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A quantum-mechanical formulation of the dynamical approach describing the fluctuations and 
allowing the determination of the magnon spectrum at low temperatures is proposed. A thermo- 
dynamic method of investigating the effect of the fluctuations on the equilibrium density matrix 
and the quasiparticle energy is developed. The dynamical approach allows the consideration of 
both the short-range Fermi-liquid interaction between the electrons and the long-range Coulomb 
interaction, interactions which essentially govern the fluctuation temperature dependence of the 
magnon spectrum in itinerant electron ferromagnets. 

1. INTRODUCTION 

The phenomenological approach, developed in Refs. 1- 
3, to the theory of conductive collective-electron ferromag- 
nets leads to the following temperature dependence of the 
magnon spectrum at low temperatures: 

o ( k ,  T )  =o ( k ,  0 )  (1-AT"fBT'2). (1.1) 

Here the T2 term is determined by the thermal smearing of 
the electron Fermi level. This effect has been quantitatively 
studied in specific models in a number of papers (see, for 
example, Refs. 3 and 41, and does not present any problems 
now. The case is somewhat different with the T5I2 term, 
which is usually related with the effective magnon-magnon 
interaction, or, in current usage, with the magnetic fluctu- 
ations. Here, on the one hand, there has been developed a 
consistent approach to the computation of this term in the 
Heisenberg model of the f e r r ~ m a g n e t , ~ . ~  in which the collec- 
tive electrons are considered to be stationary, localized at the 
lattice sites. On the other hand, there are theories that take 
account of the role of the itinerant electrons in the Hubbard 
m ~ d e l , ~ - ' ~  and are meant to describe strong magnets, in 
which a band with one electron-spin direction is empty. 
These theories can be divided into two groups, according to 
the assumptions made in them. Thus, in Refs. 7-10 the auth- 
ors use the normal-coordinate approximation, the inaccur- 
acy of which leads to results that are, as we shall show, in- 
consistent with the Landau-Lifshitz equation within its 
limits of applicability. On the other hand, in the papers cited 
in Ref. 11 the authors use the "local" band theory approxi- 
mation, in which the magnetization satisfies the Landau- 
Lifshitz equation. But in this case the authors, in the first 
place, ignore the fact that this equation is not satisfied under 
conditions when the higher derivatives must be taken into 
account, and, in the second place, neglect the spin-density- 
squared-nonconserving fluctuations, which, as follows from 
our analysis, have an appreciable effect on the temperature 
dependence of the magnon spectrum. 

In Ref. 13, which is devoted to the investigation of weak 
ferromagnets, we propose a consistent dynamical approach 
that describes the magnetic fluctuations in the region of low 

temperatures without requiring additional assumptions. 
This approach is illustrated there in the simple approxima- 
tion involving the use of the semiclassical equations of mo- 
tion of the electron liquid. In this paper we present a quan- 
tum-dynamical approach. We then rid ourselves of the 
common assumption made in Refs. 7-1 3, in which the long- 
range electron Coulomb interaction is completely neglected, 
which, as shown below, makes these papers treat the elec- 
tron liquid in magnets as a system of uncharged particles, or 
as a system in which the effective wave-length of the mag- 
nons is smaller than the Coulomb-field-shielding distance. 
Below we construct, for a charged electron liquid under con- 
ditions of weak nonlinearity, a theory of the temperature 
dependence of the magnon spectrum at low temperatures on 
the basis of the method of dynamical equations developed in 
Ref. 13. Such a theory allows us to make a consistent 
allowance for the long-range electron Coulomb interaction, 
and also allows us to reveal the hitherto undiscussed ap- 
proximations implicit in the papers based on the method of 
normal  coordinate^^-'^ and on the local-band theory." 

2. THE EQUATIONS OF MOTION. DERIVATION OF THE 
DISPERSION EQUATION 

Our dynamical treatment of the effects of the magnetic 
fluctuations will be based on the assumption that we can 
describe the ferromagnetic state of a metal with the aid of a 
complete quantum set, including the momentum p and the 
electron-spin components u = + 1, using which we can, for 
the electron density matrixb and energy operator i., write 

= (2n) 36,,r6 (k)  rzOa(p) +6pa0' (p ,  k ,  t )  , 

(op+hk/2I [I or p-hk/2> 

Heren,"(p) = n0(p) + w 0 ( p )  and&,"(p) = E ~ ( P )  - dflo/ 
2 are respectively the distribution function and the energy of 
the quasiparticles without allowance for the effect of the 
fluctuations, the SE""' (p, k, t )  are the matrix elements of the 
nonequilibrium self-consistent electron potential, which is a 

