FIG. 3. Effective activation energy E, as a function of the inverse tempera- 
ture at various values of8: 1) 0.05; 2 )  0.10, 3)  0.25, 4)  0.50, 5 )  0.99. 

( 2 M )  7 
s-sa-st; S i  - - 

tt 
[U,(X)-El"'  d x ;  i=l, 2, ( 2 )  

(11 

where M is the mass of the nucleus, s ,  and s, are the argu- 
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ments of the tunneling exponentials corresponding to the 
tunneling of the nucleus in the potentials U, (x)  and U,(x) 
from the turning points a ,  and a, to the point of contact (x, ) 
of the terms." It follows from expression (2)  that s is deter- 
mined solely by the behavior of the potential U, (x)  above 
the minimum of the term U2(x). The behavior of U, (x)  
below this minimum and, in particular, the value of the ioni- 
zation energy E, do not directly influence the value of the 
tunneling exponential. 

Let us consider in more detail the behavior of U,(x) 
and U2(x ) . The potential U2 (x)  , which corresponds to the 
absence of an electron in the center, can be assumed harmon- 
ic 

U2 (x) =1/2.Mo22x2. (3)  

The potential U, (x)  differs from U2(x) by the electron bind- 
ing energy ~ ( x )  : U(x) = U,(x) - ~ ( x ) .  This energy should 
be determined from the Schrodinger equation for the elec- 
tronic wave function T ( r )  at a fixed value of the nuclear 
coordinatex. If we assume, as is customary, that the interac- 
tion energy with the local vibration is proportional to x, the 
Schrodinger equation will be of the form 

where V(r) is some function of the electronic coordinates. 
The value of V(r) is of the order of an atomic quantity. How- 
ever, one often considers the case of weak coupling, when 
V(r) is anomalously small. In this case the energy ~ ( x )  can 
be found (for sufficiently small x )  by perturbation theory: 

where E, is the binding energy in the absence of the elec- 
tronic-vibrational interaction, V,, is the matrix element of 
the operator V(r) on the unperturbed wave function. Then 

where - x, and E, are the equilibrium position of the oscil- 
lator and the thermal ionization energy of the center with 
allowance for the electronic-vibrational coupling: 

Obviously formulas (7 )  are valid if x,V,,g~,, i.e., if AE is 
small compared to E, (AE is the difference between the opti- 
cal and thermal energies; see Fig. 1 ). However even in this 
case formula ( 5  ) and thus formula (6)  are manifestly inval- 
id in the region of the contact point x, of the terms, where 
E ( X )  goes to zero. 

Near the contact point, as we have said, it follows from 
general considerations that ~ ( x )  a (x  - x, )'. We find 

where B is a dimensionless constant. Then near the contact 
point we can write the potential U, (x )  in a form analogous 
to (61, 

by the formal introduction of the variables 

A model exists in which formula (9)  gives the behavior 
of the terms over the entire region from the displaced equi- 
librium position - x, to the point of contact of the terms. 
This is the case in which the binding energy of the electron is 
much smaller than the depth of the potential well over the 
entire region indicated. Then the "zero-radius" or "point" 
potential model is valid, and E is proportional to (x - x, ) 
over the entire range ofx.' In this model ET = E,, 2, = x,. If 
we introduce a constant p as before [by formula (8) 1, then 
formulas ( 10) relate fl to the actual physical quantities. In 
particular, the difference between the thermal and optical 
ionization energies is related toPby AE = P( 1 - P) -'E, . If 
the electron-phonon interaction is taken in the form x V(r), 
then@ is related to the matrix element Voo appearing in (5) 
and ( 7 )  by the relation P = V &  / 2 M 4  E,. We note that this 
model has meaning only for P <  1, since for P) 1 it does not 
give a stable equilibrium position for a nucleus with a bound 
electron [for p >  1 the potential U,(x) is an inverted pa- 
rabola]. However, in the region which is important for the 
tunneling transition potential (9)  can have meaning even for 
P) 1, i.e., for w: (0, but such a behavior cannot, of course, 
extend as far as the equilibrium position. 

