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Experiments on the antiferromagnets CsMnF, and CsMnCl, have revealed anomalies in the 
behavior of the relaxation rate y, of nuclear spin waves (NSWs); these anomalies find a natural 
explanation when the contribution toy, due to relaxation of the electronic spin waves (ESWs) is 
taken into account. Direct confirmation of such a contribution comes from the presence of mag- 
non-phonon peaks in the relaxation of NSWs with wave vectors corresponding to the crossing 
points of the ESW spectrum with the spectra of transverse or longitudinal acoustic waves in 
CsMnF,. In addition, a hexagonal anisotropy of the threshold for the parametric excitation of 
NSWs has been observed in CsMnF, on rotation of the magnetic field in the basal plane of the 
crystal. This anisotropy reproduces the corresponding angular dependence of the ESW excitation 
threshold. For pump frequencies in the interval v, = 760-790 MHz (in which the hardness of the 
parametric excitation is maximum) there is a resonant enhancement of the contribution to the 
NSW relaxation from the "longitudinal" magnon-phonon peak. It is conjectured that the anoma- 
lies observed in this frequency interval are of a dislocation nature. The contribution y:' of the 
electronic subsystem to the NSW relaxation rate is calculated theoretically, and it is shown that 
there is a region of parameters in which the width of the NSW spectrum is governed mainly by 
yl" 

INTRODUCTION appreciable effect on the NSW relaxation rate. Moreover, in 

Systems with several degrees of freedom typically ex- a "umber of cases the damping introduced from the elec- 

hibit coupled oscillations involving the simultaneous parti- tronic branch the spectrum turns Out be the main 

cipation of two or more subsystems. The normal modes of source of the NSW relaxation. The necessity of taking this 

the coupled oscillations can differ noticeably form the origi- additional broadening of the NSW spectrum 
rial "pure" modes; in addition to the change in the spectra of pointed Out the in an paper.' 
the oscillations there are changes in the relaxation param- 
eters. For example, the normal coupled oscillations become 
damped if even just one of the consituent pure modes is 
damped. In this paper we study the relaxation of the coupled 
oscillations for the particular example of the system of elec- 
tronic and nuclear spins in antiferromagnets. 

In weakly anisotropic antiferromagnets at low tempera- 
tures the dynamic hydperfine interaction leads to a strong 
intermixing of the oscillations of the electronic (e)  and nu- 
clear ( n )  spins. As a result, the spectra of the original pure 
modes (electronic magnons and nuclear magnetic reson- 
ances) repel each other; here the spectrum of the electronic 
spin waves (ESWs) remains practically unchanged, while 
the structure of the spectrum in the region of the NMR fre- 
quencies changes substantially: collective nuclear-electronic 
excitations, the so-called nuclear spin waves (NSWs), arise. 
It is noteworthy that the spatial dispersion in the NSW spec- 
trum (on, ) is entirely "transformed in" from the electronic 
subsystem, and the nuclear subsystem itself becomes para- 
magnetic at liquid-helium temperatures ( (I )/I- 1 %, I is 
the nuclear spin). The NSW spectrum was first calculated 
by De Gennes et al.' The possibility that the NSW damping 
is renormalized because of the finite width (Ao,, ) of the 
ESW spectrum was discussed by Turov and K ~ l e e v . ~  On the 
basis that study it can be concluded that Ao,, has a small 
effect on the relaxation of nuclear magnons. Our experimen- 
tal results, however, indicate that the ESW damping has an 

CALCULATION OF THE RELAXATION OF COUPLED 
OSCILLATIONS 

In this section we consider the problem of finding the 
linewidths of two coupled oscillations. The most systematic 
method of solving this problem is to seek the line shapes of 
the new normal modes of the system with allowance for the 
coupling by proceeding from the known line shapes of the 
original pure modes. Recall that the shape of the resonance 
line f , ( n )  is the normalized weight function according to 
which the statistical-average parameters of the oscillation, 
the moments A , ,  are determined4: 

