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Dynamical systems (billiards) corresponding to the inertial motion of particles in a two-dimen- 
sional region with elastic reflection from its boundary are considered. Depending on the structure 
of the boundary, the billiards display substantially different types of behavior, ranging from 
integrable to chaotic. Estimates of the decay of the time correlations of the phase functions are 
obtained for different classes ofbilliards with chaotic behavior. In this case the asymptotic form of 
the correlations is always found to be nonexponential. The asymptotic form of the diffusion 
coefficient for a periodic Lorentz gas is calculated in the limits of high and low density. The 
question of the relationship between the rates of decay of correlations in dynamical systems with 
discrete and continuous time is discussed. 

1. INTRODUCTION 

There has recently been a considerable growth of inter- 
est in the study of dynamical chaos, by which is meant that 
type of behavior of completely deterministic systems (in the 
absence of random noise and fluctuations) in which their 
motion is indistinguishable from random motion, i.e., is ex- 
tremely irregular and unpredictable. Models displaying 
such behavior have been discovered in practically all areas of 
physics, and their number is continuously increasing.'-" 

In the study of such systems two fundamental questions 
arise: What is the mechanism of the stochastic motion of the 
given system, and what statistical properties does the motion 
possess? In all model systems, by the mechanism of the sto- 
chastic motion we mean a local-instability mechanism that 
causes initially close trajectories to diverge sufficiently ra- 
pidly in the phase space with the passage of time. As a result, 
a prediction of the evolution of such a system can be only 
statistical, since the state of the system after a long time de- 
pends on unimaginably subtle features of the initial state. It 
is clear that the presence of such a (local) instability is a 
necessary condition for stochasticity of the system. 

In respect of the statistics of the chaotic motion of a 
dynamical system it is not possible to formulate any single 
property that would characterize the system completely or 
sufficiently exhaustively. Dynamical systems have a large 
number of different statistical properties that cannot be ar- 
ranged into a chain of mutually amplifying proper tie^.'.^ In 
particular, there does not even exist a generally accepted 
definition of a system with chaotic behavior. The absence of 
a unified terminology is partly connected with this. There- 
fore, it is appropriate to stipulate that by a dynamical system 
with chaotic behavior we shall mean either a conservative 
(the phase volume is invariant with respect to the dynamics) 
system for which the correlators of the (nonpathological") 
phase functions tend to zero at large times, or a dissipative 
system for which almost all (with respect to the phase vol- 
ume) trajectories tend to (one or more) stochastic strange 
attractors. According to the customary definition of a sto- 
chastic a t t r a ~ t o r , ~  in such systems the correlations also de- 

cay with time. Thus, we shall regard as chaotic a dynamical 
system in which the time correlations are decoupled. For 
conservative systems this property (which in ergodic theory 
is called mixing) is equivalent to the fact that a nonequilibri- 
um distribution (absolutely continuous with respect to the 
phase volume) tends in the course of time to an equilibrium 
distribution, i.e., in systems with mixing the fluctuations re- 
lax. In dissipative systems fluctuations can encompass do- 
mains of attraction belonging to different attractors. There- 
fore (if there are at least two attractors), in such systems 
there is a whole family of natural equilibrium distributions. 

One of the basic problems arising in the study of sys- 
tems with mixing is that of estimating the rate of decoupling 
of the correlations. A slow (power-law) decay of correla- 
tions was discovered a comparatively long time ago in nu- 
merical experiments for a gas of hard spheres, and later also 
for other models of statistical mechanics.' Nevertheless, un- 
til now it has been customary to assume4 that in dynamical 
systems with chaotic behavior the time correlations should 
(in every case, as a rule) decay at an exponential rate. One of 
the aims of this paper is to show that this is not so, or, is not 
entirely so in every case. 

The paper has a further aim: The study of specific phys- 
ical systems with chaotic behavior is always based on a sys- 
tem of model ideas concerning the mechanisms of the sto- 
chasticity of the dynamical systems. With some specific 
mechanism (model) in mind, one makes approximate quali- 
tative estimates which are then compared with the results of 
a numerical calculation. But the model ideas are determined 
by the set of examples of dynamical systems with chaotic 
behavior that admit a rigorous investigation. In the present 
paper we consider a broad class of intuitive examples of sys- 
tems with chaotic behavior that display different rates of 
decay of the time correlations. The method applied, which 
consists in estimating the probabilities (phase volume) of 
sets of trajectories that possess particular properties is at the 
present time the only method of investigating such systems 
(it is possible that there can be no other methods). 

The results to be described are obtained rigorously. De- 
spite the fact that the corresponding proofs are rather long 
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and complicated, the basic ideas are quite intuitive. It is evi- 
dent that these ideas can also be used to investigate physical 
models that cannot (at least yet) be subjected to rigorous 
analysis. 

2. BILLIARD SYSTEMS 

The models that will be considered belong to the class of 
billiard systems, or, simply, billiards. A billiard is a dynami- 
cal system generated by the inertial motion of a material 
point inside a certain region Q on a 3' Upon reaching 
the boundary dQ of the region Q the point is reflected from it 
in accordance with the law "angle of incidence e-quals angle 
of reflection." The billiard is a Hamiltonian system. The cor- 
responding potential is equal to zero inside the region and to 
infinity on its boundary. 

The trajectory of the billiard in Q is a broken line whose 
segments correspond to the free motion of the particle 
between two successive reflections from the boundary of the 
region. In addition to their intuitive aspect, billiards also 
have a clear physical meaning, being model systems in statis- 
tical mechanics, acoustics, optics, and certain quasiclassical 

Let q = (q',q2) be the coordinates in Q, and let 
v = (v1,v2)  be the velocity of the particle. With no loss of 
generality, we shall assume that the modulus of the velocity 
is equal to unity. The region Q is the configuration space of 
the billiard. The phase space M of the billiard consists of the 
set of all pairsx = (q,v) such that q is a point in Q. The phase 
flux {S ) ( - cc < t < cc ) generated by the billiard con- 
serves the volume (measure) p in M, given by the formula 
dp = (277g) -Idqdwq, where dq is an area element in Q, do,  
is a line element on the unit circle of velocities, and a is the 
area of Q. 