Calculating s, and s, by formulas (2) with potentials 
( 3 )  and (9) ,  we get 

Energy E, is the activation energy for a transition from term 
2 to term 1 (see Fig. 1 ) . It is related to Z, by the expression 
E~ = ( 1 - P)P -'ST. For P) 1 the energy b, is negative. 

For tunneling from the bottom of term U2(x) (for 
E = 0)  we have 

Formulas ( 12) express the power of the tunneling exponen- 
tial describing the transition from term 2 to term 1 at zero 
temperature in terms of the activation energy for this transi- 
tion. The coefficient a varies from 0 (for P+O) to 2 (for 
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0-a) and i sequa l to2 /3a tP=  1. 
Let us rewrite formula ( 12) for P< 1 in another form, 

expressing s in terms of E,, which has the meaning of the 
thermal ionization energy of the zero-radius potential model 
(hereafter, since we always have this model in mind, we have 
dropped the tilde over ET ) : 

E T 2 I+ (1-p)'" 
2s = - al;  al = --- In - 2; PG.1. 

Am2 (1-PI'" P'" 
(13) 

As a rule, energies E, and ET are large, and the case of 
practical interest is E(E,,E,. In this case formulas ( 11 ) give 
for the power of the tunneling exponential 

If the constant is small, then &,BE,, and it makes sense to 
generalize formula ( 14) to the case of an arbitrary relation- 
ship between E and E, (but for E<c2) .  For this case formu- 
las ( 1 1 ) give 

Let us compare these formulas with those given by 
Huang-Rhys model. A calculation of the exponent 2s with a 
potential U,(x) corresponding to (6 )  will, of course, yield7 
the Huang-Rhys result for the power of the exponential 
(asymptotically for E,B&,). For E = 0 this result (given, 
e.g., in Ref. 8 )  is of the form 

The constanto ' is introduced in such a way that the relation 
between E= and E~ is expressed in terms of this constant in 
the same way as in the zero-radius potential model. This 
constant is related to the "polaron shift" AE b y p  ' = ~E,AE/ 
( E ~  + A&),. For weak coupling P'< 1, and for E(c2 the 
power of the exponential for the Huang-Rhys model is given 
by 

E T 4 ET ET+E E ET+E 
2s=-Iny--In---In- 

E T  A o ,  E * 

(17) 
AmZ eP fro, 

Comparing ( 17) and ( 15), we see that the Huang-Rhys 
model and the zero-radius potential model lead to the same 
energy dependence of the exponent 2s. However, there is a 
difference in the constant term (the factor in the logarithm 
in the first term), which leads to a difference in the value of 
the transition probability. We note that result (17) can be 
obtained, under certain assumptions, by perturbation theory 
(see Appendix 1 ) . 

2. CALCULATION OF THE CAPTURE CROSS SECTION 

The capture cross section under equilibrium conditions 
is determined by the probability for a transition from term 

U ,  to term U2 on the average over the equilibrium distribu- 
tion of the vibrations in term U,: 

En= (n+'/,) Am,; I'(E,,) =B e s p  [-2s ( E , ) ]  . ( 18) 

In the sum for (P ) the leading contribution is from the terms 
which have the minimum value of the exponent 

We define the saddle-point energy E, by the condition 

where z, and z, are defined in ( 1 1 ) . 
At small E, ( E o ( ~ T , ~ 2 )  we can use formula ( 14) for s 

to obtain the the simple expression 

If Eo(&, ("low" temperatures), we need keep only the 
first term (with n = 0 )  in the sum of (P ) .  On the other hand, 
if E o > h 2  ("high" temperatures), the sum in (18) can be 
replaced by an integral, since it can be shown that the adja- 
cent terms in the sum differ only slightly from one another in 
the important region of energies En WE,. We see from (32) 
that E0)h2  when 

Since it is assumed that E ,  )+b2, the "high-temperature" 
region begins even for k T  < h 2 .  Then (P ) and thus the cap- 
ture cross section a are proportional to exp ( - @), where @ 
denotes the value of @ ( E )  at the saddle-point energy 
E = E,. Figure 2 shows @ as a function of the inverse tem- 
perature for various values of the parameter 8 .  The curves 
were calculated using formulas ( 19) and ( 11) with E equal 
to the saddle-point energy E, found by solving transcenden- 
tal equation (20).  

