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An analysis is made of narrowing of inhomogeneously and dipole-broadened ESR lines by along- 
range exchange in a superconductor. The mechanism of this narrowing differs qualitatively from 
the well-known Anderson-Weiss mechanism when narrowing is due to a rapid exchange of states 
between spins which are in different local fields. In the present case a dynamic coupling between 
spins is provided by an exchange field, which alters greatly the narrowing behavior. A simple 
formula is derived for the width of an exchange-narrowed ESR line: it generalizes the familiar 
Anderson-Weiss formula and combines the field and fluctuation narrowing effects. Estimates are 
obtained of the magnitude of the narrowing and these are used to account for the strong narrow- 
ing of an ESR line as a result of the superconducting transition in the LaEr system. A numerical 
analysis is made of the resonance line profile and it is shown that the line asymmetry as a result of 
the field narrowing increases the asymmetry of the detected ESR signal, as found experimentally. 

1, INTRODUCTION 

Experiments on electron spin resonance (ESR) of Io- 
calized moments of Er3+ in the cubic phase of La revealed a 
strong narrowing of the resonance line directly below the 
superconducting transition temperature T, (Ref. 1 ). This 
was an unexpected effect because the temperature-depen- 
dent contribution to the ESR line width is due to the ex- 
change scattering of conduction electrons by magnetic im- 
purities and it should increase as a result of the 
superconducting transition because of the coherence effects 
and because of an increase in the density of the electron 
states at the energy gap edge. Such broadening of a magnetic 
resonance line has been observed a long time ago in NMR 
experiments2 and has apparently been confirmed by the first 
ESR  experiment^.^^^ Rettori et ~ 1 . ~  put forward the idea and 
Kosov and Kochelaev5 carried out a calculation showing 
that relaxation of a localized moment to conduction elec- 
trons (Korringa relaxation) may be blocked as a result of 
the superconducting transition under the electron bottle- 
neck conditions, when the bottleneck of the relaxation pro- 
cess is the transfer of magnetization from conduction elec- 
trons to the lattice. This transfer is due to the spin-orbit 
scattering of electrons which, in contrast to the exchange 
interaction, is reduced strongly by the superconducting 
transition. 

However, this mechanism cannot account for the ex- 
perimental results reported in Ref. 1, because the narrowing 
observed for the Er concentration of 2 at.% was approxi- 
mately twice as large as the whole contribution of the Kor- 
ringa mechanism to the line width at T = T, . Moreover, the 
observation that the slope of the temperature dependences of 
the line width in the normal phase was practically indepen- 
dent of the Er concentration indicated the absence of the 
bottleneck in the normal phase and this implied the absence 
of the necessary condition for the blocking of the Korringa 
relaxation as a result of the superconducting transition. On 
the other hand, the large "residual width" of the line (found 
by extrapolation to T = 0 of the temperature dependence of 

the line width in the normal phase) indicated a considerable 
contribution of the inhomogeneous and dipole mechanism 
to the total ESR line width and the dependence of the nar- 
rowing on the Er ion concentration was evidence of the im- 
portance in the narrowing process of those spin-spin interac- 
tions in which the conduction electron system is 
participating because only this system is affected by the phe- 
nomenon of superconductivity. 

It was shown in Refs. 1 and 6 that an indirect exchange 
interaction of localized moments via conduction electrons 
changes at the superconducting transition and it can be rep- 
resented by two terms, the first of which is the usual Ruder- 
man-Kittel-Kasuya-Yosida (RKKY) interaction: 

IF= noFpF2J.r' cos 2k,, exp ( -- ;; ) . 
2kF3 r,j3 

9 

the second term is the long-range interaction of antiferro- 
magnetic nature which appears only in the superconducting 
phase: 

here,p, is the density of the electron states at the Fermi level 
E ~ ;  Jsf is the s-f exchange integral; k ,  is the Fermi momen- 
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tum; I,, I,, and I,, is the mean free path of conduction elec- 
trons governed respectively by the scattering involving a 
change in the momentum, the scattering by magnetic impur- 
ities, and the spin-orbit scattering; A (T) is the order param- 
eter of the superconductor; T is the absolute temperature; 
U=U ( w )  is the dimensionless parameter of the Abrikosov- 
Gorkov theory of superconductors which contain paramag- 
netic impurities (see, for example, Ref. 7 )  

