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The anisotropy of the upper critical field near T, in a cubic crystal and in the basal plane of a 
tetragonal crystal is calculated for the case in which the superconducting order parameter trans- 
forms under one of the degenerate representations of the rotation group. In the basal plane of a 
hexagonal lattice, there is no anisotropy of He, near Tc, regardless of the nature of the supercon- 
ducting phase. 

1. INTRODUCTION 

The superconductivity which has recently been ob- 
served in systems with so-called heavy fermions [UBe,, 
(Ref. I ) ,  UPt, (Ref. 2 ) ,  CeCu,Si2 (Ref. 3) ,  U,Fe (Ref. 4), 
etc.] has several distinguishing features. The most impor- 
tant new fact is the power-law dependence of such properties 
as the electronic specific heat and the ultrasonic absorption 
coefficient which is observed experimentally in these sub- 
stances at low temperatures. This power-law behavior is evi- 
dence that the energy gap vanishes at certain points or on 
entire lines on the Fermi surface. These results have inspired 
several guesses regarding the mechanism for and the type of 
the superconductivity. In particular, it has been suggested 
that the superconducting phases which are observed are of a 
triplet-pairing type and that their properties are analogous 
to the superconducting properties of the A phase of ,He 
(Ref. 5).  A list of the possible superconducting classes6 indi- 
cates that the gap may vanish at certain points on the Fermi 
surface in the triplet case (more precisely, for an order pa- 
rameter which is inversion-odd) . In a singlet phase (with an 
even order parameter), there may be points and even lines on 
the Fermi surface on which the order parameter vanishes. 

The properties of the superconducting phase which de- 
velops, e.g., its analogy with the A phase of 3He, depend on 
the particular representation of the symmetry group of the 
crystal which this phase arises from, more precisely, which 
representation of this group corresponds to the transition 
temperature which determines the points of the instability of 
the normal metal with respect to a transition to a supercon- 
ducting state. Because of the strong spin-orbit coupling (all 
these compounds contain heavy atoms) the spins are "fro- 
zen" in the lattice, greatly simplifying the analysis. Because 
of the center of inversion, the order parameter has a definite 
parity, giving us a natural generalization of a classification 
on the basis of the resultant spin of the pair (i.e., S = 0 or 
S = 1 ). The remaining transformations of the point rotation 
group give us, e.g., in the case of the cubic group (for the 
UBe,, crystal), five irreducible representations, of which 
two are one-dimensional, one is two-dimensional, and two 
are three-dimensional. Gor'kov7 has pointed out that if one 
of the multidimensional representations is involved then the 
anisotropy of the upper critical field Hc2 should be manifest- 
ed even near Tc and even in the case of a cubic crystal. Gor- 
'kov7 considered one example ( a  simplified example) of this 

type of anisotropy of Hc2 in the basal plane of a tetragonal 
crystal. 

In the present paper we analyze in detail the possible 
anisotropy of H,, for cubic, tetragonal, and hexagonal sym- 
metries. Exact analytic expressions are derived for cases cor- 
responding to tetragonal and hexagonal symmetries (more 
on this below). For the cubic group, we are obliged to resort 
to numerical calculations. Machida et a1 have recently car- 
ried out a variational calculation for the field lying in the 
basal plane in the case of tetragonal and cubic groups. For 
tetragonal symmetry, we find an exact analytic expression in 
the present paper, while for cases not amenable to analytic 
solution we find more comprehensive and more accurate 
results of a direct numerical solution of the equations for the 
stability conditions. 

We remind the reader that we are considering here only 
degenerate representations of the point rotation groups, 
since for one-dimensional representations there is no aniso- 
tropy of the field Hc2 in the approximation of the Ginzburg- 
Landau functional, i.e., at ( Tc - T) (Tc (Ref. 9 ) .  

2. FORM OF THE GRADIENT TERMS IN THE GINZBURG- 
LANDAU FUNCTIONAL 

We expand the order parameter in the basis functions of 
the corresponding irreducible representation: 

yhere the transformation properties of the basis functions 
@, (p)  under rotations of the lattice can, as usual, be trans- 
ferred to the transformations of the coefficients vi. 

a) Tetragonal group 

We consider the tetragonal group D, (CeCu,Si, and 
U,Fe are cases of this group). The group D, has a single 
degenerate representation: a two-dimensional representa- 
tion whose basis functions transform as coordinate unit vec- 
tors under lattice rotations. The particular form of the basis 
functions is given in Ref. 6 for S = 0 and S = 1 for both 
tetragonal and other crystal symmetries. The free energy is 
invariant under the elements of D, (i.e., rotations of the lat- 
tice and also, as mentioned above, of the spins). Consequent- 
ly, the general form of the second-order terms of the Ginz- 
burg-Landau functional (including gradient terms) is 
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where a, = V, - 2ieAk/c are gauge-invariant derivatives, 
a a ( T, - T), z is a fourfold axis, and i, j represent x, y. 