829 Sov. Phys. JETP 62 (4), October 1985 0038-5646/85/100829-08$04.00 @ 1986 American Institute of Physics 829 



functional of the non-equilibrium density matrix Sp"' ( p, k ,  
t ) .  We shall, neglecting the relativistic interactions, use the 
simplest model functional dependence 

6eo0' ( k ,  t )  =2 [hw. @ ( k )  6n ( k ,  t )  + 6) .., Y ( k )  6s ( k ,  t )  ] , 

(where the 6 are Pauli matrices), in which we take account 
of the interaction of the electrons with the charge- and spin- 
density fluctuations, which is characterized by the functions 
# ( k )  and Y ( k ) .  In the function # ( k )  we separate out the 
singular Coulomb part, i.e., we set 4 ( k )  = 4.rre2/k2 + q , ( k ) ,  
so that p ( k )  and Y ( k )  describe the short-range inter-elec- 
tron interaction. In so doing we ignore the dependence of e, 
and Y on the affiliation of the electrons with different bands. 
A formulation ofthe theory that takes account of this depen- 
dence is given in Refs. 14 and 15. 

In the ground state of the ferromagnet the axis of quan- 
tization (the z axis) is oriented along the spontaneous spin 
density so = $drs,(p), and the energy fill, of the spin-in- 
duced splitting is given by the equationI6 fill, = - 4Ys0, 
where Y = Y ( 0 ) .  

We base the dynamical theory on the equation of mo- 
tion for the electron density matrix: 

?.A * -  
dp/at=i ( p ~ - ~ p ) / f i ,  

which corresponds to the following system of equations: 

[ho+eo* (p-Ak/2) - E , ~  (p+Ak/2) 16p7* (P, k )  
-[no* (p- f ik /2)  

-nO7(p+hk/2) ]6eT*(k)  = J (dk ' )  {[6p** (p-hk ' f i ,  k-k ' )  

-6p" (p+hkf/2,  k-k ' )  ]6eT* ( k ' )  

+6pT* (p-ftk'/2, k-k') 6 ~ ~ $ ( k ' )  
-6pT* (p+Ak1/2. k-k') 6 ~ * *  ( k ' )  }, (2 .2 )  

[Ao+eo* (p-hk/2)  -E,* (p+hk/2)  ]6p* * (p ,  k )  

-[no* (p-Ak/2) 

-no* (p+Ak/2) ] 6 ~ * *  ( k )  = 3 ( d k ' )  {[6p+'(p-hk'/2, k-k ' )  

-6p** (p+Ak1/2, k-k') ] 

X 6 ~ * *  ( k ' )  *tip-+ (PT-fik1/2. k -k ' )  68'-(k') 
rSp+-  (p*ftk1/2, k-k ' )  68-+ ( k ' )  ) (2 .3)  

for the Fourier components 
+- 

6paa' (p,  k) = J d t  exp ( i o t )  6pUa' ( p ,  k ,  t )  , 
- OI 

where k = (w , k ) ,  ( d k )  = (2.rr14dwd k .  
Let us first of all point out that neglecting the right- 

hand side of Eq. (2 .2 )  in the zeroth approximation, we have 

6p"(p, k )  =2nT* (p ,  k )  Y ( k )  6 s f ( k ) ,  ( 2 .4 )  

where 
6s f  ( k )  =6ss ( k )  *i6su(lz), 

IIQo' (p,  k )  = [noa' (p-Ak/2) -noo(p+lik/2) ] 
(2 .5 )  

X [ ~ ~ O ; + E ~ ~ '  (p- -Ak/2) -~~ ' (p+Ak/2)  ] - I .  

Accordingly, neglecting the fluctuations, we obtain the 
usual dispersion equation2s3.13"6: 

D+ (k) =I-Y ( k )  II-t ( k )  =0, nuat ( k )  =2 1 ~ T I I ' ' " '  ( p ,  k ) .  

(2 .6)  

which gives the magnon frequency w ( k )  without allowance 
for the effect of the fluctuations. 