In the study of the statistical properties of dynamical 
systems it is usually found to be convenient to go over to a 
system with discrete time. Apart from the fact that this de- 
creases the dimensionality of the system to unity, it simpli- 
fies, as a rule, the numerical modeling of the system and the 
interpretation of the results. For billiards the change to dis- 
crete time is implemented in a very natural way. 

We shall consider phase-space points x = (q,v) for 
which q belongs to the boundary dQ and the velocity v points 
into the region Q. We denote the set of all such points by MI. 
It is clear that MI  is the edge (boundary) of the phase space 
M. We launch a billiard trajectory from a point x M , .  We 
now take on this trajectory the pointy corresponding to the 
moment immediately after its first (after x )  reflection from 
the boundary of the region. If this reflection occurs at a non- 
singular point of the boundary the point y is determined 
uniquely. It is easy to see that the set of trajectories that are 
at some time incident at singular points of the boundary have 
a volume (p) equal to zero, and therefore such trajectories 
can be disregarded. 

Let T ( X )  (where x = (q,v) ) be the free time of a parti- 
cle starting with velocity v from the point q on the boundary 
dQ. Then the point y = (q,,v,) corresponding to the first 
reflection of the trajectory x from the boundary can be writ- 
ten as y = S'"' +Ox. It is clear that the point q, lies on the 

FIG. 1. A scattering billiard: a )  coordinates in the phase space of a system 
with discrete time; b )  reflection of a plane beam from a scattering wall; c) 
breaking of a smooth beam of trajectories in the case of tangency to a wall. 

boundary dQ, and the velocity v, points into the region Q. In 
this way, by denoting y = Tx, we have defined a transforma- 
tion T that takes points of the set M, into points of the same 
set. The transformation T generates a dynamical system 
with discrete time, the phase space of which is the set MI.  
The time in this system, as is easily seen, is equal to the 
number of reflections of the trajectory from the boundary of 
the region.4' 

We introduce on M, a convenient system of coordi- 
nates. Let x = (q,v) be a point of MI  such that q is a nonsin- 
gular point of the boundary dQ. We place the point x in 
correspondence with the three numbers i, r, and p,  where i 
labels a connected component of the boundary dQ, r is the 
normalized distance along the boundary from any fixed (ini- 
tial) point on this component along Q, and p is the angle 
between the velocity vector v and the (inward with respect to 
the region Q) normal to the boundary dQ at the point q (Fig. 
1 ). The coordinate i takes a finite number of values (equal to 
the number of connected components of the boundary), 
- 7~/2(p(71/2, and O(r<l. 

In these coordinates the phase space M, of the system 
with discrete time is a set of cylinders. Each such cylinder 
corresponds to one connected component of the boundary 
dQ. For simplicity we assume that dQ consists of one con- 
nected component-in particular, because this will be the 
case in almost all the examples considered below. 

By projecting the invariant (with respect to the phase 
flux {S)) measurep in M on to the boundary MI  of M, we 
obtain a certain measure v in MI.  It is easy to calculate12 that 
on each component of MI  this measure in the coordinates (r, 
p )  is given by the expression dv = C cos pdrdp, where Cis a 
normalization factor chosen in such a way that Y (MI ) = 1. 
It is not difficult to convince oneself6 that the measure v is 
invariant under a transformation T; i.e., for any (measura- 
ble) subset A of the phase space MI  the equality 
Y (A) = v ( TA ) is fulfilled. 
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3. INTEGRABLE BILLIARDS 

Let the region Q be a circle. Then all the segments of any 
configurational trajectory of the billiard in Q are tangent to 
the same (for the given trajectory) circle, concentric with 
dQ. Curves of this kind are called caustics. The presence of a 
continuous family of caustics implies that a billiard in a cir- 
cle is an integrable system. Its phase space is layered onto 
Kolmogorov toriI3 (which, in Hamiltonian systems with 
one degree of freedom, are closed curves). To each torus 
corresponds the set of all trajectories that are tangent to the 
same caustic. The additional integral is the angular momen- 
tum about the axis perpendicular to the plane of the circle 
and passing through its center. 

Thus, a billiard in a circle is nonergodic. Correspond- 
ingly, the correlations of the phase functions for it do not 
decay. For example, if f (x)  = f (r ,p)  = p ,  then 

Nevertheless, close trajectories lying on different tori 
diverge in the phase space M I  at a rate that is linear in the 
number of reflections. 

If the boundary dQ is an ellipse, the corresponding bil- 
liard is also integrable. It is not difficult to check6 that in this 
case there are two continuous families of caustics: The tra- 
jectories that do not intersect the segment linking the foci of 
the ellipse dQ are tangent to an ellipse that is confocal with 
dQ, while the trajectories that do intersect this segment are 
tangent to a hyperbola that is confocal with dQS5) 

In Ref. 11 it is shown that for a billiard inside a suffi- 
ciently smooth convex curvedQ there is always a continuous 
family of caustics close to dQ. Here the measure ,u ( v )  of the 
set of trajectories of the billiard that are tangent to these 
caustics in the phase space M (M, ) corresponding to a sys- 
tem with continuous (discrete) time is positive. It follows 
from this that such billiards are nonergodic and the time 
correlations in them do not decay. However, this does not 
rule out the possibility that a stochastic component of posi- 
tive measure can exist in the phase space of a billiard inside a 
smooth convex curve of general form. At present this ques- 
tion has not been studied at all. 

4. SCATTERING (DIVERGING) BILLIARDS (SINA~BILLIARDS) 

If all the smooth components of the boundary 6'Q are 
convex inward to the region a billiard in Q is said to be scat- 
tering. This class of billiards was introduced by SinaiI2 in 
connection with an investigation of certain models of non- 
equilibrium statistical mechanics. At present, scattering bil- 
liards are often called Sinai billiards. 