In the gradient term of the free energy F, the tetragonal 
invariant a tvTaivi is important in addition to the invariants 
of cylindrical symmetry with respect to the z axis. 

b) Cubic group 

The cubic group 0, (e.g., UBe,,) has three degenerate 
representations: one two-dimensional representation, E, and 
two three-dimensional representations, F, and F, (here and 
below, the notation used for the representations of the point 
groups is that of Ref. lo) .  

For the two-dimensional representation E, the basis 
functions can be chosen to transform in accordance with 

where E = e x p ( 2 4 3 ) .  We introduce 

where x, y, z are unit vectors along the coordinate axes. The 
gauge invariants are then of the form 

In the case of the three-dimensional representation F,, 
the basis functions transform as unit vectors along the 
coordinates, and we find, by analogy with ( 1 ), 

Only the last version in (3)  is purely cubic; the others are 
spherical. 

The basis functions of the representation F2 transform 

1 1 + - d,*qi'd,qi +-[ (d,'qfax~lu+c. c.) - (d,'q,,'dvqx+ c. c . )  
2% 2m3 

where z is a sixfold axis, and i, j = x, y. 
In the case of representation E2, the basis functions 

transform in accordance with @ , = ( x + i y ) , ,  
Q2 = ( X  - iy12. Introducing V, = xi?, + iyd,,, V, = xa, 
- iya,,, we find invariants analogous to ( 2 ) :  

3. STUDY OF THE ANISOTROPY OF THE FIELD H,, 

Varying the free-energy functional with respect to g:, 
we find an eigenvalue problem from which we can determine 
those values of the field H at which the medium becomes 
unstable with respect to the formation of a nucleating region 
of the superconducting phase. 

We consider various orientations of the field with 
respect to the lattice in a cubic crystal and also in the basal 
planes of tetragonal and hexagonal crystals, i.e., cases in 
which BCS superconductors have a completely isotropic 
upper critical field H,, . 

a) Tetragonal group 

Varying ( 1) with respect to v,* and v:, we find 

This problem was solved by a variational method in Ref. 8. A 
solution for the case P2 + P, = 0 was given in Ref. 7. As it 
turns out, a general solution exists. 

We assume that the field lies in the xy basal plane of a 

in accordance with 

@x=es,z~, @,=eUzsy, @.=erxyz 

(a  repeated index does not imply a summation), where e,,,,, 
is the antisymmetric unit tensor. The gradient invariants 
obviously remain the same as in the case of the representa- 
tion F,. 

c) Hexagonal group 

The hexagonal group D, (e.g., UPt,), has four one- 
dimensional and two two-dimensional representations, E,  
and E2. For the coordinate representation El, the gradient FIG. 1. The H, rosette in the basal plane of a tetragonal crystal. a- 
part of the free energy is P,:P2:P3 = 1:l:O; b-1:1:1/2; C-1:l:l; d-1:1:2; e-1:1:4; f-1:l:lO. 
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tetragonal crystal: H = (H cos p, H sin p,  0) .  We choose 
the vector potential in the form A = (Hzsinp, 
- Hz cos p,  O), and we seek a solution in the following form 
[since the coordinatesx and y enter (6)  only through deriva- 
tives] : 

The component of the vector k perpendicular to the 
field causes only a displacement of the nucleating region 
along z. With k = 0 we find from ( 6 )  

+ 2 ~ 2  (T c ~ ) ' . z '  sin %q,, 

e a2 (7)  
-aqu=2P2 (_  H )  z2q, sin ~ v + P .  q, a z 

- [p1+ (p2+p3) cos2 9](: H)' Pq,,. 

