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The dynamics of a nonequilibrium semiconductor-metal (SM) phase transition is considered 
over time intervals shorter than the inelastic collision time. Two cases are discussed separately: 1 ) 
when the SM transition is produced under equilibrium conditions by interband Coulomb interac- 
tion; 2) when the SM transition and the associated structural transition are due to the electron- 
phonon interaction. In the case of small perturbations of the semiconductor phase the deviation of 
the order parameter Z (B represents the gap in the spectrum of elementary excitations) oscillates 
at the frequency 22 and its amplitude relaxes in time in accordance with the law t - ' I 2  tending to a 
state which depends on the initial conditions. In the second case the amplitude of the shift of the 
sublattices includes a term which oscillates at the frequency 2B and decreases in amplitude like 
t -3'2, as well as a term which is oscillatory but undamped and has a frequency of the order of the 
phonon frequency. In the case of finite perturbations above the critical value the system exhibits 
coherent quantum oscillations between the semiconductor and metal phases. 

INTRODUCTlON 

Reports of experiments on the action of powerful fem- 
tosecond laser pulses on covalent semiconductors have ap- 
peared The available experimental technique 
make it possible to time-resolve the processes of duration 
amounting to several  picosecond^.'-^ The power of such 
pulses is sufficient to cause a nonequilibrium semiconduc- 
tor-metal (SM) transition as a result of excitation of the 
electron sub~ystem.~ This raises the question of the dynam- 
ics and characteristic times of a nonequilibrium SM phase 
transition. 

If the duration of a laser pulse is less than the time re- 
quired for modification of the system, the action of a laser 
source is limited to the establishment of a nonequilibrium 
state of the system at the initial moments. However, if the 
pulse duration is considerably longer than the time constants 
of the transient processes but the trailing edge of the pulse is 
much shorter than the time needed for the modification of 
the system, the process of switching off of the source can be 
regarded as instantaneous. After the end of the pulse the 
system is again in a nonequilibrium state. From the theoreti- 
cal point of view both situations reduce to a study of the 
evolution of the system (in the absence of a source) from a 
strongly nonequilibrium state set up by the preceding pulse. 

This evolution occurs in several stages. During the first 
collisionless stage when the deviation from equilibrium is 
greater than critical we can expect coherent macroscopic 
transitions of a crystal between the semiconductor and metal 
phases. During the next stage the inelastic relaxation pro- 
cesses reduce the system to a state of local equilibrium. This 
very state depends on the concentration of nonequilibrium 
excitations and changes during the recombination time in 
this state. If the system is in a local minimum corresponding 
to the metal phase, then this minimum disappears in the 
recombination time of carriers in the metal and the transi- 
tion to the semiconductor phase occurs without an activa- 
tion energy. The disappearance of a barrier has been ob- 

served in a system of nonequilibrium carriers on transition to 
an electron-hole l i q ~ i d . ~  This effect is known to be a com- 
mon feature of first-order transitions. 

A detailed description of the evolution of covalent semi- 
conductors, such as Si and Ge, is quite difficult and this is 
why we shall consider some models. There are examples of 
systems which undergo a structural transition as well as an 
SM transition and for which there are well-developed theo- 
retical models capable of revealing the qualitative features of 
the dynamics of a nonequilibrium transition. Such sub- 
stances are, for example, IV-VI semiconductors6 and vana- 
dium oxides.' In the case of vanadium oxides, there are also 
experimental data for picosecond pulses indicating that ini- 
tiation of the SM transition is of nonthermal nature and oc- 
curs because of the excitation of the electron ~ubsystem.~ 

A common feature of these substances is a special form 
of a one-particle electron spectrum in the symmetric phase 
or in the precursor phase (in the case of IV-VI compounds). 
These substances have parts of the Fermi surface which nest 
in one another when translated by a certain vector. A special 
form of the spectrum obtained on allowance for the electron- 
electron and electron-phonon interactions may result in 
Bose condensation of electron-hole pairs and of phonons, 
i.e., it may produce a structural t r a n s i t i ~ n . ~ , ' ~  