For our purpose-the determination of the magnon 
spectrum with allowance for the fluctuations-the right 
member of (2 .2)  must be taken into account. Let us divide 
the equation ( 2 . 2 )  for Sp-+ by 

G-l ( p ,  k )  = f io+~~+ (p-Ak/2)  -80- (p+fik/2) 

integrate over the momenta, then multiply by S s p (  - k,),  
and carry out a statistical averaging, denoted below by (...), 
over the thermodynamic-equilibrium state. As a result, we 
find the equation 

D+ ( k )  <6s+ ( k )  6s- ( -k , )  ) 

= d r ~  (p, k) j ( d k f )  ( 6 ~ - +  ( k ' )  6s-(-ki)  

~ [ 6 ~ + +  (p-Ak'/2, k -k ' )  -6p- (p+Ak1/2, k-k ' )  

-I-+ (p+A(k-k') /2 ,  k ' )  
xse++ (k -k ' )  +n-+ (p- t t (k -k ' ) /2 ,  k1)68-(k-k ' )  I ), 

(2 .7)  

in the course of the derivation of which we eliminated the 
components Sp-+ (p  f fikf/2, k - k ') in (2 .2 )  with the aid 
of the relation (2 .4 ) .  Similarly, we can eliminate from (2 .7)  
the quantities 

6p" (pT f i k f / 2 ,  k - k ' ) ,  SE** ( k - k ' ) ,  

using the following formulas, which follow from ( 2 . 3 ) :  

6pf* (p ,  k )  = ( 2 n )  ' 6  ( k )  An* ( p )  

+ 1 (dk ' )  P (p ,  k ,  k f )8 s+  ( k - k f )6 s -  ( k t ) .  (2.8)  

6 s Z ( k )  = (2x) '6  ( k )   AS+^ (dk ' )  T s  ( k ,  k ' )  b+ (k-k ')  8s- ( k ' ) ,  

6n ( k )  = ( 2 n )  '6 ( k )  ~ n f  J (dk ' )  r" ( k ,  k ' )  6s+ ( k - k ' )  6s- ( k t ) .  

(2.10) 

Here we have introduced the following notation: 
r* (p ,  k ,  k ' )  =2Ti** (p ,  k )  [ @  ( k )  rn ( k ,  k ' )  *V ( k )  r q k ,  k ' )  ] 

* 4 Y  (k-k ' )  Y ( k ' )  G ( p i f l k f / 2 ,  k-k') 
X [n** ( p ,  k )  -lI+-(p*h (k -k ' )  12, k ' )  1, (2.1 1 ) 

r a ( k ,  k l )  =4Y  (k-k ')  Y ( k ' )  {Sl (k-k',  k', k )  

X[I-@(k)n,(k)]-@(k)n,(k)Sz(k-kf, k', k ) ) i D ( k ) ,  
(2 .12)  

r n ( k ,  k') =-4Y ( k - k t )  Y ( k t )  {S ,  (k-k',  k', k )  

x [I-Y ( k ) n , ( k )  1-Y ( k )  IIs(k)Si  (k-k',  k', ' ) ) I D ( ' ) ,  
(2.13) 

s,, ,(k--k',  k ' ,  k )  = J drG (p ,  k - k f )  {n- - (p- f ikJ /2 ,  k )  
2 

830 Sov. Phys. JETP 62 (4), October 1985 V. P. Silin and A. Z. Solontsov 830 



D ( k )  = [ I-Y ( k )  XI, ( k )  I [I-? ( k )  nn ( k )  I 
- @ ( k )  Y ( k ) n s 2 ( k ) ,  

n.,, ( k )  =2 dm.. (p ,  k )  =I d t [ l l + +  ( P .  n)- tn-(p,  h )  1 .  

Let us emphasize that, in the formulas (2.8)-(2.10), 
we have separated the steady-state and spatially homogen- 
eous k = 0 contributions, whose form in the state of thermo- 
dynamic equilibrium will be established in the next section. 
Bearing this separation in mind, and taking account of the 
indeterminacy of the kernals in (2.11)-(2.13) at k = 0, we 
shall determine them below in the sense requiring that we 
discard at k = 0 the contribution of the integrals in (2.8)- 
(2.10). 

Taking the relation (2.1 ) into account, and substituting 
the expressions (2.8)-(2.10) into (2.7), we arrive at the 
following dispersion equation: 

D+ (k) +BD (k) - 1 ( d k f )  T ( k ,  k-k',  -k ' )  ( s + s - ),,=(I, (2.15) 

which establishes the dependence of the magnon spectrum 
on the transverse magnetic fluctuations, due both to the ex- 
plicit dependence of (2.15 ) on the spectral fluctuation den- 
sity (s+sP), (where 

(6st(k)6s-( - k , ) )  = (2aI46(k - k, )  x ( s f s - ) , )  

and to the corresponding dependence of the fluctuation-re- 
lated corrections An * (p)  and As (see the following sec- 
tion), which determine the function 