At small values o f 0  the saddle-point energy, while larg- 
er than E ~ ,  can still remain much smaller than E ~ .  Under 
these conditions ( 8<1,  E,<E,) we can obtain an explicit 
expression for E, using formula ( 15 ) : 

Then, according to ( 19) and ( 15), the power of the expo- 
nential in the capture cross section is of the form 

The values of @ calculated with this formula are plotted as a 
function of the inverse temperature in Fig. 2 (curve 1 ) . 

If the temperature increases so much that E, becomes 
comparable to the activation energy, the temperature depen- 
dence of the capture cross section becomes activational; 
u a exp( - w,/kT) . For f ig 1, formula (22) implies that E, 
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FIG. 4. Saddle-point energy E, versus the inverse temperature for various 
values ofb: 1) 0.1, 2 )  0.4, 3 )  0.9. 

approaches E, for k T >  h,//?. Such temperatures are appar- 
ently unattainable in practice. Figure 4 shows a plot fo Eo/&, 
from (20) as a function the inverse temperature for various 
values of ,&. 

One can introduce an effective activation energy 
E, = kT '(d@/dT), which characterizes the slope of the 
curve of In a versus 1/T, without taking into account the 
temperature dependence of the pre-exponential factor. A 
plot of E, ( T )  is shown in Fig. 3. It is seen that E, remains 
smaller than e, at all temperature of interest, and the activa- 
tional behavior is not attained. 

The capture cross section can be written in the form 

To evaluate the pre-exponential factor A we need to choose a 
concrete form of the perturbation causing the transition and 
a specific dependence of the electronic wave function $ on 
the nuclear coordinate x .  Let us take the perturbation to be 
the nonadiabaticity operator. Adiabatic perturbation theory 
generally does not give the exact result (see, e.g., Ref. 1 I ) ,  
but it does give the correct power of the exponential and 
usually the correct order of magnitude of the pre-exponen- 
tial factor. For our problem we can verify this directly in the 
limiting cases (see Appendix 2) .  

The dependence of $ on x has been discussed in many 
papers. A summary of these discussions is given by Huang. '* 
The earlier papers used the electronic wave functions ob- 
tained in the first order of a perturbation theory in the elec- 
tron-phonon interaction from Eq. (4) .  LaxI3 called this the 
Condon approximation. Kovarskii and co-workers first 
pointed out that this approximation leads to an underesti- 
mate of the transition probability and proposed another (the 
so-called non-Condon) approximation. In a somewhat 
modified form due to Ridley,14 this approximation consists 
of the inclusion of the diagonal (in the electron states) part 
of the electron-phonon interaction in the electronic Hamil- 
tonian. The electronic wave functions are found in the first 
order of a perturbation theory in the remaining off-diagonal 
part. Huang12 showed that the non-Condon approximation 
is completely equivalent to the so-called static-coupling 

model. l5.I6 He also showed that this approximation gives the 
correct answer to first order in the off-diagonal part of the 
electron-phonon interaction. 

For obtaining the correct pre-exponential factor, how- 
ever, this approximation is insufficient (see Appendix l ). 
The transition matrix element contains an integral of a high- 
ly oscillatory function of the nuclear coordinate x .  In this 
case what is most important is the behavior of the integrand - 
in the complex x plane in the neighborhood of the point of 
contact of the terms,6 where the binding energy of the elec- 
tron goes to zero. Perturbation theory in the electron- 
phonon interaction cannot be used to describe the behavior 
of the electronic wave function near this point. Here, how- 
ever, the zero-radius potential approximation, which de- 
scribes a shallow level in a deep potential well and the contin- 
uum states in the presence of this level, applies very well. The 
suitability of the zero-radius potential model for treating 
nonadiabatic transitions froma discrete level to the contin- 
uum was first pointed out by Demkov and Devdariani'' in 
connection with the problem of the detachment of an elec- 
tron from a negative ion during collisions. This approxima- 
tion was actually used by Morgan" in the problem of multi- 
phonon capture, but in that study the transition matrix 
element was determined only by computer calculations. 