In their properties, Sinai billiards are opposite to inte- 
grable billiards, in the sense that their trajectories are (local- 
1 ~ ) ~ '  dispersed with an exponential rate. The presence of an 
instability of this kind in such systems was first noted by 
Krylov,I4 and an exact formulation and proof have been giv- 
en by Sinai.'' The mechanism of local instability of scatter- 
ing billiards arises from the scattering (diverging) character 
of the boundary dQ. 

In fact, if a beam of parallel trajectories is incident on 

the boundary (Fig. 1 1, then after reflection from the bound- 
ary this beam will become divergent (convex) and will re- 
main so in all subsequent reflections from the boundary (for 
t>0) . "  

In the phase space M of the billiard such a beam of 
trajectories corresponds to a certain convex curve y, (Fig. 
1 ). Let x (x,) be the curvature of this curve at the point x, 
and suppose that in the time from 0 to t > 0 not one point of 
this curve has reached the edge dM. Then, as is easy to calcu- 
late,I2-the curve y, = S y, at the point x, = S'x, will have 
the curvature 

Upon reflection from the boundary the curvature of such a 
curve changes discontinuously, and the formula 

x +  (x) = x -  (x) +2k ( q )  /cos rp (2 )  

is valid, where x +  (x )  ( x -  ( x )  ) is the curvature of the beam 
under consideration immediately after (before) reflection of 
the trajectory of the point x from the edge, q is that point on 
the boundary dQ at which this reflection occurred, k ( q )  is 
the curvature ofdQ at the point q, and p is the corresponding 
angle of incidence. 

Let y, be a smooth convex curve on M and let I( yo) be 
its length. We shall assume that in the time from 0 to t all 
trajectories corresponding to this curve experience the same 
number m of reflections, and that these reflections are from 
the same smooth components of the boundary dQ. 

We shift y, under the action ofthe dynamics by the time 
r. As a result we obtain a convex smooth curve y, . From ( 1 ) 
and (2)  we obtain (if l(y,) is small) 

where y is an arbitrary point on the curve yo, 7, ( y )  
( l< i<m)  is the free time before the ith reflection of its tra- 
jectory from the boundary, and the numbers Ki ( y )  are con- 
nected by the recursion relation 

k(qi ) is the curvature of d Q  at the point of the ith reflection, 
and pi is the corresponding angle of incidence. 

From (3 )  it can be seen that if the free time T(X) is 
bounded above and below (by a positive constant) and the 
boundary dQ is strictly convex inward to Q (i.e., its curva- 
ture nowhere vanishes), then the length of any convex curve 
in the phase space of the corresponding billiard grows ex- 
ponentially in time. It is clear that for a bounded region Q it 
is impossible to satisfy all these conditions. In fact, if the 
smooth components of the boundary a Q  are convex inward 
to Q, then near the singular points of dQ the free time ~ ( x )  
can be arbitrarily small. However, this difficulty can be cir- 
cumvented by assuming that no two smooth components of 
the boundarfr of Q are tangential, i.e., nonzero angles are 
formed at the intersections. On this case, as is easily verified, 
in any neighborhood U(q) of a singular point q ~ d Q  a trajec- 
tory can have no more than a finite number n = n (q, U) of 
successive reflections. We shall take nonintersecting neigh- 
borhoods of all the singular points of the boundary dQ. Let 
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no be the maximum length of a series of successive reflections 
inside any of these neighborhoods, and let r, be the mini- 
mum free path of a particle outside these neighborhoods. 
The following bound follows easily from ( 3 )  : 

where k,, is the minimum curvature of the boundary and 
r,,, is the maximum free path; [a] denotes the integer part 
of the number a. 

Thus, scattering billiards in regions of this kind possess 
the property of local exponential instability, from which one 
can derive ergodicityI2; i.e., for any ("good") phase func- 
tion on M (MI ), with probability unity with respect to the 
measure p ( v )  , 

We shall consider for this phase function the time corre- 
lation function 

By virtue of ( 5 ) ,  i.e., because of the ergodicity of the 
considered class of billiards, at large times r ( m )  the expres- 
sions (6) can be replaced, respectively, by 

First we shall consider a simpler question-that of the 
decay of correlations in dynamical systems with discrete 
time. The case of continuous time is discussed in the next 
Section. 

In dynamical systems of abstract origin (Anosov sys- 
tems'' and Smale systems') that possess the property of local 
exponential instability the correlations are damped with an 
exponential rate,15 i.e., 

where the constant a depends on the properties (and param- 
eters) ofthe system under consideration, and Cf depends on 
the function f .  

This decay law arises from the following mechanism. In 
conservative systems with local exponential instability one 
can draw through any typical (i.e., with probability 1 with 
respect to the measure Y )  point x of the phase space a mani- 
fold y"' (x )  such that all its points approach each other with 

an exponential rate under the action of the dynamical sys- 
tem. For a system with n degrees of freedom the dimension- 
ality of y"' (x)  is equal ton, i.e., for n = 2 we have a curve in 
phase space. 

Correspondingly, for motion in the time-reversed direc- 
tion the points of y"' ( x )  diverge with an exponential rate. 
However, since the volume of the phase space MI  is finite, 
the curve T -  " y"' (x) ,  with length of the order of const en ,  
is arranged in a complicated manner in MI, and fills MI  ap- 
proximately uniformly. The latter implies that any small 
cube with edge of the order of a constant in the phase space is 
intersected by the curve T-"  y"' ( x )  approximately en 
times. In fact, it is this circumstance which makes it possible 
to obtain the bound ( 8 ) for the decay of the correlations in 
Anosov systems, although the corresponding rigorous proof 
is rather complicated. l5 

For scattering billiards, despite the presence of local 
exponential instability, the decay of the correlations turns 
out to be slower. To be precise, for such billiards the authors 
of Ref. 16 proved the bound 

( bi ( n )  I <Ci esp ( - a n T ) ,  (9 )  

where 1/3<y < 1. This bound has subsequently been con- 
firmed on several occasions by means of numerical model- 
ing. In particular, for a billiard in the region depicted in Fig. 
1, the estimate y -0.42 has been obtained in several papers." 