BD(k) = 2 Y  ( k )  j drG(p ,  k )  

x [4Y  lT-+ (p ,  k )  As--An+(~-fiW2) 
+An-(p+hk/2) 1. (2.16) 

Here we have taken into account the fact that, as demon- 
strated in the next section, An = 0. For the kernel in (2.15) 
we obtain the expression 
T ( k ,  k t ,  k") 

=8Y (k-k ')  [Y (kt-k")  '4 ' (k")  V(kr-k" ,  k", k', k )  

+Y (k ' )  r" ( k ' ,  k t ' )  St ( k ,  kt-k, k t )  

where 

V(k'-k",  k N ,  k ' ,  k )  

= ' / a  j d r ~  (p ,  k ' - B )  {G (p+A (k-kf+k") /2,  k )  

x[n++ (p+hkN/2, k ' )  -n+-(p+ Ak1/2, k") ] 

. [n--(p-f ikU/2,  k ' )  -IIC-(p-hkf /2,  k") 1). (2.18) 

Here we have, assuming the fluctuation effects to be weak, 
limited ourselves in the left member of (2.15) to the consi- 
deration of the terms linear in (sf s- ), . Furthermore, bear- 
ing in mind the investigation below of the properties of the 
low-frequency and long-wave excitations, we neglected in 
(2.17) the imaginary part of n-+ (p, k ) ,  and used the rela- 
tion Re n-+(p,k)  = R e  I I C - ( p ,  - k) .  

3. DERIVATION OF THE THERMODYNAMIC AVERAGES 

In the preceding section we obtained a magnon disper- 
sion equation containing the average quantities and fluctu- 
ations characterizing the stationary and spatially homogen- 
eous state of a magnet. In this section we shall determine 
these quantities in the thermodynamic-equilibrium state. 
For this purpose, we shall use the standard approach that 
takes account of the fluctuations (see, for example, Refs. 17 
and 2),  modifying it in such a way that we can determine the 
densities of the quantities in phase space, densities which 
characterize the equilibrium density matrix 

(opl  orp'>= (2nf i )  36,,r6 (p-p') no ( p )  

and the quasiparticle energy 

(oP 1;; I u ' ~ ' )  = (2nf i )  '8,,.6 (p-p') ~ " ( p )  , 

where nu (p)  = n ( p )  + as(p) .  This approach is based on 
the use of the thermodynamic potential @, which is consid- 
ered to be a functional of the density matrix@, the quasiparti- 
cle energy 2, the chemical potential 7, and the temperature 
T, and can be written in the form 

@[;,& q, T ] = D ~ [ <  11, T ] + 2 Y s 2  

- sp j  d t c ( p )  [ ; ( P I  - E ~ ( P ) I + A @  [i, e ,  T I .  
(3.1) 

Here 

coincides in outward appearance with the thermodynamic 
potential of an electron gas, e,(p) being a given function of 
the momentum. The term on the right-hand side of (3.1) 
containing s2, where s = 1/2Jdr [n  + (p)  - n- (p)  1, corre- 
sponds to the exchange interaction energy, and, finally,2 

fio 
A @ [ &  6 T ] = h  J (dk)cth%,,Im[ln D + ( k )  -D+(k)l] (3.3) 

describes the contribution of the transverse magnetic fluctu- 
ations. In this case b+ (k )  = 1 - Y (k) f i -+  ( k )  can be ex- 
pressed in terms of the fluctuations f i -+ (k )  and Z(p, k) ,  
which differ from the functions n-+ and G(p, k)  intro- 
duced above by the substitutions E;(P) - F E ~ ( P )  and 
n;(p) -+ nU(p). 

Minimizing (3.1) with respect to n * (p)  and E* (p),  
we obtain the following relations for the determination of the 
energy and density matrix of the electrons: 

where n, ( E ,  7) is the Fermi distribution function for the 
electrons with energy E and chemical potential q, and the 
quantities 

~ . e O ( p )  = 4 o j  ( d k )  Y Y k ) G ( p + o h k / 2 ,  k )  (s+s-),. (3.5) 

Arno(p )  =-4 1 ( d k )  Y 2 ( k )  G (p+oRWB, k )  

x [noa  ( p )  -no-"(p-fik) I ( s f  s-) ,, (3.6) 

831 Sov. Phys. JETP 62 (4), October 1985 V. P. Silin and A. 2. Solontsov 831 



stem from the fluctuation contribution ( 3 . 3 )  to the thermo- 
dynamic potential. Owing to the weakness of the fluctuation 
effects, we have ignored in the formulas ( 3 . 5 )  and ( 3 . 6 )  the 
deviation of ( p )  and nu ( p )  from E; ( p )  and n," ( p ) ,  which 
is legitimate because of the proportionality of the integrands 
in ( 3 . 5 )  and ( 3 . 6 )  to the spectral density of the magnetic 
fluctuations2: 

( s + ~ - ) ~ - - [ A i 2 Y  ( k )  ]cth ( A o i 2 x T )  Im 0,-'(6). 