Using the zero-radius potential model, we get the fol- 
lowing expression for the pre-exponential factor (see Ap- 
pendix 2) : 

x sh (*) (1-zo) "[I- ( 1 - p ) ~ ~ l ~ ' ~  -. 
2kT {z,'" ln[ (l+z,'")/(l-z,'") ' (25) 

Eo go, kT 
z o = l  --, c,=(~-p)e,p-l, A, =-----(-I 

Ez N , ( v >  Am2 

where E, is the saddle-point energy, N, is the effective den- 
sity of states in the band from which the capture occurs, ( v )  
is the average thermal velocity of a free charge carrier, and g 
is the degeneracy of the level. Using the standard expression 
for N, and for ( v ) ,  we obtain the following formula for A,: 

n2g A A , = - -  
2n mo,  ' 

where n is the number of valleys in the band and m is the 
effective mass of a charge carrier. For,&< 1 the expression for 
A can be written in explicit form with the aid of (22): 

3. COMPARISON WITH EXPERIMENT 

The formulas for the capture cross section [ (24)-(26), 
( 1 1 ), ( 19), (20) 1 contain three parameters of the center: 
ET, 02, and p. The thermal ionization energy E, can be 
determined from Hall measurements or by capacitive spec- 
troscopy. The constant /? characterizes the difference in the 
frequencies of the local vibrations in the absence and in the 
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presence of an electron at the center: wi - o: =Po:. From 
the photoionization data one can determine the optical ioni- 
zation energy E,,, , and from impurity-band luminescence 
measurements one can determine the luminescence quan- 
tum E,. It is easy to see that the constant 0 is expressed in 
terms of these data through the formula 

This relation is valid regardless of whether the terms touch 
or intersect. If they touch, then there should be one more 
relation among the parameters: 

Comparing (28) and (29),  we get the relation 

which can be regarded as an applicability criterion for the 
zero-radius potential model. Actually relation (30) is infor- 
mative when E,,, and E ,  are not too different from E,. In the 
Huang-Rhys model, in which the frequencies are the same, a 
different condition from (30) should hold: cop, + E, = 2 ~ , .  
If E,,, and E, are close to ET, this condition means that the 
electron-phonon coupling is weak. In this case the two mod- 
els are indistinguishable. 

Let us consider as an example the 2 state of oxygen in 
Gap; this state has been studied in detail by Henry and 
Lang.' The values obtained for the thermal and optical ioni- 
zation energies of an electron from this level to the conduc- 
tion bandare&, = (0.89 1 0 . 0 6 )  eV,&,,, =: 1.95 eV. Instead 
of E,, Henry and Lang give the values of the optical ioniza- 
tion energy EP,,, for the ejection of a hole from the center into 
the valence band. According to Ref. 1, c ,  = E, - E:,, . The 
data of Ref. 1 yields E, = 0.41 eV (all the energies are taken 
at 400 K ) .  Then we obtain identical values for E, and 
(E,,,E, )'I2, close to 0.9 eV. The coincidence of these values 
argues in favor of our adopted model. From (28) and (29) 
we find0 = 0.55. The terms constructed from these data in 
Ref. 1 actually do touch each other and correspond to differ- 
ent vibrational frequencies w: - @: ~ 0 . 5 6 w i  However, the 
shape of the terms (Fig. 13 of Ref. 1 ) implies that o2 = 0.7 
eV (the formula E~ = ( 1 - -' implies that E, = 0.73 
eV.) This result is in sharp disagreement with the data on the 
capture cross section if it is assumed that the multiphonon 
transition has an activational character. However, if it is tak- 
en into account that the nature of the transition is one of 
thermally activated tunneling, then the scheme of terms con- 
structed in Ref. 1 can be made consistent with the data' on 
the capture cross section. Figure 5 shows the theoretical 
curve of a = A exp( - @ )  as a function of inverse tempera- 
ture, together with the experimental points from Ref. 1. In 
the calculation we took, in accordance with the experiment,' 
E~ = 0.89 eV, 0 = 0.55. The energy of the vibrational quan- 
tum h2 and the pre-exponential factor A, were adjustable 
parameters. The values adopted were h2 = 280 K and 
A, = 1 . 4 ~  10-l3 cm2. A calculation using formula (26) 
gives A, = 2 . 5 ~  10-l3 for g = 2, n = 3, and m = 0.36 (the 
density-of-states mass). 