+a, 

here o, is the eigenfrequency of the oscillator and n 
= 1, 2, ... . For example, for a harmonic oscillator with no 

damping 

f 1  (62) =6 (a-0,) , A , = O .  ( 2 )  
If an interaction is turned on between two oscillators 

with known eigenfrequencies o, and o,, and line shapes 
f , ( n )  and f , ( n )  the line shape of any new normal mode of 
this coupled system can be represented in the form 

+ m 
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where L,(n,, a,) is the frequency of the corresponding nor- 
mal mode as obtained from the characteristic equation. This 
expression reflects the fact that the line shape of the normal 
mode is formed with allowance for the interactions between 
the different spectral components of the original oscilla- 
tions, taken with the corresponding weight factors. For sym- 
metric f, (a) and f,(n) one can easily obtain from formula 
(2)  an expression for the moments of the normal modes: 

+or 

in =Jj  [ w l ,  Q , ) - ~ U , ,  a,) I ~ ~ , ( Q . ) ~ ~ ( Q ~ ) ~ Q ~  d ~ , .  (3)  
- m 

Expressions (2)  and ( 3 ) give the general solution of the 
problem of finding the linewidths of the normal modes of 
two coupled oscillations or, in other words, the renormaliza- 
tion of the relaxation rates of two coupled oscillators, since 
the relaxation rate y is directly proportional to the half- 
width of the resonance line at half-height. For example, the 
half-width of a Lorentzian line is expressed in terms of the 
moments as4 

~a = ($.&- "' 1". 
Jf ' 

If the frequencies of the interacting oscillations are 
rather widely spaced (ol>w,), formula (3)  simplifies to 

Just such a situation is realized in the system of coupled 
electronic-nuclear spin oscillations in weakly anisotropic 
antiferromagnets. Here as the original pure modes we can 
take: 

1) electronic magnons of the quasiferromagnetic 
branch of the spectrum, with a frequency 

where H is the external magnetic field, HD is the Dzyalo- 
shinskiy field, H a T - ' is a parameter characterizing the 
static hyperfine interaction, g = 2 is the spectroscopic fac- 
tor, p, is the Bohr magneton, and a is the inhomogeneous 
exchange constant; 

2) the free precession of the nuclear spins of magnetic 
atoms having an NMR frequency 

o ,=A(S> / f i ;  ( 7 )  
where A is the hypertine interaction constant and ( S  ) -,S is 
the electronic spin. 

If we neglect the transverse (dynamic) part of the hy- 
perfine interaction, which couples the circulating compo- 
nents of the electronic and nuclear spins, the oscillations 
mentioned above are normal modes. Here the ESW has a 
Lorentzian line shape with a half-width Ao,, /2n 2 0.1 MHz 
at we, /2n- 10 GHz (i.e., a Q of 5 loS). At the same time the 

line shape of the free precession of the nuclear spins can be 
regarded as a 6 function, since its width, which is due to the 
longitudinal fluctuations of the spins of the electron shells,' 
is negligible, being estimated as Ao, /2n 5 0.1 Hz (i.e., at 
on/2n-0.5 GHz the Q is 2 5 . lo9). 

Allowance for the transverse part of the hyperfine inter- 
action leads to an intermixing of the oscillations of the elec- 
tronic and nuclear spins. Here the spectrum of the normal 
"quasi-electronic" modes remains practically unchanged's6: 

The relaxation rate of the ESWs also remains practically 
unchanged, since the contribution from ESW and NSW in- 
teraction processes is small.' 

At the same time, however, in the region of the NMR 
frequencies there is a substantial restructuring: Nuclear spin 
waves arise, with a spectrum 

In addition, the Lorentzian line shape of the ESWs is "trans- 
formed" to the NSW branch. From formulas (4)  and (5)  we 
easily obtain an expression for the rate of the NSW relaxa- 
tion introduced from the electronic branch: 

here ye is the relaxation rate of the pure ESWs. This contri- 
bution adds to those of the other NSW relaxation processes. 
It should be noted that the foregoing descussion and the for- 
mulas obtained are valid when the dynamic shifts of the 
NMR frequency are not too small, namely, for 
on - on, )AoSN, where AosN/2a- 1 MHz is the Suhl-Na- 
kamura linewidth of the NMR" (this linewidth stems from 
the indirect transverse interaction between nuclear spins). 