Further, the equilibrium fermion-number density is de- 
fined, as usual,I8 as 

which furnishes the equation for the determination of the 
chemical potential 77, an equation which takes account, in 
accordance with ( 3 . 4 ) ,  of the effect of the fluctuations. The 
chemical potential 77, of the electrons is, when the fluctu- 
ations are ignored, determined by the condition 

In this case, bearing in mind the conservation of the fermion 
number, we find that An = n - no = 0 .  

The expression, following from (3 .1  ), for the entropy is 
the sum of the electron and fluctuation contributions. The 
electron contribution in this case has the usual formI8: 

the contribution of the fluctuations here being taken into 
account by the electron distributions. Correspondingly, for 
the fluctuation contribution to the entropy we obtain 

where N ( w )  = [ e x p ( k / x T )  - 1 1  -' is the Bose distribu- 
tion function. 

Similarly, the expression for the spin density s is also 
equal to the sum of the electron 

and fluctuation 

1 
A  s= - J d r [ A , n +  ( p )  - A , ~ - ( J I ) ~ ]  2 

contributions, with the electron distributions n,  [E" ( p ) ,  71 
in ( 3 . 8 )  and ( 3 . 1 0 )  taking account of the effect of the fluctu- 
ations on the energy and the chemical potential of the elec- 
trons. 

If we are interested in only the contribution of the mag- 

nons, then it is sufficient to take 

Im d[lnD+(k)]/dw=-x6[o-o(k)], 

where the magnon frequency w ( k )  is determined by ( 2 . 6 ) .  
Then from ( 3 . 1  ), ( 3 . 8 ) ,  and ( 3 . 1 0 )  we obtain the following 
well-known expressions6: 

which give the contributions of the magnons to the thermo- 
dynamic potential, the entropy, and the spin density. 

To determine the thermodynamic averages of An * (p) 
and As, which determine, in accordance with ( 2 . 1 6 ) ,  the 
function S D ( k ) ,  we use perturbation theory, which allowed 
us to limit ourselves in ( 3 . 5 )  and ( 3 . 6 )  to the approximation 
linear in the spectral density of the magnetic fluctuations. 
Retaining in the first addends in the formulas ( 3 . 4 )  the 
terms linear in 

we obtain 

where n ; ( p ) ,  Anu (p), and As coincide with the correspond- 
ing quantities used in the preceding section, and the quanti- 
ties nu" ( p )  = II" ( p ,  0 )  occurring here correspond to that 
k  = 0  limit which is obtained by letting first w  + 0 ,  and then 
k - 0 .  

As follows from the formula ( 3 . 1 2 ) ,  the fluctuation 
corrections An" ( p )  to the electron density matrix, which 
are of interest to us here, can be expressed in terms of the 
quantities A7 and As. Taking the relations ( 3 . 5 )  and ( 3 . 6 )  
into account, we have 

A n o ( p )  = - n a o ( p )  [ A q - a 2 Y A s I  

+04j ( d k )  V 2 ( k )  G (p+ohk /2 ,  k )  

x [ p 0 ( p )  -II- + ( p f  ohk /2 ,  k )  1 ( s+s - )h .  ( 3 . 1 3 )  

We obtain for the determination of A77 and As the equations 

where n , ,  = II,, ( O ) ,  the first of which was found through 
the expansion of ( 3 . 7 ) ,  while the second arose in the integra- 
tionof ( 3 . 1 3 ) .  ThesolutionofEqs. ( 3 . 1 4 )  and ( 3 . 1 5 )  yields 
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x[H,S, (k, -k, 0) +%S2 (k, -k, 0) ] (s+s-) ,. (3.17) 

Using the limiting values, introduced in the preceding 
section, of the quantities r * , rs  , and r n  , we obtain for the 
fluctuation corrections (3.13), (3.16), and (3.17) the ex- 
pressions 

Ano(p) = lim j (dk')P(p, k, -kr) (s+s-),,, 
h-0 

All=- lim 5 (dk')  rn (k, -kt) @ (k') (s+s-) ,,, 
k-.O 

As= lim j (dkf) P ( k ,  -k') (s+s-) ,, , 
k- 0 

with the aid of which we can represent the function (2.16) in 
the following form: 

6D (k) =- 5 (dkl)lim T (k, k", -kt) (sis-),,. (3.18) 
k"-.O 

Here k " = 0 corresponds to that limit in which we let first 
w" -+ 0 and then k" -+ 0. 