The potential J p a s  a range of the order of the coher- 
ence length of the superconductor [(a, (a, is the lattice 
constant); in the case of intermetallics the typical values are 
6 2 100-1 50 A (Ref. 4) .  Next, the usual analysis leads to the 
Anderson-Weiss theoryX of the narrowing of ESR lines sub- 
ject to exchange: YZKKY + Pex. However, the results of 
calculations indicate that X",, makes a negligible contribu- 
tion to the frequency of exchange fluctuations of local fields 
and, consequently, it does not alter the line width. This is due 
to the fact that the narrowing condition in the Anderson- 
Weiss theory actually requires that the exchange between 
spins in a selected pair at distances important in a given sys- 
tem should be greater than the dipole fields created by the 
spins at their mutual positions in the dipole broadening case 
or greater than the difference between the precession fre- 
quencies of these spins in the inhomogeneous broadening 
case. On the other hand, an estimate of the constant Jf, for 
the nearest neighbors in the lattice shows that this constant 
is ( k , [ ) 2  k lo4 times smaller than the RKKY exchange con- 
stant of Eq. ( 1 ) and much smaller than any characteristic 
energy of the system (Larmor frequency, dipole or inhomo- 
geneous width), representing a fraction of a gauss in units of 
the field. 

We shall show below that, in spite of the extremely 
small value of the constant, the exchange term flex of Eq. 
(2) reduces the inhomogeneous and dipole widths of an ESR 
line. The mechanism and pattern of the narrowing are very 
different from those in the Anderson-Weiss theory. In the 
second section we shall solve the model problem of narrow- 
ing of an inhomogeneous distribution of local fields by the 
long-range exchange of Eq. (2)  and establish a qualitative 
pattern and mechanism of the narrowing, which we shall call 
the field narrowing (for a brief account see Ref. 9 ) .  In the 
third section we shall solve the problem of the exchange nar- 
rowing of an inhomogeneously broadened ESR line by the 
combined effect of the RKKY exchange of Eq. ( 1 ) and the 
exchange PC, of Eq. (2 ) .  In the fourth section we shall give 
the results of a solution of the problem of the exchange nar- 
rowing of a dipole-broadened ESR line and in the fifth sec- 
tion we shall discuss experiments carried out c n  the LaEr 
system.' 

2. PROCESS OF NARROWING OF AN INHOMOGENEOUS ESR 
LINE BY AN EXCHANGE FIELD IN A SUPERCONDUCTOR 

We shall determine whether the long-range exchange 
Pe, of Eq. (2 )  can narrow an ESR line by considering first a 
model in which magnetic impurities are coupled only by the 
exchange Pe,. We shall assume that these impurities are 
distributed at random between the lattice sites and that the 
local precession frequency is w, + O i .  In the presence of 

static and alternating external magnetic fields the Hamilton- 
ian of the system is of the form 

%=%o+%~oc+%ezS+%eSf %I ( t )  , 

Here, u(r i  ) is the spin density of conduction electrons at the 
ith lattice site; ri is the radius vector of this site; u, is the 
Fourier component of the spin density of conduction elec- 
trons; SP is the a t h  component of the spin moment of an 
impurity at the site i ;  To and R,,, are the Zeeman energy 
operators of magnetic impurities in external and local fields, 
respectively; N is the number of lattice sites per unit volume; 
Z ,  ( t )  describes the interaction of the spin system ofimpuri- 
ties with an alternating field of amplitude w ,  and frequency 
w. The cause of the homogeneous broadening is the interac- 
tion between the impurity spins and conduction electrons via 
the slfexchange (Korringa mechanism) described by ze,. 