We shall consider the collisionless stage of the evolution 
process (for time intervals shorter than the time constants of 
inelastic processes) of the initial nonequilibrium state in sys- 
tems exhibiting the SM transition. We shall consider sepa- 
rately two cases: l )  when the SM transition is due to the 
electron-electron interaction; 2) when it is due to the elec- 
tron-phonon interaction. In the former case the order pa- 
rameter relaxes to a certain state which depends on the ini- 
tial conditions. The gap oscillates at a frequency 22  (where 
2 is the gap in the spectrum of one-particle excitations) and 
its amplitude decreases in time in accordance with the t - ' I 2  

law. In the second case the amplitude of the shift of the sub- 
lattices has terms which relax in accordance with the power 
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law t -3'2 and oscillate at the frequency 28. Moreover, there 
are also undamped terms oscillating at a frequency w, (w, 
is the characteristic phonon frequency). The electron distri- 
bution functions have undamped oscillatory terms associat- 
ed with the thermodynamically reversible process of colli- 
sionless evolution. 

Suslov" studied qualitatively the dynamics of changes 
in a Peierls insulator subjected abruptly to an external per- 
turbation. 

COLLISIONLESS EVOLUTION OF THE DENSITY MATRIX OF 
AN EXCITON INSULATOR 

It is convenient to use the method of Kukharenko and 
TikhodeevI2 in describing the evolution of the density ma- 
trix from a given initial state. This method is a generalization 
of the Keldysh techniqueI3 developed for the problems of 
relaxation allowing for the initial correlations. Collisionless 
evolution in a superconductor was studied by Volkov and 
KoganI4 using the Keldysh technique. In this section we 
shall consider the case when the SM transition is due to the 
electron-electron interaction. The Hamiltonian of the sys- 
tem is 

I r ,  + + 
H = ~ ~ . ( p ) a i $ ~ i p ~ +  V (k) alp,o,a2p,orazpl-ko1a~~I+~oI 

here, i = 1 and 2 are the band indices; a;, and a$, are the 
operators describing creation of electrons with momenta p 
and spins a in the bands 1 and 2. The unrenormalized (bare) 
spectrum of one-particle excitations satisfies the congruence 
conditions 

where Q is a reciprocal lattice vector. The second term in the 
Hamiltonian describes the Coulomb density-density interac- 
tion between different bands and the third term corresponds 
to the interaction associated with a transition involving the 
scattering of electrons from one band to another. In the high 
density limit nu;) 1 (n is the particle density and a, is the 
Bohr radius of an exciton) the potentials V(k) and V ,  ( k )  
can be regarded as constants and are denoted by g and g,, 
respectively. 

Information on the system at the initial moment is given 
by the density matrix6 (to). The evolution is described by the 
behavior of one-particle and many-particle Green functions. 
We shall confine ourselves to one-particle Green functions, 
because in the self-consistent Hartree-Fock approximation, 
when the interaction is allowed for, the higher correlation 
functions are unimportant in the description of the evolution 
with the exception of some special cases. A generalization of 
the method of Ref. 12 to the case of two electron bands does 
not present any difficulty and reduces essentially to intro- 
duction of additional band indices of the Green function. 
The zeroth Green function is a matrix 

0 Gija 
~ ~ ~ ( 1 ,  I f ) =  1 Gir' s i j  1 =-i exp[iej(pi) (ti1-to) 

/ - \  

where 1 = ( p,, t ,a)  andp,  = ( p , , ~ ) ;  here, a is an index de- 
scribing the position on the time profile; (p,to) is a one- 
particle distribution function at the initial moment in time. 
The complete Green function considered in the self-consis- 
tent Hartree-Fock approximation satisfies the equation 

The self-energy part is of the form 

k2 (ti, ti1) =% { j .-q gG12(t,, ti1) -t-g1G21 (ti, ti1) 
(an) 

- 1  ( t i  t i 1  + 1 ) I} ( 4 )  

The matrix .i. has nonzero components v, , ,, = v,,,, with all 
possible transpositions of the indices 1 and 2 on the time 
profile; t,,, = max(t,t I ) .  

We shall assume that g > 3g,, i.e., that the instability in 
the exciton channel" and not in the interband plasmon 
channel predominates. 