The formula (3.18) allows us to write the dispersion 
equation (2.15 ) in the form 

D+ (k) - 5 (dkf) IT (k, k-k', -kf) +T (k, kl'=O. -kt) ] 

Notice that this formula follows directly from (2.7) if we do 
not separate out in the formulas (2.8)-(2.10) the contribu- 

tions -6(k).  But then the limit lim T(k,k ", - k ' ) re- 
k " - 0  

mains indeterminate, in contrast to the above analysis, 
which is free of such an indeterminacy. 

The formulas obtained in this section allow us to deter- 
mine in explicit form the temperature dependences of the 
fluctuation corrections to the energy, the density matrix, the 
chemical potential of the quasiparticles, the equilibrium spin 
density, as well as the mean-square spin density, for which 
we have the approximate expression 

S12(T) =s,'+2sO4sf 5 (dk) ( ~ + s - ) . = - ~ . , ~  (dk) k.k,(s+s-) .. 
where we have taken into account the fact that, up to terms - k2, 

Using the approximate expression 

(s+s-),=4as0 [ N  (o) + - 6[o-o (k) ] 'I 2 
(3.20) 

for the spectral density of the fluctuations, we have 

Ae0(p) =[a,(p) -oan(p) I T I 2 ,  

An" (p) =a,, (p) T12+oa, (p) T , 
(3.21) 

Aq=a,T'/2, As=a,T , 

S, ( T )  --S, (0) =a,T"s. 

Here the coefficients a , ,  (p) ,  a,,, (p) ,  a , ,  , and a, are given 
by Eqs. (3.5), (3.131, (3.16), and (3.171, with their inte- 
grands expanded in powers of k up to, and including terms - k 2. Let us note that the first two equations in (3.21 ) corre- 
spond to the result obtained in a phenomenological analysis 
of the temperature dependence of the electron energy in con- 
ducting fe r r~magnets .~ ,~  The last equation in (3.21 ), which 
describes the temperature dependence of the square of the 
spin density, is obtained in Ref. 19 for the particular case of 
strong magnets. 

4. TEMPERATURE DEPENDENCE OF THE MAGNON 
SPECTRUM 

Let us proceed to discuss the dependence of the magnon 
spectrum in ferromagnetic metals on temperature. For this 
purpose, let us, taking account of (3.201, write the solution 
to the dispersion equation (3.19) in the following form: 

dk' w(k. T ) = ~ ( ~ ) - ~ ~ o P o ~ - [ N ( ~ ) +  f ]  
(2N3 

The first term in the right member of (4.1 ) contains, as fol- 
lows from Eq. (2.6), a small term that depends on the tem- 
perature according to the law T2, and is due to the effect of 
the Fermi excitations of the electrons, while the second term 
describes the effect of the magnetic fluctuations on the mag- 
non spectrum. 

Notice that, by setting v = d~,(p)/dp + 0 in the rela- 
tion (2.17), we obtain for the combination of kernels T in 
(4.1 ) in the limit of magnets with localized electrons the 
result 

[T (k, k - kt,- k') + T (k, 0,- k')]~=m (k) 0'=0 (k') 

- - a (k) -I- a (k') - a (k - k') I 

(4.2) 2 ~ o ~ B ~  

(where o( k )  = 4s,[Y ( k )  - Y]/fi, which is in full accord 
with the theory of the Heisenberg  magnet^.^,^ 

In the general case, expanding the combination of ker- 
nels Tin powers of k and k ', and retaining the terms - kk ' 
and - k2 . kI2, we have 

[ T  (k, k - k', - k') + T (X-, 0,- kt)],=, (k) 
a'=, (k') 

= (aijkikj' + tijklk,kjkk'k,')/so'Bo. (4.3) 

The first term in the right-hand side of (4.3), which is 
determined by the magnon stiffness aij ( ~ ( k )  = aijkikj ), 
describes, for example, the amplitude of the four-magnon 
scattering processes, and is analogous to a term that arises in 
the theory of the Heisenberg magnets.536 As shown in Refs. 
19 and 20, this term stems from the approximate conserva- 
tion of the square of the spin density in ferromagnetic metals, 
and can be obtained with the use as the dynamical equations 
of the Landau-Lifshitz equation, which follows from (2.2) 
and (2.3) in the long-wave limit. The second term, which is 
proportional to k2 . k", describes in accordance with Eq. 
(4.1 ) the fluctuation-governed temperature dependence of 
the magnon spectrum. In this case the tensor tijk, is, accord- 
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ing to (2.17), essentially determined by the effects of the 
long-range electron Coulomb interaction and by the fluctu- 
ations due to the variation of the square of the spin density, 
and manifesting themselves in the deviation of the kernel 
(2.12) from the value - (2so) - '. Let us note that allowance 
for such effects falls outside the limits of applicability of the 
Landau-Lifshitz equation. 