As pointed out in the Introduction, the range of the 
"superconducting" exchange of Eq. (2)  is of the order of the 
coherence length 6 of a superconductor, which we shall as- 
sume to be much greater than the spatial scale of inhomo- 
geneities of the precession frequency O i .  In this case the 
problem can be solved as spatially homogeneous although it 
remains spectrally inhomogeneous with a local field distri- 
bution function g(fl) .  In view of the smallness of the ex- 
change constant and its special dependence on the distance, 
the spectral width of the frequencies of the exchange fluctu- 
ations due to Pe, is very small ( 5 1 G),  so that we shall 
describe the kinetics of an inhomogeneously broadened 
spectrum in the language of spin packets which are sets of 
impurity spins precessing at similar frequencies. We shall 
write down the transport equation for the transverse magne- 
tization of a spin packet 

r e ( , i )  

retaining the first order in respect of the exchange re, (in 
the form of a molecular field and neglecting fluctuationsi0) 
and terms up to the second order in Fe,, describing the 
Knight shift and the relaxation to electrons. The method 
used to describe the transport equations within the formal- 
ism of the nonequilibrium density matrix is described in de- 
tail in the literature (see, for example, Refs. 1 1 and 12) so 
that we shall not repeat the procedure here. After going over 
to a continuous distribution of the frequencies in such pack- 
ets, the transport equation for the transverse component of 
the spectral density of the magnetization of the localized 
moments is 
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in Eq. (4 ) ,  Z, = w, ( 1 + Js,-xe /Ngge )is the precession fre- 
quency in an external field subject to the Knight shift; xe is 
the spin susceptibility of conduction electrons in a supercon- 
d u c t o r ; ~ ,  is the static susceptibility of the magnetic impuri- 
ties; g and g, are the g factors of the impurity moments and 
electrons, respectively; T ,  ' is the Korringa rate of relaxa- 
tion of impurities to conduction electrons. The sum with a 
prime is taken over the sites occupied by the impurity mo- 
ments. 

The first term on the right-hand side of Eq. (4)  de- 
scribes precession of the spectral density of the magnetiza- 
tion in an internal field consisting of a static external field ;, , 
a local field fi, and an internal exchange field A,, of Eq. (5  ); 
it also describes the relaxation to conduction electrons. The 
second term is due to the relationship between the spectral 
density of the magnetization M - ( R )  and the nonequilibri- 
um magnetization of the rest of the local frequency spec- 
trum. The most important feature is that, in contrast to simi- 
lar cross-relaxation equations in which the transport 
coefficient is real and represents the rate of cross relaxation 
orjumps, the transport coefficient in Eq. ( 4 )  is purely imagi- 
nary [ig(fi)A,, 1; this means that the magnetizations in dif- 
ferent parts of the inhomogeneous spectrum are coupled by 
dynamic molecular fields. This circumstance alters funda- 
mentally the narrowing effect. 

The solution of Eq. ( 4 )  gives the dynamic susceptibility 
m 

In the case of a rectangular distribution of the local fields 
g ( f l )  = l / y  (for f i  within the range from - y/2 to y/2), 
the susceptibility X- (w ) can be investigated analytically 
and the qualitative pattern of the exchange-field narrowing 
can be determined. In this case the integral is readily found 
to be 

If the condition I A,, 1 ) T,, - ', y is satisfied near the frequen- 
cy w = 5, the susceptibility (6 )  can be reduced to 

and it then describes a mode with a resonance field 

which is slightly smaller than the resonance field of the cen- 
ter of gravity of an inhomogeneously broadened spectrum 
[A,, GO, see Eq. ( 5 )  I .  However, the resonance of Eq. ( 9 )  is 
not the only one in the system under consideration. An ex- 
pansion of the logarithm in Eq. ( 7 )  for w-&, + A,, in 
terms of the small ratio (5, - w + A,, - iT,, - ') (y/2)-'  
gives the following expression for the susceptibility 

Equation ( 10) shows that there is another mode with a reso- 
nance field 

The intensity of a resonance in Eq. ( 11 ), which we shall call 
a satellite, amounts to (y/2A,, ) 9 1 of the intensity of a 
resonance ( 9 ) ,  which we shall call the cc!lective mode. 
Therefore, the ESR spectrum observed under field narrow- 
ing conditions when / A,, ) T,, ', y consists of a strong col- 
lective mode and a low-intensity satellite shifted away from 
the collective mode by an amount equal to the exchange field 
(in the direction of higher fields, because A,, GO). 