Equations (3 )  and (4 )  contain the distribution func- 
tions (pt,) describing the situation at the initial moment 
in time. The regularization technique from Ref. 12 can be 
used to provide a closed description of the evolution of the 
system by a slowly varying distribution function A, (pt)  at a 
given moment. The procedure of elimination of f (pro) and 
adoption of the slowly varying distribution function was first 
used by Bogoly~bov. '~  The equations for Aj  (pt)  are ob- 
gined b~separation of those components from the matrices 
GI, and GI, which have the indices 22; i.e., F,, and FI2. 

The consistency conditions for the renormalized system 
of integral equations (3)  and (4)  are 

i 
-- - - { [ G o  ( 1  G o 1  ( I )  I I t (6)  2 

a 
(1) = ( i - Ei(p) 

This can be represented in the form of the Liouville equation 
for the density matrix: 

ia^plat= [I?, p] , 

It will be now convenient to adopt the distribution functions 
averaged over the angular variables: 
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In the stationary 
the role of a gap 
by definition, we 

I case the self-energy function Z,,(t) plays 
in the spectrum of elementary excitations: 
have 

N 

X.,(t) =\.(O) 1 d a [ g f 1 2 ( 5 f )  +g1/21 (El)  --%I (/12(&) + f a  ( 6 1 ) )  1, 
0 

(8 
where N(0)  is the density of states at the Fermi level. We can 
readily show that the energy integral of the system can be 
represented in the form 

here, 2,, and 2,, are the real and imaginary parts of the 
order parameter, and 

are the corresponding coupling constants. The first term 
represents the energy of quasiparticles and the second the 
energy of a condensate of electron-hole pairs. The stationary 
values of the phase of the gap are: q, ,, = 0, T; q, ,, = f ~ / 2 .  
The phase q, ,, corresponds to the real order parameter 
(charge density wave) and q, ,, to the imaginary parameters 
(current density wave) . I 7  An energy minimum under ther- 
modynamic equilibrium conditions corresponds to a real 
value of 2 if g ,  < 0 and to an imaginary Z if g,  > 0. We shall 
consider the specific case when the relationship between the 
coupling constants is such that a state with a charge density 
wave is realized under equilibrium conditions. 

Arbitrary initial conditions can be applied to a system 
of equations (7)-(8) .  We shall consider initial perturba- 
tions which are symmetric in respect of electrons and holes. 
It then follows from the equations of motion that the phase 
of the gap is constant in time. If there is an initial unbalance 
between the electron and hole branches, then (in addition to 
the time dependence of the gap width) the phase of the gap is 
"rotated." In contrast to a superconductor, when spatially 
homogeneous phase rotation does not result in the observed 
physical consequences, in the present case the different val- 
ues of the phase correspond to fundamentally different phys- 
ical states of the system. In particular, the establishment of 
an unbalance between the electron and hole branches (for 
example, by tunnel injection) may facilitate realization of a 
nonequilibrium state with a current density wave. 

Let us assume that a perturbation symmetric in respect 
of electrons and holes 

is applied at the initial moment in time and let us assume that 
the perturbations of the gap and the correlation function 
f,,(g) are absent at t = 0. Linearization of the system ( 7 ) -  
(8)  and the Laplace transformation gives the following 
expression at T = 0: 

9 1  ' I  

sz ( p )  =- 
d E  I- ' ,  (10) 

wherep is the Laplace variable and 2 is the equilibrium value 
of the gap. The function SZ( p )  has a hole at p = 0 in the 

plane of the complex variablep and exhibits cuts from f 2i2 
to f im.  Bearing in mind that the imaginary part of the 
denominator in Eq. (10) becomes infinite in the limit 
p+ * 2iH, we find that the main contribution in inversion of 
the Laplace transform SZ( p )  is made in the region of 
p = _+ 2iX. 

The final answer corresponding to t-tm can be ex- 
pressed in terms of a zeroth-order Neumann function and it 
is of the form 

"(O) - + 2 (2n)"xrpi ( 2 2 )  
sin (2Z t -n /4 )  sz ( t )  = 

2nzrp2 (0) ( 2 X t )  " I  

, ( 1 1 )  

where 

Therefore, the amplitude of the gap relaxes in accordance 
with the power law and it exhibits oscillations of frequency 
2 2  to a certain state which depends on the initial conditions. 