The reason for this slower (in comparison with expo- 
nential) damping of the correlations is as follows. Dynami- 
cal systems with discrete time that are generated by billiards 
in regions Q whose boundary has at least one segment con- 
vex inward to Q are, in contrast to Anosov systems, discon- 
tinuous (Fig. 1 ) .  It is easy to see that a point x of the phase 
space M ,  of the billiard belongs to the discontinuity set of the 
transformation T if the velocity vector corresponding to the 
point Tx is tangent to the boundary dQ. The presence of 
discontinuities leads to the result that with increase of the 
time n the curve T-"  y"' (x )  not only lengthens but also 
breaks. At a discontinuity point the direction of this curve is 
almost exactly reversed and the curve is, as it were, (locally) 
doubled (Fig. 1 ) . As a result, the rate of filling of the phase 
space by the curve T-  " y"' (x )  is somewhat reduced, and it 
is this which causes the damping of the correlations in such 
systems to be not purely exponential. We note that this type 
of decay of correlations has now also been discovered in cer- 
tain other models. 18-'1 

5. THE PERIODIC LORENTZ GAS 

We shall consider a system generated by the inertial 
motion of an infinite number of noninteracting point parti- 
cles in the field of an infinite number of stationary spherical 
particles (scatterers) . Upon reaching the boundary of a scat- 
terer a particle is elastically reflected from it. This model, 
called the Lorentz gas, was introduced by Lorentz in 1905 in 
order to describe the dynamics of an electron gas in metals.22 
It is also used in problems in the theory of channeling of 
particles in crystals. In view of the absence of interaction it is 
sufficient to study the motion of only one point particle. 

The Lorentz gas is in the class of SinaI billiards, since 
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FIG. 2. A periodic Lorentz gas: a) with a bounded free path; b) with an 
unbounded free path; c )  singular trajectories; B is a unit cell of the config- 
uration. 

the scatterers are convex. We shall assume that they are ar- 
ranged periodically and all have the same radius R. By re- 
garding as identical all scatterers that differ by a displace- 
ment by a vector of the corresponding lattice, we obtain a 
scattering billiard with a phase space of finite volume. 

The Lorentz gas with a periodic configuration of scat- 
terers displays two essentially different types of behavior, 
depending on whether the free path (FP) of the particle is 
bounded or is not bounded (from above). For simplicity and 
clarity we shall confine ourselves to the two-dimensional 
case and shall consider two basic configurations of scat- 
terers, when their centers form a triangular and a square 
lattice on a plane (Fig. 2) .  

If the scatterers do not intersect, then for the first of 
these configurations the FP can be either bounded or un- 
bounded. But if the scatterers intersect, a particle is found to 
be trapped in one of the infinite number of similar regions 
into which the plane is divided by the scatterers. Thus, this 
case reduces to that studied in the preceding Section. There- 

fore, we shall assume that the FP of a particle is bounded 
from below, i.e., the scatterers do not intersect. 

The phase space of the Lorentz gas (with discrete time) 
consists of an infinite number of cylinders (in the coordi- 
nates ( r ,  p) introduced earlier), each of which corresponds 
to a fixed scatterer. For the two configurations investigated 
the transformation T is constructed in the same way on all 
the cylinders, and therefore as the phase space M I  we can 
take one such cylinder. 

If the FP is bounded, then on the cylinder M ,  there is 
only a finite number of discontinuity curves of the transfor- 
mation T. Thus, for this model all the results of the preced- 
ing Section, and, in particular, the bound (9)  for the rate of 
decay of the time correlations, remain valid. 

The situation for a periodic Lorentz gas with an un- 
bounded FP turns out to be more complicated. It is easy to 
see that the FP ~ ( x )  can be unbounded only in the vicinity of 
those points if the phase space M I  which correspond to tra- 
jectories in which all reflections are tangent to the boundary 
aQ and, at all the points of tangency, the corresponding scat- 
terers lie on the same side of the trajectory under considera- 
tion (Fig. 2b). It is clear that the number of these points is 
finite. We shall denote them by i , ,  i,,. . . ,.?p. (I t  is easy to 
see thatp>8.) The entire set of discontinuity curves can be 
divided intop infinite series of curves, converging to the cor- 
responding points (Fig. 2b). Therefore, a curve that lies in 
the phase space of a periodic Lorentz gas with an unbounded 
FP and corresponds to a divergent beam of trajectories can 
be broken under the action of the transformation T into an 
arbitrarily large number of parts. Thus, for this model an 
additional (in comparison with the case of a bounded FP) 
difficulty is that of investigating how the transformation Tis 
constructed in the neighborhood of the singular trajectories 
i i ,  1 < i < p .  

In connection with this we shall make one remark of a 
general nature. In the investigation of a new class of (more- 
complicated) systems with chaotic behavior one usually 
proceeds as follows. One separates out in the phase space of 
an (arbitrary) system of this class a subset G (called the 
"good" subset) on which the behavior of this system is anal- 
ogous to the behavior of simpler (and already investigated) 
systems, and a "poor" subset P = M I  - G,  on which the dy- 
namics of the system is characterized by certain new proper- 
ties not previously encountered in examples. It is clear that 
the study of the properties of the system of interest reduces to 
the investigation of its dynamics on the poor subset and of 