In concluding this section we note that the renormaliza- 
tion of the relaxation properties of interacting oscillations is 
usually described by a model method in which the equations 
of motion are supplemented by phenomenological relaxa- 
tion terms.9s10 This method of calculating the damping of 
coupled oscillations is not always satisfactory, however, 
since in a number of cases it leads to nonphysical results. 
This is most simply demonstrated in terms of the Hamilton- 
ian variables a,*, aj ( j = 1, 2 ) .  In this case the equations of 
motion are of the form (the equations for a,' are the complex 
conjugates) : 

where d and %7 are the coefficients of the bilinear form in 
the interaction Hamiltonian, and y, and y, are the relaxation 
parameters of the original pure modes. For ol)w,, y,(o, 
and y, = 0 the characteristic equations give 
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It is easy to see that for 

Id~/1a(>1+202/0, 

the quantity y, becomes negative, i.e., the physical meaning 
of relaxation is lost. 

Turov and Kuleev2 calculated the renormalization of 
the relaxation in the coupled electronic-nuclear system of an 
antiferromagnet by adding a dissipative term to the Landau- 
Lifshitz equation. They obtained a conversion coefficient for 
the transformation of the electronic relaxation into nuclear 
relaxation that differed by a factor of w, /we, 4 1 from that 
implied by a calculation based on the line shapes ( 10). 

EXPERIMENTAL RESULTS AND DISCUSSION 

Parametric NSWs were excited by a parallel microwave 
pump over a wide range of frequencies (w,, / 2 ~  = 300-600 
MHz. The measurements were made on single-crystal sam- 
ples of the easy-plane antiferromagnets CsMnF, and 
CsMnC1,. The experimental apparatus and the technique 
used to measure the relaxation rate of parametric NSWs 
have been described elsewhere.' ' We chose the given crystals 
as objects of study because the relaxation of both the 
ESWS'~-" and the NSWS~,", '~ has been studied in detail, 
and the ESW relaxation in CsMnF, exhibits a number of 
clear features which, owing to the renormalization, should 
also be reflected in the NSW relaxation. These features in- 
clude, first of all, two magnon-phonon peaks on the curve of 
the ESW relaxation rate as a function of the wave vector, due 
to the crossing of the ESW spectrum with the longitudinal 
and transverse acoustic branches,12 and also the presence of 
hexagonal anisotropy of the threshold for parametric excita- 
tion of ESWs.14 The relative increase in the ESW relaxation 
rate at T z 2  K in the regions of the crossings with the trans- 
verse and longitudinal acoustic branches is -30% and - 3%, respectively.12 If the renomalization of the NSW re- 
laxation occurs as discussed above, then these peaks (in any 
case, the stronger of them) should also be reflected in the 
NSW relaxation. We note that the crossing of the NSW spec- 
trum with the acoustic branches occurs at very small values 
k- lo4 cm-' and, consequently, cannot mask the expected 
effect. As is seen from ( 9 ) ,  for w,, = const the frequency 
we, of the ESWs with which the parametric NSWs interact 
changes with temperature T in such a way that (&,HA / 
he, ) 2  = 1 - 6 = const. Since the crossing point of the 
ESW and phonon spectra is determined from the condition 
v, k * = w:, (where v, is the sound velocity), under the ex- 
perimental conditions we have ( H A  /k * )  = const, i.e., 
k * c T -'I2. The exact expression is 

Figure 1 shows the k dependence of the NSW relaxation 
rate in CsMnF,. In addition to a rapid growth of the relaxa- 
tion at large k (i.e., small H )  due to scattering of the NSWs 

t u  
0 1,O 1,5 a k ,  kOe 

FIG. 1. Behavior of the NSW relaxation in CsMnF, in the coordinates 
(T/Tak) at a pump frequency v, = 1022 MHz at two temperatures: 4.23 
K (filled dots) and 3.03 K (open dots). The arrows indicate the positions 
of the transverse magnon-phonon peak. 

by domain walls, one sees a relaxation peak corresponding to 
the crossing of the ESW spectrum with the transverse acous- 
tic branch. The temperature dependence of the position of 
the peak (Fig. 2) is described well by formula ( 1 1 ) . 