The differential operator in (7)  can be reduced to diagonal 
form through the rotation v i  = cijq;, where 

After some straightforward manipulations, we find the max- 
imum value of H at which there is a solution which vanishes 
in the limit lzl-+m: 

- 

(8 
In the case of a nonzero k, we can no longer solve (6)  

analytically, but it has been shown by numerical methods 
(by the "matrix run-through" method) that a nonvanishing 
k lowers H,,, from the value in (8) .  Accordingly, the de- 
pendence of Hc, on the direction in thexy plane of the tetra- 
gonal lattice is represented in (8) .  Figure 1 shows the Hc2 
"rosette" in the basal plane for various values of the ratios 
P,:P2:P, [the shape of the rosette does not depend on P,, as 
can be seen from (8)  1. 

b) Cubic group 

For representation E we find, by analogy with ( 6 ) ,  

9" 18' 27' J6' 45" 

4" 
FIG. 2. H in the ( 100) plane; q is the angle between H a n d  the [ 1001 axis. 
a-P,:P, = 11:3; b--10:5; c-10:8. 

If the field is parallel to the [ 1101 axis of a cubic crystal, we 
find the following result, working as in the preceding case: 

In particular, with P = 0 the field Hc2 is isotropic and equal 
to ac/2ePl. 

The dependence of Hc2 on the direction cannot be ex- 
pressed analytically for an arbitrary orientation of the field, 
but it can be calculated to arbitrary accuracy by the matrix 
run-through method. Figures 2 and 3 show results calculat- 
ed for the cases in which the field lies in the ( 100) and ( 1 10) 
planes, respectively, of a cubic lattice for various ratios 
P,:P2. The minimum value of Hc2 is reached in the [ 11 1 ] 
direction, while the maximum value is reached in the [ 1001 
direction. The nature of the anisotropy depends on only IP, 1 ,  
so we need not study the case of negative P,. 

Figure 4 shows the case in which the order parameter 
transforms under one of the three-dimensional representa- 
tions of the 0, group [the field is in the ( 100) plane]. The 
[ 1001 directions may correspond to either a maximum or a 
minimum ofHc2, depending on the ratios Pl:P2:P3. IfP, = 0, 
the field Hc2 is isotropic [since the remaining invariants in 
(3)  are spherical], equal to (ac/2e) (P: - ~ : / 4 )  -'I2. 

For all representations of the cubic group, as in the 
tetragonal case, Hc2 is reached at a zero k. The quantity 
Hc2 (p)/Hc2 (0)  shown in the figures does not depend on T 
in the Ginzburg-Landau approximation. 

FIG. 3. H in the (1  10) plane; 0 is the angle between H and the [ loo]  
plane. a, b, c-The same as in Fig. 2. 
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FIG. 4. H in the ( 100) plane. a-P,:P,:P, = 10:3:2; b-2:2;1; c-1:l:l; 
d-2:2:( - 1 ) .  

c) Hexagonal group 

The representations of the D6 group can be studied ana- 
lytically. For E,, for example, we find from (4 )  

d Z  
-uq,=P, - 9.- (P ,+P,  cos2 q+P, sin 2q) a z2 

P, sin ~ q 3 - p ~  cos 2q1) (; H ) 2z2qy 

1 2e 
(10) 

-a,.= (- P, sin 2q-P, cos 2qI) ( - H )  zzqx 
2 C 

d + P. --r qu- (Pl+P2 sin2q-P, sin 2 9 )  (:IT)' z2qv. 
d z 

Transforming v i  by analogy with the tetragonal case, we 
find 

An analogous result is found for the representation E,; 
i.e., H,, is isotropic in the basal plane of a hexagonal crystal, 
regardless of the nature of the superconducting phase. 

4. CONCLUSION 

In summary, an anisotropy of the field Hc2 can be ob- 
served in heavy-fermion superconductors even near Tc and 
even in the case of a cubic crystal or in the basal plane of a 
tetragonal crystal. The experimental observation of this ef- 
fect would be of decisive importance for establishing the 
nontrivial nature of the superconducting phase. In the basal 
plane of a hexagonal structure, Hc2 is isotropic near Tc,  re- 
gardless of the nature of the phase, as we have shown above. 
Most superconducting classes6 with a gap which vanishes at 
the Fermi surface belong to degenerate representations of 
the corresponding groups. Establishing the nature of the 
anisotropy of H,, would be of assistance in determining the 
class of a given superconductor, although the anisotropy 
would be identical for the cases S = 0 and S = 1. A degener- 
acy may be lifted by internal stresses in a crystal. 

I am deeply indebted to L. P. Gor'kov for assistance 
throughout this study and to D. E. Khmel'nitskiT for useful 
discussions. 
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