FIG. 5. Approximation of the experimental data on the capture cross 
section by the formula o = A exp( - @): 0) oxygen, state 2 in Gap, '  A) 
B level in GaAs.I9 The curves are calculated for: 1 )  E ,  = 0.89 eV, 
8=0.55 ,  fwiw,=280 K, A,=1.4.10-l3 cm2; 2 )  ~ , = 0 . 8  eV, / ? ( I ,  
fw ,  = 500 K ,  A exp( - @,) = l o p 2 '  cm2. 

Thus, both the temperature dependence and the value 
of the capture cross section can in fact be made consistent 
with the theory by means of a single adjustable parameter- 
the frequency of the local vibrations. 

There are also data on the capture of electrons over a 
wide temperature range for the so-called B level in GaAs ( a  
natural defect) .',19 Measurements of the thermal and optical 
ionization energiesI9 indicate that ,6 is small for this center 
(0-0.1). Figure 5 shows the calculated curve of 
u =A exp( - Q )  corresponding to the limit of small0 (the 
values of 0 correspond to curve 1 in Fig. 2 ) ,  together with 
the experimental points from Ref. 19. Agreement is reached 
forA exp( - @,) z cm2, where @, is the value of @ at 
T = 0 K, h, = 500 K, E, = 0.8 eV. The measured ~ a l u e ' ~ ' ~  
is eT = 0.79 eV. Estimates of A exp( - @,) made with the 
aid of formulas (27) and (23) are extremely sensitive to the 
value o f p  A value - lo-" cm2 is obtained forpz0.2-0.3.  
As we mentioned back in the Introduction, estimates of the 
cross section for small 0 are unreliable. 

In conclusion we note that both the value of the multi- 
phonon capture cross section and its temperature depen- 
dence are extremely sensitive to the parameters of the center. 
Therefore, estimating the cross section with the aid of the 
theoretical formulas by proceeding from plausible approxi- 
mate values of the parameters may not give even the correct 
order of magnitude (for example, changing the frequency of 
the local vibrations by 10% can change the estimates by sev- 
eral orders of magnitude). On the other hand, the measured 
values of the capture cross section can be used to recover the 
parameters of the center and to check their reasonableness 
and agreement with the data of other experiments. 

We are grateful to M. K. Sheinkman, who in large mea- 
sure stimulated this study. 

APPENDIX 1 

Perturbation-theory derivation of formula (17) 

We obtain formula (17) by using perturbation theory 
to consider a process in which N = ~,/h, phonons are 
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created and the electron goes from state 1 to state 0. We 
introduce a dimensionless coupling constant G by proceed- 
ing from the relation Vo+ = G h 2 ( b  + + b) ,  where b + and 
b are the phonon creation and annihilation operators. Since 
x = (b + + b) ( f i / 2 ~ w , ) " ~ ,  we have 

We take into account only that term of the perturbation se- 
ries for which there is an electron there is an electron bound 
to the center in all the intermediate states and for which very 
virtual transition is accompanied by the emission of a 
phonon. Then the matrix element of the N th order perturba- 
tion series will contain a factor ( G & I , ) ~  and ( N  - 1 ) ener- 
gy denominators of the form E~ - h 2 ,  E~ - 2 h 2 ,  ..., 
- ( N  - 1 ) h 2 .  The product of these denominators is 

equal to " ( N  - 1 )!. In addition, the matrix ele- 
ments of the creation operator give factors of nfi...@. 
The leading exponential in the expression for the probability 
of a transition involving the emission of Nphonons will thus 
be governed by a factor GZN/N !. Using Stirling's formula, we 
find that 

Substituting into this expression the value of G from ( 1.1 ) 
and using (7) ,  we find that P=: exp( - 2s ) ,  where s is deter- 
mined exactly by formula ( 17) for E = 0. 