The relative increase ( =: 5%)  in the NSW relaxation 
rate at the peak is in approximate correspondence with the 
renormalization ( z 8%) expected from formula ( 10) for 
NSWs of such a frequency. The reason why the second mag- 
non-phonon peak corresponding to the longitudinal phon- 
ons is not seen in Fig. 1 is that the weak coupling of the ESWs 
with longitudinal phonons should make the amplitude of 
this peak about an order of magnitude smaller than that of 
the observable "transverse" peak, i.e., smaller than the mea- 
surement error of the NSW relaxation rate. As the pump 
frequency was decreased, however, we found a narrow fre- 
quency region vp = 760-790 MHz in which the longitudinal 
magnon-phonon peak in the NSW relaxation could be reli- 
ably observed (Fig. 3) ,  and the amplitude of the peak at 
vp = 775 MHz was about an order of magnitude larger than 
would be expected on the basis of renormalization for NSWs 
with a frequency of 387 MHz. The temperature dependence 
of the position of this peak is shown in Fig. 2. 

In addition to the magnon-phonon peak (H = 0.8-1 
kOe; Fig. 3 )  we see near the maximum pump field a step 
corresponding to k=: k */2=:0.5 . lo4 cm- '. since k is inde- 
pendent of the NSW frequency and the temperature, it can 

FIG. 2. Temperature dependence of the positions of the transverse (open 
dots, Y, = 1022 MHz) and longitudinal (filled dots, v, = 775 MHz) 
magnon-phonon peaks in the NSW relaxation of CsMnF,, in the coordi- 
nates ( ak  *,HA a T- ' Iz) ,  in which the theoretical curves should be 
straight lines passing through the origin [Eq. ( 11 ) 1. 
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FIG. 3. Threshold field h,, versus H,, in CsMnF, at T = 1.86 K for differ- 
ent pump frequencies. The scale along the ordinate corresponds to the 
curve for v, = 775 MHz. For clarity the other curves have been shifted 
along the ordinate with no change in scale, since the values of h,, in a field 
H,, = 1.0 kOe are the same for all the frequencies to an accuracy of * 10%. 

be assumed that this step is due to a size effect with a charac- 
teristic parameter I = 277-/Lz 1.2. cm. It is possible 
that the enhancement of the magnon-phonon peak is also 
due to this effect, as it is observed for a NSW wavelength of 
A = 1/2. 

As we have said, the slope of the straight lines in Fig. 2 is 
determined from ( 11 ). The experimental values we have 
used for the parameters of the ESW and phonon spectra are: 
a = (0.95 + 0.1) . lop5 kOe crn;l3 
v$ = (4.60 f 0.03) . 10' cm/sec; u i  = (2.33 + 0.03) . lo5 
cm/sec;19 H = (6.4 + 0.2)/ T kOe2/K.'0 We easily find 
the ratios k :,, /k :,,, = 1.2 + 0.2 and 1.0 + 0.15, respec- 
tively, for the longitudinal and transverse magnon-phonon 
peaks. 

Another distinct feature of the ESWs in CsMnF, is a 
marked hexagonal anisotropy of the parametric-excitation 
threshold2' h,, on rotation of the external field H in the basal 
plane of the crystal.14 Since h,, characterizes the ESW relax- 
ation at nearly thermal occupation numbers (and it is the 
influence of the linewidth of thermal ESWs that is responsi- 
ble for the renormalization of the NSW relaxation), one can 
expect the presence of hexagonal anisotropy for both para- 
metric-excitation thresholds (h,, and h,, ) for NSWs. 