The molecular field A,, can be expressed conveniently 
in terms of the paramagnetic Curie temperature due to the 
exchange term PC, ( T%&, ) : 

The substitution of J :  from Eq. ( 2 )  into Eq. (12) yields the 
following expression for B ( T) : 

wherex', is the spin susceptibility of conduction electrons in 
the normal phase; n is the number of impurities per unit 
volume. 

In the case of more realistic distribution functionsg(R) 
the susceptibility of Eq. ( 6 )  can be investigated in detail by 
means of a computer. Figure 1 illustrates the process of nar- 
rowing of the distribution of local fields of Gaussian form by 
the exchange field. Analytic and numerical investigations 
show that the qualitative picture of the exchange-field nar- 
rowing is completely different from the picture of the usual 
exchange narrowing8 in which the initial ESR spectrum con- 
tracts to its center of gravity, becoming narrower and more 
symmetric. In the field narrowing case the initial spectrum 
becomes deformed, even if it is symmetric (Fig. I ) ,  so that 
the high-field wing of the ESR line is now stronger than the 
low-field wing. Below the superconducting transition tem- 
perature T, the exchange field rises: 

A<,== T-I (1-xp/x,,"), 

as demonstrated in Eq. ( 12), and the collective mode gradu- 
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FIG. 1. Profile of an ESR linex" = Imx- (o) plotted for different values 
of the ratio of the exchange field A,, to the half-width r of the Gaussian 
distribution function of local fields X = I A,, (r:  1 ) X = 0; 2)  1.0; 3 )  1.5; 
4 )  2.0; T/o = 0.05; homogeneous width T i  = 0 . 2 r  selected to be the 
same for all the curves and the intensities are plotted in arbitrary units. 

ally becomes narrower. We can see from Fig. 1 that in the 
case of smooth distributions the satellite is practically unre- 
solved and it manifests itself by an asymmetry of the reso- 
nance line. It should be pointed out that a maximum of 
I rnx-(o)  is shifted somewhat away from the resonance 
field at the center of gravity of the spectrum in the direction 
opposite to the shift of the satellite, so that the common cen- 
ter of gravity of the collective mode and of the satellite re- 
mains unshifted. This is a natural consequence of commuta- 
tion of the scalar exchange Pex of Eq. (2)  with any 
component of the total spin of the impurities. 

The possibility of narrowing of the hyperfine structure 
of an ESR line by the field coupling in the normal phase is 
considered in Ref. 13. However, it should be pointed out that 
the molecular field approximation which works very well in 
the case of the long-range exchange of Eq. (2 )  is quite unsui- 
table for the RKKY exchange of Eq. ( I ) ,  for which an rms 
fluctuation of the exchange field is almost an order of magni- 
tude higher than its average value (see, for example, Refs. 10 
and 14). Therefore, in the normal phase the effects associat- 
ed with the presence of an average exchange field should be 
correspondingly small (to what degree, we shall find later). 

3. EXCHANGE NARROWING OF AN INHOMOGENEOUSLY 
BROADENED ESR LINE IN A SUPERCONDUCTOR 

We shall now return to the problem of the role of the 
RKKY exchange of Eq. ( 1 ) , which has been dropped from 
the model considered above. At magnetic impurity concen- 
trations of the order of 1 at. 5% the exchange narrowing ef- 
fects become important in the normal phase. The profile of 
an exchange-narrowed line is Lorentzian and its half-width 
is8 

where we, is the half-width of the spectral distribution of the 
frequencies of the exchange fluctuations of the impurity 
spins. An estimate shows that the exchange field A,, , which 
appears below the superconducting transition temperature, 
is of the same order as we, so that the field narrowing and the 
usual fluctuation exchange narrowing both appear in a su- 
perconductor. Therefore, the problem of the field narrowing 
of an ESR line already narrowed by the RKKY exchange in 
the normal phase is of practical interest. In this case all the 
localized moments are coupled by the strong RKKY ex- 
change to form a single moment so that we can select the 
transverse components of the total magnetization as the var- 
iables in the reduced description. The transport equation is 
obtained by the nonequilibrium density matrix m e t h ~ d " ~ ' ~ ;  
this equation is of the Bloch type and in the Fourier repre- 
sentation in time domain it is 