Let us now consider an N-phonon emission process un- 
der the condition that there are N, = E /h2 phonons in the 
initial state. Then the factor originating from the matrix ele- 
ments of the creation operators will be 
JmJm...dm and, consequently, the prob- 
ability of this process will differ from the probability for 
E = 0 by a factor of ( N  + N,)!/N !N,!. We then obtain for- 
mula ( 17) for the power of the exponential of the transition 
probability. 

Let us now consider the terms we have dropped from 
the perturbation series. Among these is a term which, for 
example, contains a factor V o , V , d 2 h 2  instead of 
V & / ( E ~  - 2 h 2 ) .  It is clear that this term cannot be 
dropped if s0(h2. Hence we see that it is incorrect to keep 
only the first term of the expansion in the off-diagonal ele- 
ments of the electron-phonon interaction (as is done in the 
non-Condon approximation), at least for determining the 
pre-exponential factor. 

APPENDIX 2 

Calculation of the pre-exponential factor in the capture cross 
section 

It is convenient to first calculate the thermal-ionization 
probability ( W )  and then fo find the capture cross section by 
using the principle of detailed balance: 

where g is the degeneracy of the level, Nc is the effective 
density of states in the band, and ( v )  is the average velocity 
of the electron. Let us calculate the matrix element of the 

nonadiabaticity operator between states 1 ( a  bound electron 
and the nucleus) and K ( a  free electron with wave vector K 
and the nucleus ) : 

Here MK is the electronic matrix element, $, and $, are the 
electronic wave vectors, which depend on x as on a param- 
eter. The second-derivative term in the nonadiabaticity op- 
erator has been dropped [it is smaller than other terms by a 
factor of (m/M)"2]. The wave functions p, and p, are 
quasiclassical functions describing the motion of the nucleus 
(with the same energy E) in the potentials U,(x) 
- - U2(x) - E(X)  and U, (x )  = U2(x) + E , , where E(X) 

and EK = fi2K 2/2m are the binding energy of an electron at 
the center and the energy of a free electron in the band, re- 
spectively, and U2(x) is the potential energy of the nucleus 
in the absence of an electron. The integration in the first of 
formulas (2.2) can be done from - co to a point x ,  lying 
between the turning point a, and the point of contact of the 
terms, x,, since the discarded part of the integral is propor- 
tional to the product of the tunneling exponentials, whereas 
the integral itself is proportional to their ratio (see below). 
The answer does not depend on the choice of the point x ,  in 
the indicated interval. The integral V,, can be evaluated by 
the Landau method (Sec. 5 1 of Ref. 6) ,  whereby the func- 
tion p, is broken into two parts: p, = p : + p ; (respec- 
tively V,, = V + V, ) and the integration contour for 
V & is displaced into the upper half-plane of the complex 
variable x. The saddle point x, is determined by the condi- 
tion U, ( x )  = U, (x ) ,  i.e., E(X, ) = - E,. This point is 
close to the point x, [the point of intersection of the terms 
U,(X) and U2(x) 1, which is determined by the condition 
E(X, ) = 0. 

The electronic wave functions near the point x, are of 
the form 

where ?t = ( 2 m ~  ( x )  ) 'I2/fi. R is the radius of the normaliza- 
tion sphere, and ~ ( x )  is given by (8 ) .  Evaluating MK,  we 
obtain the expression 

from which we see that the electronic matrix element has an 
anomaly right at the saddle point. It can be shown that 
E~ - E)E, , where E, = [ 4 ~ :  (&II)~/~ ] 'I5, the width of the 
saddle is larger than x, . Then we can take the point x = xc 
as the saddle and evaluate the integral V & over contour Cin 
Fig. 6. The part of the contour between x ,  and x, falls out of 
the sum V & + V,. As a result we obtain 

x exp (2s,-2s,), (2.4) 
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O a, a, x~ K, Rex  

FIG. 6 .  Integration contour for evaluating V &. The solid line is the origi- 
nal contour; the dashed line is contour C. 