The distribution functions corresponding to a given 
quasiparticle energy have a damped part associated with 
SI;(t) as well as undamped, in the limit t+m, oscillatory 
terms which are associated with the thermodynamically re- 
versible relaxation process. We then have 

sf,, (EL) =- 
f'" ( E )  XE (1 - cos ~ E L ) ,  

E 

X a  
Re Bj12(Et)  = f ( " ( E )  [I - 7 (1 - cos l a r ) ]  , 

Im 6/ , , (Et )  =Yo' (t)  sin 2e t ,  E= (g2+IX12)'h 

Collective oscillations of the order parameter are asso- 
ciated with the following circumstance. When we specify the 
density matrix at the initial moment of time, this fixes 
uniquely the energy of the system which is conserved in the 
electron subsystem at times shorter then the time for inelas- 
tic collisions with phonons. Since the initial state is arbi- 
trary, it follows that in general it is not stationary. Energy is 
transferred between the Bose condensate of electron-hole 
pairs and quasiparticles. The binding energy of excitons is - 2 2  and the pairing time is - 1/28, which governs the os- 
cillation period. When the exciton condensate dissociates, it 
breaks up into quasiparticles with momenta in the interval - 8/v,, resulting in the loss of coherence and collisionless 
damping. Clearly, the pairing and dissociation processes do 
not disturb the electrical neutrality of the system. 

In constrast to the exponential Landau damping," the 
damping is now of the power-law and this is due to the fol- 
lowing physical factors. The exponential law of the Landau 
damping is due to the fact that in the range of small wave 
numbers k the phase volume of the state which can facilitate 
exchange of energy between electrons and the plasma mode 
is exponentially small in respect of the parameter ka,, 
where a, is the Debye-Hiickel screening radius. There is no 
damping for k = 0. In our case, even when oscillations are 
homogeneous, there is always a possibility of energy transfer 
from the condensate to quasiparticles in an energy interval 
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- Z and vice versa. The phase volume is governed by the gap 
itself and this gives rise to a power-law relaxation process. 

If a perturbation in the distribution of the particles is 
initially strongly localized in energy at the edge of the gap 
(for example, if it is created by illumination with a source 
near the interband absorption edge), in an interval y(Z 
[ f 'O'({) a B2/({ + y Z )  1, the relaxation time of the gap in- 
creases. It follows from Eq. ( 10) that 

6 Z ( t )  -2 cos 2x4 t < ~ , ,  

6z ( t )  -I: sin ( 2 2 - n / 4 )  (nt/'c,)-I", t>z7, 

the timer, may become considerably greater than 1/Z. This 
property of localized perturbations are pointed out by Ku- 
likI9 in the case of superconductors. Slowing down of the 
relaxation may occur also when inelastic processes are acti- 
vated (if the intraband energy relaxation time is shorter than 
the interband time, which is possible if w, ( 2 ) .  In the case 
of a smooth initial distribution the relaxation of excitations 
to the gap edge localizes the distribution. A change in y and 
in the distribution function due to inelastic processes occur 
during the "slow" intraband relaxation time. The gap is 
modified in accordance with the distribution function be- 
cause of collisionless relaxation in a time r,, where y is the 
width of the energy distribution at a given moment in time. 