Figure 4 shows how the threshold fields for the parame- 
tric excitation of NSWs in CsMnF, depends on the direction 

FIG. 4. Threshold fields h,, and h,, for the parametric excitation of 
NSWs in CsMnF, versus the direction of H in the basal plane ofthe crystal 
(q, = 0 corresponds to the two-fold axis of the crystal): T =  1.95 K, 
H,, = 0.94 kOe, v, = 784 MHz. 

of H in the basal plane of the crystal. We see that there is a 
sharp hexagonal anisotropy of both threshold fields, and the 
relative increase in the threshold h,, at the peaks ( - 1.7) 
corresponds well to the value expected on the basis of ( 10) 
and the results of Ref. 14. We note that the absolute increase 
in the thresholds h,, and h,, at the peaks is approximately 
the same (-0.015 Oe); this is probably evidence that the 
intrinsic anisotropy in the NSW system is weak. 

There is yet another important circumstance. When the 
field H is in the directions corresponding to the maxima of 
h,, and h,, in Fig. 4, the longitudinal magnon-phonon peak 
introduced into the NSW relaxation from the electronic 
branch of the spectrum is an order of magnitude weaker in 
any case than for the other directions of H. This is evidence 
of the anisotropic character of the mechanism responsible 
for the enhancement of the renormalization of the longitudi- 
nal magnon-phonon peak for pump frequencies in the range 
v, = 760-790 MHz. 

Let us now turn from the resonance features to the total 
NSW relaxation, which can be determined to a large extent 
by the width of the ESW spectrum. It is known that the ESW 
relaxation in antiferromagnets with a strong hyperfine inter- 
action at low temperatures ( T S  2 K )  and in weak magnetic 
fields (H S  2 kOe) is governed by the elastic scattering of 
ESWs by fluctuations of the longitudinal component of the 
nuclear magnetization. This mechanism was first studied 
theoretically by Woolsey and White,21 and the contribution 
of this process to the ESW relaxation in CsMnF, and 
CsMnCl, was detected experimentally in Ref. 17. With 
allowance for renormalization ( 10) the contribution of this 
process to the NSW relaxation can be written 

where Vo is the volume of the cell, J,=gp, H E / S  is the ex- 
change constant, and 0,--gp,a/V~'3k, is a quantity of 
the order of the NCel temperature. 

In this region of the external parameters the NSW re- 
laxation without allowance for the renormalization due to 
the ESWs (we denote the corresponding relaxation rate by 
y, ) is also due to elastic scattering of the nuclear magnon by 
fluctuations of the longitudinal component of the nuclear 
magnetization. This damping mechanism was proposed by 
Richards,,' who calculated the corresponding contribution 
to the relaxation rate y, in the limiting case on - w,, go, . 
A calculation for arbitrary on, is given in Ref. 23: 

We see from expressions ( 12) and ( 13 ) that y:' and y, 
have the same linear dependence on T  and k but substantial- 
ly different dependences on the NSW frequency. The total 
NSW relaxation is given by the sum 

Figure 5 shows the measured NSW relaxation rate in 
CsMnF, and CsMnC1, as a function of the NSW frequency 
in the coordinates ( T/T, l  ) , where r= y/2n-. This choice of 
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FIG. 5 .  Frequency dependence of the NSW relaxation for CsMnF, (open 
dots, left-hand scale) and CsMnC1, (filled dots, right-hand scale) in the 
coordinates ( r / T , l  for a k  = 1 kOe. The dashed line is the theoretical 
dependence from ( 13) ,  the dotted curve is the contribution to the NSW 
relaxation due to the ESW damping ( 12), and the solid curve is the sum of 
these curves ( 14); 6 = on,/@. . 

coordinates enables us to isolate the increments to the relax- 
ation process y, ( 13 ) represented by the dashed straight 
line. We see that this process alone does not describe the 
behavior of the NSW relaxation rate over the entire frequen- 
cy range. The dotted curve in Fig. 5 shows the frequency 
dependence of the contribution y r '  ( 12) introduced into the 
NSW relaxation from the electronic subsystem. The solid 
curve corresponds to the s 

Table I gives the calculated values A g" and the values A zP 
obtained from the data shown in Fig. 5. The analogous quan- 
tities for the antiferromagnet MnCo, (according to the data 
of Ref. 24) are also given. 