where si is given by (2) .  
To obtain the probability of thermal ionization from the 

level E, the transition probability expressed by the usual per- 
turbation-theory formula must be summed over all the final 
states [i.e., over all values of K in the normalization sphere 
and over all energy levels E, of the oscillator with potential 
U2(x) 1. The result is 

where s,(E2) is given by (2)  with E, in place of E. The 
energy E differs from E2 by the energy of the escaping elec- 
tron. Expanding s, ( E,) in powers of ( E  - E,) and keeping 
the first two terms, we get 

The quantity T can be interpreted as the tunneling time 
(from the turning point to the point at which the terms 
touch) in the potential U,(x) at energy E. The energy of the 
electrons escaping on thermal ionization is thus of order fi/r. 
By averging W(E) over the vibrational energy in the initial 
state with the equilibrium distribution function 

f,=2 sinh ( f i o i / 2 k T )  exp [- ( E + E = ) / ~ T ] ,  

we obtain ( W )  and, using (2.1 ), the expression for u given 
by (24) and (25) in the main text. We note that since the 
width of the saddle in the sum over E is greater than fiw, for 
E,>fio,, the sum over E and E2 in the calculation of 
( W(E)) can be replaced by an integral. 

Let us also give the formula for W(E) obtained from 
(2.5) upon the replacement of the sum by an integral, and 
with allowance for (2.6) : 

ez"+ ( e z - E )  'b -5 
x [ l n  ] e x p ( - 2 s l .  

ezlb- ( e 2 - E )  'I> 
(2.7) 
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Usually values EN&, are important, but it is interesting to 
note that for E close to E~ ( E ,  - E<E,), formula (2.7) gives 

which, up to a factor of 16/27, agrees with the result ob- 
tained by Demkov and Devdarianil' using a completely dif- 
ferent method. Those authors considered the liberation of an 
electron during the classical motion of the nucleus in the 
field of a constant force F. Near the touching point, where 
the force F = - dUl/dx = - dU,/dx is the same for both 
terms, this formulation of the problem is obviously justified. 
It was learned in Ref. 17 that the region of nonadiabatic 
behavior of the electron encompasses an interval of nuclear 
energies E of the order of 

around the value E = E,. For E = c2 the turning point of the 
nucleus coincides precisely with the point x, at which the 
electron binding energy ~ ( x )  goes to zero. According to Ref. 
17, for E = E, the probability that an electron will be liberat- 
ed in a single transition is 0.62, for E - E,)E, this probabil- 
ity tends toward unity as 1 - ~/161;1 / 5 / 2 ,  and for&, - E)E, 
it is given by formula (2.8) without the factor ( 16/27) (a,/ 
27r). We note that the parameter has a simple physical 
meaning. It is the ratio of two times: the time tl  
= (2M I E - E,  / ) ' I2  1 F / over which the nucleus traverses the 

distance from the point x, to the turning point (the tunnel- 
ing time if E <&,) and the time t ,  = fi/e(x) over which the 
electron traverses a distance of the order of the width of its 
wave function at the turning point. Of course, the adiabatic 
approximation is valid for lil 1 s 1. 

For E close to E*,  when the transition probability is 
large, one might wonder i f f  (E )  is different from the equi- 
librium function f,. Such a difference could arise on account 
of the departure of the electrons from the bound state, lead- 
ing to a depletion of the distribution near EzE,. In order for 
there to be no depletion, the processes which establish ther- 
modynamic equilibrium in the vibrational subsystem must 
be sufficiently intense. The role of these processes is played 
by the interaction of the local vibrations with the lattice 
phonons. It can be shown that f (E) will not differ from the 
equilibrium distribution if 

where y is the damping coefficient of the local vibrations. 

"Formula ( 2 )  refers to the case when the energies of the initial and final 
states are the same. If the transition is caused by an activating mode, this 
corresponds to the neglect of the energy of the corresponding phonon. 
Allowance for the energy of the activating phonon tiw, would mean that 
the expressions for s,  and s, would be taken at different energies 
E l  = E, tiw, and the point of contact x, of the term swould be the 
point at which U, - E l  = U, - E,. 
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