In the model of metals with the isotropic dispersion 
laws = p2/2m for electrons and w ( k )  = a k 2  for mag- 
nons, we arrive, after substituting (4.3) into Eq. (4.1 ), at the 
following expression for the coefficient: 

4n 5 t,i,, x ' 
B = - - g ( - ) - ( - 1  2 as, 4nRa ' 3 

which determines, in accordance with Eq. ( 1.1 ), the fluctu- 
ation-governed temperature dependence of the magnon 
spectrum at low temperatures xT<fiw,,, (where amax is 
the highest magnon frequency). Here 

where we have used the notation 

4 Y h2Qo2 o'n, (p, O )  

3 Qo AR, 12 d ~ , ?  

In this case we assume that the characteristic wavelength of 
the magnons is greater than the Debye radius of the electrons 
(kr, )2,x Tr, '/fia 4 1. We see here the qualitative difference 
between our approach and the approach used in Refs. 7-1 3, 
which totally neglects the long-range electron Coulomb in- 
teraction, and therefore applies only to the description of the 
role of the magnons with wavelength greater than the Cou- 
lomb-field-shielding distance. 

Let us illustrate here the results obtained above for the 
temperature dependence of the magnon frequency in two 
particular cases: the cases of strong and weak ferromagnets. 
In the limit of a strong ferro-magnet (i.e., for n, (p) = O), 
we have 

where the chemical potential 7 of the electrons (holes) is 
measured from the bottom (top) of the partially filled elec- 
tron band. 

In the particular case of, say, nickel, we find after set- 
ting, in accordance with Refs. 11 and 2 1, 

m-5.5mo, hQo-0.8 eV, q-0.44 eV ha-0.391 eV..A2, 

Aa,,=6. eV.X" RfiS,=7.8. lo-' eV.3' 

(m,is the free-electron mass) that B = 0.986 x lo-' KW5I2. 
In the case of a weak magnet (2so/n<l, substituting 

into Eq. (4.4) the expression t,,. = 7 2 ( ~ , /  
f ~ f l , ) ~ ( a  + 2aH )a/fl,, which follows from (4.5) and 
(4.6), we arrive at the expression 

X I n  5 mO ~ + 2 ~ .  ( ,ma, , (4.8) &-+(-)(-) - - 
16 2 E, a-a, 

where a = a,  + fi2fl0/24m&, and E ,  is the Fermi energy. 
For example, in the particular case of the weak ferromagnet 
MnSi, setting, in accordance with Ref. 22, Tw,,, zz 3 x 10W3 
eV, fino/&, -0.4, and a, = 0, we find B z  - 3.3 x loW6 
K-512 

Comparing the termsA T and B T  5 ' 2 ,  which, according 
to ( 1.1 ), determine the Fermi-excitation- and magnetic- 
fluctuation-governed temperature dependence of the mag- 
non spectrum, we see that in strong magnets, where 
A = ~ ~ x ' / 6 a m ~ f l ,  (Ref. 4 ) ,  these terms are, generally 
speaking, of the same order of magnitude in a broad range of 
temperatures. In this case the temperature dependence of 
the magnon spectrum is determined by the fluctuation ef- 
fects only in the region of sufficiently high temperatures 
T > T, = A 2/B 2.  For example, in the case of nickel estimates 
yie1dA=.1.2~10-~K- 'andT,=:150K. 

For the case of weak magnets, it is found in Ref. 4 that 
A = 2 ( ~ z / f i f l , ) ~ .  In this case the temperature region, 
T >  T,, where the effect of the magnon fluctuations is deci- 
sive is substantially broader than in the case of strong mag- 
nets: XT, = 3 . 10W3(fiflo/&, )4fiwm,, (e.g., in MnSi we have 
T, = : 3 ~  l o v 3  K ) .  