FIG. 3. Discontinuity curves in the neighborhood of 
the singular trajectories: a )  discontinuity curves of the 
transformation T; b) dimensions of the cell 
A ;'(BLi'); C )  discontinuity curves of Tand T - ' ;  the 
shaded region is TA F'n A 2'. 
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the character of the transitions from P to G and vice versa. 
In particular, the rate of decay of the correlations is 

determined by the following factors: 
1 ) the measure v ( P )  of the poor set; 
2) the probabilities P, (P,G) that in the time n the sys- 

tem passes for the first time from the poor set to the good set. 
We now obtain a bound on the rate of decoupling of 

correlations for a periodic Lorentz gas with an unbounded 
FP. We label all curves of the ith series (converging to 2, ) in 
an infinite sequence Z;', k = 0, 1, 2, . . . . One end of the 
curve 8:' is 2, , and its second end belongs to the other edge 
component of the corresponding cylinder. For each curve 
8f ' ,  k = 1,2, . . . , one end lies on the same edge component 
of this cylinder as the point Ai , and the other end lies on the 
curve 2:) (Fig. 3a). The labeling of the set of curves 22' is 
such that the curves that are closer to 2i have the higher 
numbers. In the phase space (on the cylinder) we consider 
the region A :" bounded by the curves 8:', Zf', Z f$ ,  , and 
the edge of the cylinder (Fig. 3b). For all points x belonging 
to A f' the free time T(X) satisfies the inequality (see Fig. 
2b) 

const k < ~  (x) <const k ,  (10) 

while for the measure (phase volume) of A f '  the following 
relation holds (see Fig. 3b) : 

It is easy to see that the constants appearing in ( 10) and ( 1 1 ) 
depend only on the configuration of the centers of the scat- 
terers and on their radii. 

For the system under consideration it is natural to re- 
gard the poor set as the set of cells that have labels larger 
than some fixed number no and belong to any of thep infinite 
series. According to ( 1 1 ), the phase volume of such a set is of 
the order of n; 2. Thus, we have estimated the first factor in 
the correlation functions that govern the asymptotic behav- 
ior. 

We turn now to the estimation of the second factor. We 
shall consider the transformation T - ' inverse to T. For the 
same reason as for T, the transformation T -' is discontin- 
uous. The corresponding discontinuity curves form, as for T, 
p infinite series E:", l(i<p, k = 0, 1, 2, . . . , that converge 
to the very same pointsi, , 1 <i<p (Fig. 2b). In analogy with 
the preceding case, we introduce into the analysis regions 
B f' of the phase space M, that are bounded by the curves 
2:', 1f ' ,  sf)+, , and the edge of the corresponding cylinder 
(Fig. 3c). It is not difficult to verify that the mapping T 
carries each cell A f' into a cell B LJ' that has the same label k 
but corresponds to a different singular trajectory A], i#j. It 
follows from this (see Fig. 3) that the set TA f '  intersects 
only those cells A Lj' whose labels satisfy the inequality 

const kl"<n<const k2. (12) 

Here the probability of a transition (under the action of the 
transformation T) from A f '  to the set of cells A with labels 
greater than k is of the order of k -'". In other words, we 
have the bound 

I-1 n-k 

We shall now consider how a transition from the poor 
set to the good set occurs. According to (12), under the 
action of the transformation T the cell A :",narrowing in one 
direction and lengthening in another, intersects - k * such 
cells of another (the jth, j # i )  series. We shall take any one 
such intersection TA f'n A y' and examine what will then 
happen to it. In analogy with the previous discussion we find 
(Fig. 3c) that the image T(TA f 'n A kJ ) )  is a very narrow 
band intersecting the cell 2;' (with the same label m!) 
along its entire length from Ziy' to the edge of the cylinder. 
Therefore, for each subset TA F'n A kj '  the bounds ( 12) and 
( 13 ) also hold (in them we must replace A f '  by TA f'n A 2' 
and k by m).  Analogously, we find that the relations ( 12) 
and (13) are valid for all sets of the form 
T [(TA;'nAg')nA rn (( '1, m '>  1, lq"<p,  etc. 

From this it is not difficult to derive that for large 
n (n > no) the probability P(n ) that trajectories starting 
from the set 

do not once, in the time In n, enter the "most good" set 

satisfies the inequality 

P ( n )  <tin, (14) 

whereO<S< 1. 
Thus, despite the fact that the poor set has a (power- 

law) probability n; 2,  a transition from it into the good set 
occurs (with probability 1 - 8"" in a very short (logarith- 
mic) time. Therefore, the presence of the poor set does not 
worsen in this sense the properties of a periodic Lorentz gas 
with an unbounded FP (with discrete time!), and for the 
decay of the correlations of its phase functions, as in the case 
of a bounded FP, the bound (9)  holds. 

The numerical calculations of Ref. 23 show that when 
the radius R of the scatterers passes through a value equal to 
half the period L of the square lattice on the plane the param- 
eter y changes its value discontinuously from 0.42 (for 
R > L /2) to 0.86 (for R < L /2). In both these ranges the 
value of y is found to be constant. The increase of y is ex- 
plained by the fact that, according to (3),  for large free times 
the rate of dispersal of close trajectories (in the phase space 
of a system with discrete time) increases. Below we shall 
show that for the critical value R = L /2 the correlations 
have a power-law decay. 

The concepts of a good and a poor set in the phase space 
of the given system can vary in accordance with which prop- 
erties we are investigating. We shall consider, e.g., the prob- 
lem of finding the asymptotic form of the diffusion coeffi- 
cient (DC) D = D(R)  of a periodic Lorentz gas at high 
(R+L /2) and low (R-0) densities of the scatterers. By 
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virtue of the nature of the interaction, the DC is the only 
transport coefficient for the Lorentz gas. According to the 
Einstein formula,* we have 

ea 

It follows from (9 )  and (14) that the DC exists both for a 
bounded and for an unbounded free path. 

We consider first the high-density limit, i.e., we assume 
that neighboring scatterers are almost touching (and their 
centers, as before, form a square lattice). The size of the gap 
between them will be denoted by I. It is clear that as 1-0 the 
DC tends to zero, since a particle becomes trapped in a 
bounded region. 

For this problem it is no longer possible to use the the- 
ory of scattering billiards,'' since the free path ~ ( x )  of a 
particle in the limit I-+O is not bounded from below. There- 
fore, in this case the poor set is the set of trajectories that 
have long series of reflections in the narrow "mouth" 
between neighboring scatterers, since the lengthening coeffi- 
cients (see (3 )  ) in such a series of reflections are of the order 
of 1 + I. This poor set P in the phase space M I  lies far from 
the singular trajectories.?, ,...iP (for small I, as is easily seen, 
p = 8), i.e., is far from that set which we regarded as poor 
when estimating the rate of damping of the correlations. We 
note that in the phase space of the Lorentz gas (on a cylin- 
der) P has small dimensions in both coordinates. 