These solutions are valid at times shorter than the time 
constants of inelastic processes. Oscillations should occur 
also when inelastic collisions become important, but their 
damping is exponential until a local equilibrium state is at- 
tained. This state itself changes during the inelastic inter- 
band relaxation (recombination) time and the gap follows 
these changes in a quasistatic manner. If during the process 
of evolution the system reaches a minimum corresponding 
to the metal phase (Z = 0),  then this minimum disappears 
during the recombination time of the metal phase (since this 
minimum originates from excess quasiparticles). The sys- 
tem returns in an activation-free manner to the semiconduc- 
tor phase. The process of evolution is illustrated n Fig. 1 as a 
function of the concentration of excitations n, and curves 1- 
3 show how a local equilibrium changes in time (n,, > n,, 
> n,, ). The time for the recovery back to the original semi- 
conductor phase with the energy 2 from the intermediate 
state is equal to the gap relaxation time during the kinetic 
stage and it can be estimated from r, - (Zo/Z)rinel  (Ref. 
20), where r,,,, is the characteristic inelastic collision time. 
The disappearance of a barrier in the case of a finite carrier 
lifetime is clearly a common property of first-order transi- 
tions. A similar disappearance of a barrier in tile case of a 
transition from an exciton gas to an electron-hole liquid has 
been confirmed e~perimentally.~ 

We shall now consider the nature of relaxation of the 
initial perturbation in the semiconductor phase under 
strongly nonequilibrium conditions. If the interband relaxa- 
tion time is long compared with the intraband inelastic pro- 
cesses (which is possible if w, (E) ,  then a state of local 
equilibrium is established. The order parameter "fits" the 
distribution function vO(&) in this state which is stationary 
for t<rR ( r R  is the recombination time in this phase). The 

L 

FIG. 1. 

gap is found from the self-consistency equation 

1 
-= J 1-2no (e) 
h e  e at. 

The distribution function no causes vanishing of the intra- 
band collision integrals. In this case there may be undamped 
(again at times shorter than those of inelastic intraband pro- 
cesses) collective modes absent under equilibrium condi- 
tions. The condition for the appearance of undamped oscil- 
lations Z is the vanishing of the imaginary and real parts of 
the function p2(no,w), which is analogous to Eq. ( 11) for 
imaginary p = iw + 0: 

A solution of Eq. ( 13 ) exists if 1 - 2 n , ( ~ )  exhibits an alter- 
nating sign, i.e., if an inverted distribution is realized in a 
certain range of energies. All those requirements are satis- 
fied by a quasi-Fermi distribution with zero temperature and 
we shall consider this distribution by way of example. 

The solutions of Eqs. ( 12 ) and ( 13 ) are 

The total number of excitation is 

1 
n e E -  jd l  no (e), no (e) =0 ( p - e )  , n e =  ( p 2 - - Y )  ", 

2N (0) 

where p is the quasi-Fermi chemical potential. The depen- 
dence Z(n,  ) of Eq. (15) has two branches which merge at 
n,, = Z0/3&, and we find that Z(n,, ) = I;,/3. In the case 
of the upper branch ( 2  > Z0/3) both modes are stable: 
w:,, > 0, whereas for the lower branch [Z(n,  ) < B0/3] the 
first mode is unstable: w: < 0. For a critical value of n,, the 
frequency w: is a linear function of n, - n,, and passes 
through zero, and wi (n,, ) > 0. These modes have been 
found by Aronov and Gurevich for a superconductor by a 
different and in our opinion more complicated method.21 
However, an inverted distribution of quasiparticles does not 
usually appear in superconductors. 

These collective modes can appear at times shorter than 
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the recombination time rR if a quasi-Fermi distribution is 
established during the evolution. Since the formation of this 
distribution is possible only if an allowance is made for in- 
elastic intraband collisions, in reality these modes may be 
damped. 

We shall consider the case of amplitude oscillations of a 
charge density wave. We can readily find the frequency of 
phase oscillations in a charge density wave from Eqs. ( 7 )  
and (8) .  We shall give the answer directly: 

~ ~ = 4 Z ~ ( l / i \ . ~ , - l / A ~ , ) ,  l lh1rn-1lA~e~1~ (16) 
The presence of phase-locking terms in the Hamiltonian ( 1 ) 
leads to gaps in Goldstone modes. In particular, it follows 
from Eq. ( 16) that ifR ,, > A  ,, , then the state with a charge 
density wave is unstable against fluctuations of the gap phase 
which transfer the system to a state with a current density 
wave. 

In the case of triplet pairing a spin density wave ap- 
pears, i.e., the band antiferromagnetism is observed.15 A de- 
viation from equilibrium gives rise to a similar collisionless 
relaxation law of the sublattice magnetizations. 