- i o i V - ( a )  =-i(~,-IT. , - ' )  ( M - ( o )  --%.ai) - M - ( o ) K - ( a ) ,  

(15) 
where 

0 

K- ( a )  = d t e - ' y ' ~ -  ( I ) ,  
- rn (16) 

K- ( t )  = dre" ( (po-'is+, %',,,I ( t )  po'I%10,, S-I) 

0 
(S+S-> 

[... ] ( t )  represents the Heisenberg bracketing by exponential 
functions with the Hamiltonian Po = Pe, + F k K K Y ;  S* 
are the transverse components of the total impurity spin; 

(.. . ) is the equilibrium thermodynamic averaging; (. . .),,,, is 
the configurational averaging. The substitution of X,, 
from Eq. ( 3 ) and integration with respect to t and T gives 

1 r (a) =Re K- ( a )  = - M2G ( -a) ,  
2 

(17) 
m 

where 
OD 

M, = J Q ~ ~ ( Q ) ~ Q  
- (D 

is the second moment of the distribution of the local fields 
g(fl) ,  and G(w) is the Fourier transform of the correlation 
function averaged over the configurations 

G j ( t )  = ( S j + ( t ) S j - > / ( S j f S j - > .  
We can find the approximation for this function by ex- 

panding it as a commutator series in terms which are qua- 
dratic in time: 

G, ( t )  = ts'+(t)Si-) = exp { i ~ . t + i A . , t - l ~ a ~ ) .  ( 18) 
(S,+S,-> 

Here, A,, is the first moment of the correlation function 
( 18) which is dominated by the long-range exchange PC,. 
Direct calculations show that A,, is exactly the molecular 
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field of Eqs. (5 )  and ( 12), which is the reason for the reduc- 
tion in the inhomogeneous width of an ESR line in a model 
discussed in the preceding section; w; is proportional to the 
second moment of the correlation function, when the main 
contribution to w; comes from the RKKY exchange of Eq. 
(1) :  

The normalized correlation function ( 18) for a dilute para- 
magnet depends on the configuration of the immediate 
neighbors and this changes from site to site. Averaging over 
the configurations in the case of low impurity concentrations 
( 9  10 at.%) gives rise to the following kinetics (for details 
see Refs. 14 and 15) : 

G ( t )  = ( G , ( t )  >,,,,=exp ( i ~ , t + i A , , t ) F ( t ) ,  

(20) 
F ( t )  = exp {-n dVt[l-exp (-t'wi;) I }. 
If we ignore the decay of the RKKY exchange in a dis- 

tance equal to the mean free path of conduction electrons I,, 
we find that the integral in Eq. (20) can be calculated and it 
gives the exponential kinetics: 

F(t)=exp (-o,,OItl), 

from which the Lorentzian profile of the frequency trans- 
form G(w ) can be deduced. We calculated the kinetics of Eq. 
(20) numerically for various mean free paths of conduction 
electrons in order to allow for the exponential cutoff of the 
RKKY exchange. The kinetics is nonexponential, but Four- 
ier transformation of the kinetics shows that the profile of 
the correlation function ( 18)  is close to Lorentzian up to 
frequencies somewhat greater than the half-width at half- 
amplitude; in the wings the frequency dependence is weaker 
than Since we are interested in frequencies right up to 
the half-width of the correlation function, we shall approxi- 
mate the line profile by a Lorentzian curve of equivalent 
half-width we, : 

Numerical fitting shows that we, is very accurately an expo- 
nential function of the mean free path: 

w,,=ae2 ~ X ~ ( - I , ~ I N ; ' ~  ), (23 

where N, = (477/3)l;n is the number of impurities in a 
sphere of radius equal to the mean free path of conduction 
electrons. Equations ( 17) and (20)-(23) allow us to obtain 
the following expressions for the real and imaginary parts of 
K - ( a ) :  