Let a moving particle start (with a uniform distribu- 
tion) from the boundary dB of any one of the elementary 
cells into which the plane is divided by the scatterers (Fig. 
2 ) .  We shall consider the mean square displacement of this 
particle after n reflections: 

2 

Dn = J (pi  ( T n x )  -qi ( r )  ) '  dv 
i = L  8 B  

+ 2 z J ( q i ( T j z )  -qi (Tj-Ix) ) ( q i  ( T x )  -qi ( x )  ) dv. 

We shall show that 

lim D,/n-1. 
n-m 

We shall consider a series of successive reflections from 
the boundaries of two neighboring scatterers. From Fig. 4 
wehave(la,l<.rr/6, la,,, /<.rr/6) 

sin a,+l-sin u , = [ ~ + ~ - c o s  a,-cos a,+, 1 tg ( % f a , , ) .  

From this, by means of elementary transformations, we find 
that the FP of the particle between the nth and the (n + 1 ) th 
reflection in such a series is equal to 

FIG. 4. Segment of a trajectory in the "mouth" between neighboring scat- 
terers. 

We note that the probability of trajectories that jump, after 
one reflection, from the initial elementary cell B,, to some 
other cell is of the order of I .  At the same time, the set of 
trajectories that pass, after one reflection, from B , ,  to an 
elementary cell Bi,, i2, where til 1 + li21 > 1, is of the order of 
12. We now consider all the trajectories that emerge from 
close points x' = (p ; ,a ;  ) and x" = (p ;',a;' ) and make, at 
the initial time, a small angle. We put 

If n successive reflections of these trajectories have occurred 
only from one and the same pair of neighboring scatterers, 
we have from ( 16) 

We find from the relation ( 18) that the set of trajectories 
that remain inside a mouth for a long time, after emerging 
from the mouth, has in the coordinatep in the phase space of 
the Lorentz gas (on a cylinder) a size of the order of a con- 
stant. Thus, the trajectories, on emerging from the mouth, 
forget about their "painful" past spent in the poor set. The 
required asymptotic relation ( 15 ) now follows easily from 
(9) and ( 14), since the expression for D, , which made use of 
the Einstein formula, can be rewritten in terms of the veloc- 
ity correlations. 

We now consider the low-density limit. For simplicity 
we assume that the lattice period L = 1. It is easy to see (Fig. 
5 )  that the mean free path of a particle is of the order ofR - I .  

Therefore, in the expression for the mean square displac- 
ment D, of the position of a particle it is convenient to take 
the factor R -2 outside the integral. With allowance for the 
given normalization, the average lengthening coefficient in 
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FIG. 5. Appearance of new singular trajectories upon decrease of the radii 
of the scatterers. 

the phase space M I  becomes of the order of R -' (see (3)  ). 
Furthermore, as R 4 ,  the numberp of singular trajec- 

tories grows like R -'. In fact, each such trajectory is deter- 
mined by a common exterior tangent to a pair of scatterers in 
the case when the corresponding coordinates of their centers 
are relatively prime (Fig. 5) .  At the same time, it is known24 
that the number of numbers that do not exceed N and are 
relatively prime with N is proportional to N. 

It remains to calculate the relation between the mea- 
sures of regions A f '  that have the same label k but belong to 
different infinite series. All such series can be divided into 
eight identical groups (enclosed between any coordinate se- 
miaxis and the bisecting line of the corresponding quad- 
rant). In each of these groups v(A :)) -i-'v(A :')). It is 
also not difficult to see that the image TA f )  of a cell with 
label k<R - ' intersects cells of all the series of at least one of 
the eight identical groups of such series (Fig. 5).  In addition, 
the intersections TA f'n A i j , "  of the image of each set with all 
the series in the group have the same (to within terms of 
order R - 2 )  measures. Therefore, 

lim DnlnR-'- (-R In R)-', 
n-+m 

where the left-hand side has been further divided by R -', 
i.e., by a quantity of the order of the mean free path. Thus, 
the diffusion coefficient D(R)  is not an analytic function at 
the point R = 0. 

6. NOWHERE-SCATTERING BILLIARDS WITH CHAOTIC 
BEHAVIOR 

Let the boundary dQ contain at least one component 
that is convex outward from the region Q. Then upon reflec- 
tion from this component a parallel beam of rays will become 
convergent. In this case close trajectories of a billiard not 
only do not diverge but even have a tendency to come closer 
together. The examples considered in Sec. 3 also demon- 
strate the stability of billiards in convex regions. It turns out, 
however, that there exists a local-instability mechanism that 
differs from that in the case of scattering (diverging) bil- 
liards and leads to stochastization of the dynamics of bil- 
liards in a region with a boundary containing focusing com- 
p o n e n t ~ . ~ ~  

This mechanism consists in the following: If we wait 
long enough, in this time a convergent beam of rays is defo- 
cused and becomes divergent. Therefore, if the time r, 
between two successive reflections of this beam from the 

boundary of the region, during which the beam was conver- 
gent, is shorter than the time rd during which it was diver- 
gent (T, + rd = T), dispersal of close trajectories will occur 
in the phase space of the billiard. However, in order that 
such a situation occur between any two successive reflec- 
tions from the boundary it is also necessary that after each 
reflection the beam become strongly focused, since other- 
wise the condition rd > T, will not be fulfilled. 

In analogy with ( 1 ) and (2),  for a series of successive 
reflections from a focusing component r of the boundary JQ 
we obtain 

( n ) -  
X +  -x-'"'2kn/cos cpn, x-'"+ "=I/ (z(")f  I/%:"'), (19) 

where H(? ((x?)) is the curvature of the considered beam of 
rays at the moment before (after) reflection from I?, 7'"' is 
the FP between the nth and the (n + 1 )st reflections, k,  is 
the curvature of I? at the nth reflection, and pn is the corre- 
sponding angle of incidence; 

It was shown in Refs. 25 and 26 that billiards in regions with 
boundaries all of whose components are either focusing or 
neutral possess the property of mixing if 9': 1 ) each focusing 
component I? of the boundary aQ has a constant curvature; 
2)  the arc that extends r to a complete circle 0, >r lies 
strictly inside the region Q. Some examples of such regions 
are given in Fig. 6. 