The thermodynamically reversible nature of the evolu- 
tion in such systems should give rise to collective effects of 
the echo type, known from collisionless plasma studies.22 

COLLISIONLESS EVOLUTION OF PERTURBATIONS IN A 
SYSTEM WITH A STRUCTURAL TRANSITION 

The characteristic features of the spectrum of a semime- 
tal ~ ~ ( p )  = - c2(p  + Q) [and of a one-band metal with 
~ ( p )  = - ~ ( p  + Q )  ] not only give rise to an instability of 
the electron subsystem against Bose condensation of elec- 
tron-hole pairs considered in the preceding section, but are 
also responsible for an instability of the phonon system due 
to the interband electron-phonon interaction.I5 One of the 
examples of such systems are 11-VI semiconductor com- 
p o u n d ~ . ~  

In this section we shall consider the dynamics of a tran- 
sition in a system in which the SM transition is due to the 
electron-phonon interaction. For simplicity, we shall con- 
sider the case when the polarization vector of unstable phon- 
ons has one component. For example, in the case of IV-VI 
semiconductors such an instability corresponds to the tetra- 
gonal deformation of the cubic lattice. 

The Hamiltonian of the system is of the form 

where b and B - Q +  are the phonon operators; g,, is the 
electron-phonon interaction constant. 

In this case, in addition to the electron correlation func- 
tions, we shall specify the condensate averages at the initial 
moment: 

(bQ(t) >=(bQ(to) > exp { io~( t - to )} ,  

(18)  
( b-Q+ ( t )  )=(b-Q+ ( to)  > exp {- io~( t - to) ) .  

The structure of the equations for the Green functions is 

similar to that in the  receding section except that, instead of 
the self-energy part Z12, we now have the phonon conden- 
sate averages. The collisionless kinetic equations for the re- 
normalized distribution functions averaged over the angular 
variables are 

The equation for the phonon condensate average is as fol- 
lows: 

(g + W Q ' ) ~  ( t )  =2gPd(0)  1 d l  He f12 (St). (20) 
u 

In this case the energy integral is 

The first term in Eq. (21) represents the energy of quasi- 
particles, the second and third terms are the kinetic and po- 
tential energies of the classical phonon condensate field. Un- 
der equilibrium conditions (li=O, u # 0 )  Eq. ( 2  1 ) gives the 
energy of the insulator (semiconductor) phase. The equilib- 
rium values at T = 0 are 

fll(E) =Sic, fiz(E) =XI&, Z=gphu, &=(SZ+ Z2)'h,(22) 

and the energy is 
ee 

Variation of the energy over the gap gives the usual equation 
for the gap with the coupling constant A,, = 4gth N(O)/wh. 

We shall now consider the evolution of small perturba- 
tions. We shall assume that initially a symmetric perturba- 
tion of the distribution functions of particles (electrons and 
holes) is applied. The gap in the electron spectrum and the 
anomalous phonon averages are assumed to be in equilibri- 
um at t = 0. Linearization of Eqs. ( 19) and (20) gives, after 
Laplace transformation, 

6/,i ( t t=0)  =-6fZ2(tt=O) = (El&) Gn, (24) 

where Sn is a perturbation of the quasiparticle distribution 
function. The time dependence Su ( t )  is determined by ana- 
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lytic properties in the complex plane ofp corresponding to 
the right-hand side of Eq. (24). 

Near the imaginary axis we find that the denominator 
ofEq. (24) isdescribedby ( p  =iw + 0 ) :  

E l  

0'-0' (4&'+oQZ) +4220q' in 
93 ( 0 )  = f dE + - 0 q 2  

o 8 ( 4~ ' -a2 )  0 

X (a2-42') '"0 (a2-42)  sign o .  ( 2 5 )  

The function p3 (0) has cuts on the imaginary axis from 
+ 2iZ to im . Moreover, p3 (w ) has two poles for real 

values of w (a2 < 4Z2). The poles satisfy the equation 

0 ' [X2- ( 0 / 2 ) 2 ] ' h  012 
~n (<)= arctg 

("Q 012  [EL ( ( 0 / 2 ) ~ ] ~ ' ~  
. (26) 

The left-hand side of Eq. (26) is a parabola and the right- 
hand side is a function which decreases from 1 at w = 0 to 0 
at w = + 22; therefore, there are always solutions with a 
frequency O<f$, <4X2. In the case when w~ /X+co, the 
poles f flph are driven to the edges of the cuts & 22. 