Therefore, part of the last term in Eq. ( 15) [proportional to 

FIG. 2. Profile of an exchange-narrowed ESR line X" = Imx-(w) 
(curves denoted by 1)  and form of the correlation function 
T ( o )  = ReK - ( 0 )  (curves denoted by 2 )  plotted for different values of 
the ratio of the exchange field A,, to the frequency we, of the exchange 
fluctuations Y = A,,  l/w,, : Y = 0 corresponds to the continuous curves, 
and Y = 0.67 to the dashed curves, and Y = 1.0 to chain curves. These 
curves are plotted for the following values of the parameters: M,/ 
w = 0.01, w,,/w = 0.3, T ;  ' /u  = 0.0075, narrowing coefficient 
k = o,,/M;'* = 3. The intensities are plotted in arbitrary units. 

r ( w )  ] which determines the line width is a product of two 
bell-shaped functions shifted relative to one another by the 
exchange field A,, (Fig. 2) .  Since the exchange narrowing 
condition postulates that the inequality we, >M ~ ' 2 & ~ 2 / u , x  
is obeyed, the curve T(w)  is much wider than the 
X" ( w )  = Imx- (a) curve, so that in the first approximation 
we can ignore the change in T(w)  within the limits of the 
ESR line width, taking it at the frequency w = 6,. Conse- 
quently, the contribution of the inhomogeneous broadening 
narrowed by the exchange fluctuations and the exchange 
field is 

Clearly, if we ignore the exchange field (A,, = 0 ) ,  Eq. (25) 
reduces to the Anderson-Weiss formula of Eq. ( 14). It also 
follows from Eq. (25) that in the normal phase, when the 
average exchange field A, due to the RKKY exchange is 
small (A, 5 0. lo,, ), the field narrowing effects are weak. 

The solution of Eq. ( 15 ) gives the dynamic susceptibil- 
ity 

- ( Q s - i ~ 8 : ' )  
x- ( 0 )  =x, a - 5 , - R  ( a )  +i(T;<'+I'(o) ) 

(26) 

The ESR line profilex" (w) = Imx- (w)  is shown in Fig. 2 
for different values of the exchange field A,, when a reso- 
nance is traversed by a magnetic field. It is clear from this 
figure that the initial line profile (A,, = 0, continuous 
curve), which is of Lorentzian form, becomes asymmetric 
under the field-narrowing conditions and, exactly as in Fig. 
1, the high-field wing of the line is stronger. 

4. EXCHANGE NARROWING OF THE DIPOLE WIDTH OF AN 
ESR LINE IN A SUPERCONDUCTOR 

The dipole-dipole interaction of paramagnetic impuri- 
ties is, together with inhomogeneities of the local fields, the 
main source of the residual width of an ESR line. Therefore, 
in this section we shall estimate the influence of the long- 
range exchange *,, on the dipole line width (for a prelimi- 
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contribution to the line width are described by nary estimate see Ref. 16). 
The Hamiltonian of the problem is 

RKKY 
& = % D + a d d + % e z  +%e:+%ea+zt (t) 9 

and the other terms are given by Eqs. ( 1 )-(3). As in the case 
of an inhomogeneously broadened line, we shall assume that 
in the normal phase the ESR line is exchange-narrowed by 
the RKKY interaction and we shall write down the trans- 
port equations for the transverse components of the total 
magnetic moment of paramagnetic impurities. This equa- 
tion can also be obtained by the Zubarev method and in the 
Fourier representation it is analogous to Eq. ( 15) : 
- ioM- ( o )  =-i{iu,fAod-iT,,-') 

The frequency shift Aw, depends on the shape of the sample 
and in the case of small values of ( S  ') 4S and spherical sam- 
ples it is very small. Moreover, 

0 

K-(0) = j e w l ~ -  ( l )  dt, 

K -  ( t )  = jdre" ( (~o-'[s', add] (t) pOT[%ddr S-1) 
(StS-> 

0 

The substitution of 2Ydd from Eq. (27) and a calcula- 
tion of the integrals yield formulas for which we have to 
know the correlation function: 

< (Si+Sj2) (t) (St-S,') ) 