Thus, such billiards possess chaotic behavior. However, 
the character of this behavior differs substantially from that 
in the case of scattering billiards. In SinaY billiards a typical 
trajectory executes irregular oscillations all the time. In sto- 
chastic billiards when the boundary has focusing compo- 
nents the chaos is intermittent. In fact, the trajectory of such 
a billiard, when undergoing a set of successive reflections 
from a focusing component of the boundary c ~ Q ,  moves 
along the surface of a certain Kolmogorov torus (is tangent 
to the corresponding caustic; see Sec. 3 ) . Then the trajectory 
breaks away from this torus and for a certain time (up to the 
next series of reflections from some focusing component of 
the boundary) executes irregular oscillations, again falls 
onto a Kolmogorov torus, breaks away from it, and so on. 
Thus, in such billiards we encounter the possibility of the 

FIG. 6 .  Nowhere-scattering billiards with chaotic behavior. 
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existence of dynamical systems that have chaotic behavior 
and in which the stochasticity is intermittent. 

We shall estimate the rate of decay of correlations in 
such billiards. From (3  ) and ( 19) it follows that the poor set 
in the given case is the set of trajectories A, (B, ) that have a 
long series of not fewer than n successive reflections from 
one and the same focusing compoient (from a set of neutral 
components) of the boundary dQ. 

A trajectory can be reflected for a long time only from 
neutral components of the boundary if it is close to a periodic 
trajectory of the billiard in the corresponding polygon, e.g., a 
trajectory of period equal to two, perpendicular to the par- 
rallel sides of a "stadium" (Fig. 6a).  Using the expression 
for the invariant measure v, we obtain 

const n-'<v(A,) <const n-', const n-l<v (B,) <const n-I, 

(20) 
We now consider the second factor determining the asymp- 
totic form of the decay of correlations. We note that after a 
long series of reflections from a focusing component of dQ 
there can begin (after several reflections) a still longer series 
of reflections from another or from the same focusing com- 
ponent. An analogous situation is also possible for long se- 
ries of reflections from neutral components of dQ. 

It follows from the results of Ref. 26 that for the consid- 
ered class of regions the asymptotic form of the correlations 
is governed equally by both factors, i.e., by the meausre both 
of the poor sets A, and B, and of the set of trajectories that 
hop rapidly from one poor set to the other. In particular, for 
the stadium we have the boundlo' 

I b f  ( n )  I <const n-I. (21) 

while for a stadium with nonparallel sides (Fig. 6b) and in 
the absence of neutral components of the boundary we have 

I b, ( n )  I <const n-'. (22) 

We note that a power-law bound for the damping of correla- 
tions in a stadium has also been obtained in numerical ex- 
periments with this modele2' 

We turn now to the situation in which the boundary of 
the region contains both focusing and diverging compo- 
nents. For simplicity we shall assume that there are no neu- 
tral components. The mechanisms of local instability of di- 
verging and nowhere-diverging billiards can impede each 
other in this case. Indeed, divergent beams of rays with large 
curvature should not be incident on a focusing component r 
of the boundary, since upon reflection from r such a beam 
either remains divergent or becomes convergent, but has no 
time to be defocused. In Ref. 28 it was shown that when the 
conditions 1 ) and 2)  are satisfied the time correlations in the 
corresponding billiards are damped. In this case the bound 
(22) holds. 

7. DECAY OF CORRELATIONS IN SYSTEMS WITH 
CONTINUOUS TIME 

It is well known6 that when one goes from a dynamical 
system with discrete time to the corresponding system with 
continuous time the statistical properties of the system, gen- 

erally speaking, are changed. The question of what changes 
can occur in this transition is extremely important from the 
practical point of view, since in the numerical investigation 
of dynamical systems with chaotic behavior one usually 
studies a discrete-time system generated by a Poincark trans- 
formation of some ( d  - 1 ) -dimensional surface M ,  in the d- 
dimensional phase space M of the system with continuous 
time. Therefore, it is important to be able to carry the results 
of the calculation over to the complete system. 

Certain rough statistical properties, such as, e.g., ergo- 
dicity, are preserved in the transition to a system with con- 
tinuous time. For the mixing property, however, this is not 
so. For example, if the time r ( x )  after which a trajectory (of 
the complete system) emerging from a point xuMl returns to 
M I  takes not more than a countable number of commensura- 
ble values, a discrete component appears in the spectrum of 
the complete system, and thus the time correlations in the 
system are not damped.'" Therefore, it has always been as- 
sumed that in the transition from a discrete system to a con- 
tinuous system the statistical properties of the system can 
only be worsened. 

It turns out, however, that this is not so. We shall con- 
sider, e.g., a stadium with nonparallel sides (Fig. 6b).  The 
correlations of the phase functions of a billiard in this region, 
as already noted, satisfy the bound (22),  i.e., decay with a 
power-law rate. On the other hand, for the corresponding 
system with continuous time we have the bound 

I b, ( t )  I <const exp (-alt71), (23) 

where 0 < y ,  < 1. The point is that in the system with contin- 
uous time each trajectory having a series of successive reflec- 
tions from a focusing component of the boundary passes 
through this series in a finite time (in a system with discrete 
time, this time can be arbitrarily large). 