By taking into account the contribution introduced in 
the NSW relaxation from the ESW branch one can obtain a 
good description of the experimental frequency dependence 
of the NSW relaxation rate in CsMnF, and CsMnCl, at low 
temperatures without resorting to any adjustable param- 
eters. The linear dependence of the relaxation rate on k and 
Tat all frequencies has been verified previously. ''.'8 We note 
that the relaxation process proposed by Richards2*vZ3 is the 
main relaxation channel of the nuclear magnons only near 
the upper boundary of NSW frequencies (on - on, (on ), 
while in the rest of the frequency range one must take into 
account the renormalization of the NSW relaxation due to 
the ESW relaxation process calculated by Woolsey and 
White.21 Moreover, at large dynamic frequency shifts the 
contribution introduced from the electronic branch becomes 
the main source of NSW relaxation, and the term y, ( 13 ) 
can be neglected altogether. 

TABLE I. 

Another ESW relaxation channel, which becomes the 
main channel at high temperatures or in stronger magnetic 
fields, is the coalescence of two electronic magnons of the 
quasi-ferromagnetic branch of the spectrum into an elec- 
tronic magnon Re, of the quasi-antiferromagnetic 

we, + o,, = Re(, + ,, . With allowance for re- 
normalization ( 10) the expression for the NSW relaxation 
rate due to this three-magnon process is of the form 

2fi),=[ (qf I) (11-3) ]"'oeat ( ~ l - l ) g p ~ ~ ~ k / f i ,  11= ( ! 2 r o / ~ e n ) 2 ,  
where fin, /gp, -- 4 1 kOe.,' 

Unfortunately, in the experimental parameter region 
( 1.5 < T<4.2 K; H < 2 kOe; 600 MHz < vp < 1200 MHz) 
one cannot distinguish the interval in which y:,"' would be 
the main contribution, since at the upper limit of Tand vp 
(where yL3"' is expected to be its largest) there is a substan- 
tial contribution to the NSW relaxation from the following 
coalescence processes: 1 ) a nuclear magnon and a phonon 
intoaphonon [yn2,, a (1 --12) ,T5/k]  (Refs. 3,11,23);2) 
a nuclear magnon and an electronic magnon into an elec- 
tronicmagnon [y,,, a ( 1  - 1 2 ) 2 H 2 ~ 5 / k ]  (Refs.3,11,28). 
We therefore processed the experimental data (42 points) 
on the NSW relaxation in CsMnF, after subtraction of con- 
tribution ( 14) according to the formula 

5 

Here the units are: T [K] ,  a k  [kOe], H [kOe]. As a result, 
we obtained the following values of the parameters: 
An,, = (3.5 + 1.1) lop2, A,,, = (0.7 + 0.6) - 
A :,"' = (1.0 + 0.8) . lo2, with a minimum sum of the 
squares of the relative deviationsx2 = 3. A theoretical esti- 
mate gives A L3"' z 1.7 10'. 

It is of interest to carry out the inverse procedure-to 
use the known contribution yk3"' to the NSW relaxation to 
estimate [with allowance for ( 10) ] the relaxation rate y,, 
of the electronic magnons. One easily finds 

Here H [kOe]; T [K] ;  a k  [kOe]; we, [GHz]. A contribu- 
tion y a H to the ESW damping in CsMnF, has been ob- 

Crystal / Vo, 10-~acm~ I 1 '02.' / a .  'k-' 1 ~ ; h -  1 A,? 