Let us give here, for the case of a weak ferromagnet, the 
explicit expressions for the coefficients determining, in ac- 
cordance with (3.21), the temperature dependence of the 
parameters of the equilibrium state: 

an, (P, 0) 
d E a  1:. 
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where yV = ysV, y = 12 (~, / f iR,)~aR,  = a/h,,, . Com- 
parison of the fluctuation corrections given by Eqs. (3.2 1 ), 
(4.9) with the corresponding Fermi-excitation-related cor- 
r e c t i o n ~ ~ . ~  - T 2  shows that the temperature dependences of 
the energy, the chemical potential, the component n (p)  of 
the density matrix of the quasiparticles, and the mean square 
spin density S :  in the temperature range xTs < xT < fiw,,, 
are, as found above in the analysis of the magnon frequency, 
determined by the effect of the fluctuations. The magnon- 
governed temperature dependence ( - T U 2 )  of the density- 
matrix component s (p )  and the spin density s is decisive in 
the entire low-temperature region xT < fiw,,, (cf. Ref. 23). 

Let us compare the results obtained above for the tem- 
perature dependence of the magnon frequency with the re- 
sults obtained in Refs. 7-13, in which the effect of the mag- 
non-magnon interaction on the spin-wave spectrum in 
ferromagnetic metals is treated without allowance for the 
long-range electron Coulomb interaction. Let us first of all 
note that, in our approach, to the models based on the Hub- 
bard Hamiltonian, and used in Refs. 7-1 1 and 12, corre- 
spond the equalities # ( k )  = q ( k )  = const, the analyses 
in these papers being limited to the case of strong magnets. 
To the model proposed in Ref. 13, in which the electron 
charge density oscillations are neglected, corresponds the 
passage to the limit # ( k )  + 0 in the present approach. 

To obtain from the general relations (2.17) and (4.1) 
the results of Refs. 7-10 regarding the temperature depen- 
dence, - T 512, of the magnon spectrum, we must use, besides 
the indicated equalities corresponding to the neglect of the 
long-range Coulomb interaction, additional approximations 
not discussed in those papers. Thus, the results of I ~ u y a m a , ~  
Kawasaki,* Edwards and F i ~ h e r , ~  and Morkowski" do not 
fully take account of the interaction of the quasiparticles 
with the charge and spin densities, and are obtained in our 
approach if, in determining the kernels T, we neglect the 
terms containing 6~~~ ( k )  in the equations (2.3) for the di- 
agonal components of the density matrix. This neglect, ex- 
posed by us, is due to the unjustified approximate introduc- 
tion of the normal coordinates of the magnons in Refs. 7-10. 
In so doing, instead of the first term in the parentheses in our 
formula (4.3), I ~ u y a r n a , ~  Kawasaki,' Edwards and F i ~ h e r , ~  
and Morkowskil0 obtained a term differing from it by the 
replacement aV + a - h/2m, and this contradicts the Lan- 
dau-Lifshitz equation. Let us note in this connection that the 
use of this term in Morkowski's paper1' leads to an incorrect 
expression for the magnon-damping constant resulting from 
the four-magnon scattering processes. The correct results 
are arrived at through the above-indicated substitution. 

ation of which falls outside the limits of applicability of the 
Landau-Lifshitz equation. Further, the use in Ref. 11 of the 
Landau-Lifshitz equation does not allow the description of 
the effects connected with the variation of the square of the 
spin density, effects which manifest themselves in the devi- 
ation of the kernel Ts (k,k ') from the quantity - (2s')-l. 
As shown in Refs. 19 and 20, in the limit of long-wave fluctu- 
ations, this deviation is described by terms that are quadratic 
in k and/or k', and have, for example, in strong magnets, in 
which a band with one electron-spin direction is empty 
n, (p )  = O), the formI9 

According to Eqs. (2.17) and (4.1 ) , those terms which do 
not conserve the square of the spin density play an important 
role in the determination of the temperature dependence, - T5I2, of the magnon spectrum. 

Concerning the paper by Corrias and Pascuale,I2 let us 
note that, in summing the diagrammatic series for the mag- 
non frequency, these authors used unestablished approxima- 
tions involving the arbitrary neglect of a series of diagrams, 
and this may be the cause of the deviation of the expression 
obtained by them for B from the expression that is obtained 
from the relations (2.17) and (4.1 ) with the use of the condi- 
tion # ( k )  = V ( k )  = const. Summarizing all the foregoing, 
we can assert that the above-proposed quantum-dynamical 
approach to the theory of the temperature dependence of the 
magnon spectrum enables us to rid ourselves of the addi- 
tional unjustified assumptions of Refs. 7-1 3, and consistent- 
ly take account of the role of the long-range Coulomb inter- 
action and the magnetic fluctuations that do not conserve 
the square of the spin density. 
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