We obtain another example of such a situation by con- 
sidering a periodic Lorentz gas at the bifurcation value 
R = L /2. In this case the trajectory of a billiard in an ele- 
mentary triangular (or quadrangular) cell can have arbi- 
trarily many reflections in a small neighborhood of the cor- 
ner points of this region. On the other hand, it follows from 
the relations ( 16) that in a continuous system the time corre- 
sponding to such a series of reflections is finite. Therefore, 
for the correlation functions of this billiard in the case of 
continuous time the bound (21) holds, and in the case of 
discrete time the bound (23) holds. (We note that the decay 
of the correlations for billiard trajectories in the vicinity of 
such corners has been investigated qualitatively and numeri- 
cally in Ref. 30. ) The opposite situation obtains for a period- 
ic Lorentz gas with an unbounded FP. In the given model, as 
follows from ( 11 ) and from the expression for the invariant 
measurep of a billiard with continuous time, the measure of 
the set of trajectories that are not once reflected from the 
boundary dQ in the time t is of the order o f t  -'. Therefore, 
for this system in the case of continuous time we have the 
bound. 

I bi ( t )  I <const t-', (24) 

and in the case of discrete time, the bound (9 ) .  Thus, al- 
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though the given dynamical system possesses chaotic behav- 
ior, i.e., its motion is random, a diffusion coefficient for it 
does not exist. 

In all the remaining examples, considered above, of bil- 
liards with chaotic behavior the character of the decay of the 
correlations is the same for discrete and continuous time. 
Such will be the case, in particular, for the stadium, for the 
periodic Lorentz gas with a bounded FP, for scattering bil- 
liards (if the smooth components of the boundary dQ are not 
tangent to each other), if at least one focusing component of 
the boundary 6'Q is greater than a semicircle, etc. It is clear 
that the asymptotic forms of the correlations functions coin- 
cide if the length of a segment of any trajectory in discrete 
and in continuous time is of the same order i.e., 
C,n < t < C2n, where n is the number of reflections that the 
given trajectory has in the time t, and the constants C, and C2 
depend only on the geometry of the region Q. 

We now consider a random perturbation of the configu- 
ration of the scatterers in a periodic Lorentz gas with an 
unbounded MFP. Then, if this perturbation is so small that 
certain trajectories that are not once reflected from the scat- 
terers are preserved, their neighborhoods make a contribu- 
tion of the order of n P 2  to the asymptotic form of the correla- 
tions. We note that precisely this type of decay of 
correlations for a Lorentz gas with a random configuration 
of scatterers has been discovered in numerical experiments 
with this model.' 

8. CONCLUSION 

The examples considered show that the asymptotic 
form of correlation functions in dynamical systems with 
chaotic behavior depends on extremely fine properties of 
these systems and can be not only exponential but also qua- 
siexponential and power-law. Moreover, purely exponential 
damping of correlations in model physical systems is evi- 
dently exotic. 

In this connection, we note that a typical Hamiltonian 
system, as is well known,31 is neither integrable nor stochas- 
tic, and its phase space contains both regions in which the 
motion is chaotic and "islands of stability" that consist 
(mainly) of Kolmogorov tori. Both types of region are in- 
variant under the dynamics, i.e., any trajectory is contained 
as a whole in only one of them. Such systems are customarily 
called systems with a separated phase space. An important 
advance in the study of such systems has been made by Chiri- 
kov and coworkers.32 In systems with a separated phase 
space there is always an additional factor that slows the de- 
cay of the correlations, viz., the sticking of a trajectory near 
the boundaries of islands of ~tability.~' Therefore, it is cus- 
tomary to assume that in such systems the correlations are 
always damped with a power-law rate. 

We shall give an example that shows that this is not so. 
We shall consider a billiard in a region such that all the com- 
ponents of its boundary are scattering and one component is 
part of an ellipse and contains the ends of the semiminor axis 
of the ellipse (Fig. 7 ) .  The phase space of a billiard in this 
region contains an island of stability corresponding to a 
neighborhood of this periodic trajectory. It can be shown 

FIG. 7. Billiard with a separated phase space: ++is a stable periodic trajec- 
tory; ---- is an "island of stability." 

that if the eccentricity of this ellipse is small and the ellipse as 
a whole lies inside the region, then the bound (23) holds, i.e., 
the time correlations of the billiard in Q decay quasiexpon- 
entially. The same is true for the case in which there are 
several nonintersecting islands of stability. But if inside the 
islands there lie other islands of stability corresponding to 
higher resonances, the correlations evidently always decay 
with a power-law rate. 

We note that a slow (power-law) decay of correlations 
might be regarded from a practical point of view as a com- 
plete absence of decay of correlations in the system. How- 
ever, as shown by the examples given, this is not so. In the 
phase space there is always a good subset on which mixing 
occurs rapidly. Here the probability of this good subset is 
large. But the asymptotic form of the correlations (on aver- 
age) is determined by the (relatively small) measure of the 
poor subset, in which the initial conditions are forgotten 
slowly. Therefore, for most initial conditions the decay oc- 
curs rapidly at first, and as soon as the corresponding trajec- 
tories begin to sense that there is a poor set the rate of this 
decay decreases. Precisely this situation is observed in prac- 
tically all work devoted to the numerical investigation of 
dynamical systems with chaotic behavior. 

As shown by the results of the present paper, a numeri- 
cal investigation of the asymptotic form of the correlation 
functions in such systems must necessarily be preceded by a 
theoretical (qualitative) investigation, the purpose of which 
is to find the correct analytical expression for this asympto- 
tic form. The numerical-modeling problem is to determine 
the values of the parameters appearing in this asymptotic 
form. Indeed, in the study of such a subtle property as the 
rate of decay of correlations one can practically never be 
certain that enough calculations have been performed to ob- 
tain the correct answer (at  least to the question: Is it a quasi- 
exponential or power-law decay?) 

Finally, we note that the examples given can also serve 
as models for dissipative dynamical systems with chaotic 
behavior. In fact, the asymptotic form of the correlations in 
such systems is determined by the dynamics on their 
(strange) attractors. Each stochastic attractor necessarily 
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has its own invariant measure. But if we consider a dynami- 
cal system only on an attractor (with this measure), this 
system, from the point of view of ergodic theory, is in no way 
different from a conservative system. In particular, for the 
correlations of the phase functions on a Lorentz attractor, 
we have the bound (9)  (Ref. 3 3 ) .  

The author is grateful to P. V. Sasorov for useful com- 
ments that made it possible to improve the account. 
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