kOe . cm 

CsMnFJ 0.84 GGG 18.8 0.95*0.1 2 . 7 1 1  3.2*0.8 
CSMIIC~~ 4 s  .55: I :V:: 1 3 0 . 3  ;::;1.6 .?d.:+ 
MnC03 0.i8-tO.l 2.:i;t0.5 
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served e~perimental ly , '~~ '~ with a relaxation rate 
y ~ 2 7 r . 1 0 0  kHz at T=1 .7  K, H = 2  kOe, and 
we, = 2.rr . 10 GHz. A calculation of y3, according to ( 17) 
in this case gives y,, = 2.rr ( 6 6 0 )  kHz, in order-of-magni- 
tude agreement with the experimental data. 

Let us conclude by returning to the discussion of a pos- 
sible physical mechanism which would explain the nature of 
the aforementioned anomalies in the threshold for the para- 
metric process in CsMnF,. The most important fact, we be- 
lieve, is that the enhancement of the magnon-phonon peak 
and the maximum hardness (h,, /h,, - 1 ) of the parametric 
excitation of NSWs are observed in the same range of pump 
frequencies v, = 760-790 MHz, and that the value of the 
hardness, the amplitude of the magnon-phonon peak, and 
the anisotropy of the threshold h,, (q,) differ markedly from 
sample to sample; this is unmistakable evidence that these 
phenomena are not inherent to the ideal crystal but are due 
to defects in the sample. 

We believe that all the anomalies mentioned are of a 
dislocation nature. This conclusion is supported by the fol- 
lowing considerations: The hexagonal anisotropy of the 
threshold h,, apparently means that the magnon relaxation 
rate depends on the direction of the magnon wave vector k. l4 

At the same time, the dislocations have a tendency to align 
along certain crystallographic directionsz9 and can, in prin- 
ciple, lead to anisotropy of h, . Alignment of the dislocations 
can also explain the anisotropy of the enhancement of the 
magnon-phonon peak. The frequency range in which the 
anomalies in the NSW relaxation are observed3' and the di- 
mension 1- cm (see Fig. 3) are also characteristic of 
dislocations. Finally, a study3' of the nuclear spin echo in 
CsMnF, has revealed an appreciable dislocation contribu- 
tion to the relaxation of NSWs with k 5 lo4 cm-'. 

CONCLUSIONS 

1. In analyzing the experimental results on the relaxa- 
tion of any of the branches of coupled oscillations one must 
take into account the renormalization of the damping due to 
the finite width of the orginal pure branches of the spectrum. 
This applies not only to mixed oscillations of electronic and 
nuclear spins but also to other coupled oscillations (e.g., 
magnetoelastic). 

2. Allowance for the renormalization of the NSW 
damping due to the ESW branch results in a good descrip- 
tion of the experimental behavior of the NSW relaxation rate 
over a wide range of v, , k, and T. For NSWs with frequen- 
cies wnk 5 0.601, at T<2 K the width of the spectrum is actu- 
ally governed by the renormalization, while the contribution 
from process ( 13) can be neglected. 

3. One can in principle obtain information on the relax- 
ation of coupled oscillations of both branches by studying 
the width of only one of them. For example, by measuring 
the NSW relaxation rate one can tell about the damping of 
the ESWs as well. 

4. The combination of features in the behavior of the 
NSW relaxation in CsMnF, in a narrow range of pump fre- 
quencies v, = 76&790 MHz finds a natural explanation in 
the interaction of magnons with dislocations. 

We thank B. Ya. Kotyuzhanskii, M. I. Kurkin, and A. 
V. Chubukov for fruitful discussions. 

"For w, - o, -Am, the dispersion in the spectrum of nuclear-elec- 
tronic oscillations vanishes, and the NMR line shape becomes approxi- 
mately Gaussian.' 

"Recall that for a "hard" excitation of magnons the parametric instability 
is characterized by two longitudinal amplitudes of the microwave field: 
h,, and h, (excitation at h,, and quenching at h,, , h,, > h, ) .  We shall 
call (h,, /he, - 1) the "hardness" of the parametric excitation. 
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