Inverse Laplace transformation of Su ( p),  subject to 
Eqs. (25) and (26), gives (for t-+m ) 

- 8n"'oQ229 (22) cos (2%-nI4) 

h ~ h  (2%)" ' (27) 

where Su, ( t )  is an undamped oscillatory function: 

Therefore, when the electron subsystem is excited, the 
amplitude of the sublattice displacement Su(t) exhibits, 
after a long time, undamped oscillations (if no allowance is 
made for inelastic processes) at the renormalized phonon 
frequency a,,. The terms in Su ( t )  which show a power-law 
decay with time (damping) are related to the loss of coher- 
ence in the electron subsystem. This analysis is valid for any 
value of the adiabaticity parameter o,/Z. 

In reality, the formation of a gap as a result of the SM 
transition is influenced by the Coulomb and electron- 
phonon interactions at the same time. A study of collision- 
less evolution of perturbations allows us, in principle, to sep- 
arate the contributions of the Coulomb and electron-phonon 
interactions because of their different time asymptotes. 

Perturbations which are not small were modeled nu- 
merically. The initial state of the system was described by the 
density matrix 

FIG. 2. 

where 2 is the gap in the absence of excitations and n ( E )  is 
the distribution function of quasiparticles at t = 0, selected 
in the form 

The total number of excitations is 

In the case when the number of nonequilibrium excita- 
tions is less than the critical value, the system exhibits coher- 
ent oscillations and remains in the semiconductor phase (the 
gap does not pass through zero, as demonstrated by curve 1 
in Fig. 2, corresponding to n, = 0.1 ). On increase in n, the 
system passes through states with Z = 0, i.e., through the 
metal phase (curve 2 in Fig. 2, n, = 0.2). The critical value 
of n, depends on the nature of the density matrix at the 
initial moment in time. 

CONCLUSIONS 

We shall now consider the qualitative features of the 
dynamics of a transition in group IV semiconductors (Si, 
Ge). In the case of these substances there are several phases 
with similar energies. Under normal conditions only the dia- 
mond phase is stable and the rest are unstable or metastable. 
Transitions to other phases are possible under equilibrium 
conditions when pressure and temperature are varied.23 It is 
shown in Ref. 4 that transitions to other phases may occur 
when the density of nonequilibrium carriers is altered. The 
analysis in Ref. 4 is valid at times longer than the time con- 
stants of transient processes in a system and the system is 
already in a local energy minimum. 

It follows from our investigation that, in principle, tran- 
sitions between different phases are possible even before the 
kinetic stage. In the case of Si and Ge such oscillations 
should be strongly damped for the following reasons. The 
characteristic times of transitions in the electron subsystem 
are of the order of l/Eg - 10-l5 sec, where E, is the gap in 
the electron spectrum. During such a time interval there are 
oscillations of the covalent charge at the bonds (for fixed 
positions of the nuclei). The damping time of these oscilla- 
tions due to "inelastic" collisions within the electron subsys- 
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tem is - 10-14-10-l5 sec (when the concentrations are - lo2' crnp3-see Refs. 3 and 24). The changes in the lattice 
occur in a time of - 10-l3 sec, and, therefore, because of 
rapid relaxation in the electron subsystem the lattice vibra- 
tions should be strongly damped. 

Clearly, the most suitable semiconductors for the obser- 
vation of coherent transitions between phases are those of 
the IV-VI typee6 Structural transitions occur in them in ac- 
cordance with the Peierls mechansim and, moreover, the 
displacements of the sublattices amount to a few percent of 
the lattice constant. Therefore, the concentrations of excita- 
tions at which transitions between phases become possible 
amount to - 1019-1020 ~ m - ~ ,  which are one or two orders of 
magnitude less than for Si and Ge. 

The authors are grateful to I. M. Suslov and S. G. Tik- 
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