Q-(t)= (- <Si+si-)  ) 
We shall estimate this function on the basis of the fol- 

lowing considerations. We shall select a spin i and its neigh- 
bors at a site j creating a local dipole field at the ith spin. 
Since the environment of the spin j contains many other 
spins, it follows that fluctuations of the dipole field due to the 
RKKY exchange of this spin with its environment is actual- 
ly independent of the exchange with the spin i (with the 
obvious exception of the case when the spins i and j are an 
isolated pair, but the statistical weight of such pairs is small 
and they do not contribute to the absorption at frequencies 
of the order of the half-width of the ESR line) ." This consi- 
deration allows us to separate the correlation function: 

(( (Si+SjZ) (t)  (Si-SjZ) ))conf 

z(Si'(t) Si-))eonf((Sjz(t) 

The method for the calculation of the correlation functions 
is described above and the results of the calculation are as 
follows: 

The Fourier transform of the correlation function and the 

Here, w:, = 2we, [see Eq. (25) ] and 

is the second moment for the dipole interaction (averaged 
over the angles for the spin 1/2). This estimation method is 
simplest in the context of the present paper, but we have 
carried out calculations in which the correlation function 
(30) was expanded directly as a commutator series and we 
also obtained estimates by the method of moments. In the 
former case we obtained a result identical with Eqs. (33) and 
(34), which justifies decoupling of the correlation function 
( 3  1 ). The method of moments gave also a similar estimate. 

5. DISCUSSION OF RESULTS 

We shall now consider in detail the experimental data of 
Ref. 1. For 2% Erin La the narrowing at the superconduct- 
ing transition is approximately one-third of the residual 
width of the ESR line. If we assume that the narrowing is due 
to a mechanism considered in the present paper, the ex- 
change field has to be A,, =:0.73we,. 

Equations (12),  (131, (21),  and (23) allow us tocom- 
pare A,, and we, : 

where g, is the Land6 g factor and 3 is the effective spin of 
the ground crystal multiplet. The estimate given by Eq. (35) 
is obtained on the assumption that the ESR data of LaEr are - 
asfollows1:g=:6.8,g, = 6/5,Z, ~ 0 . 4 5  K, T z 2 . 8  K , S  = 1/ 
2, N, z 5. The susceptibility,ye ( T )  of a superconductor with 
singlet pairing becomes considerably smaller than X; if a 
sample is cooled (see Refs. 4 and 7) .  

Narrowing of the dipole width is less, because 
w:, = he,. Equations (14) and (25) [or (14) and (34)]  
readily yield 

which shows that the narrowing is proportional to the impu- 
rity concentration if the broadening is inhomogeneous 
(which is frequently true); it vanishes at T = T, (A,, -P O), 
as found in the experiments (see Fig. 7 in Ref. 1 ). 

We must point out an additional important factor. I t  
was reported in Ref. 1 that the profile of the derivative of the 
absorbed power differs from that for a Lorentzian line and 
this is manifested by a reduction of the ratio of the ampli- 
tudes of the low- and high-field peaks of the signal, known as 
the asymmetry parameterA /B, from the value in the normal 
phase (A /B), z2 .55  which falls to (A / B ) ,  z 1.7 (see the 
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FIG. 3. Field derivative d P / d o ,  plotted as a function of the microwave 
power absorbed by a bulk sample for different values of the ratio 
Y = IA,, / / o , ,  : Y = 0 is represented by the dashed curve and it corre- 
sponds toA / B  = 2.52; Y = 0.5 is represented by thecontinuous curve and 
it corresponds to A / B  = 2.8 1. The values of the parameters M,, and T ;  
are the same as in Fig. 2. The curves are normalized to the sample ampli- 
tude of the low-field peak. The inset shows the dependence of the asymme- 
try parameter A / B  on Y. 

data for 0.5 at.% Er in Fig. 4 of Ref. 1 ). The deviation is 
greatest at the lowest Er concentration and when this con- 
centration isincreased, the ratioA /B rises. It is known" that 
the screening of an alternating field by nondissipative super- 
currents in a superconductor increases the relative contribu- 
tion ofx" to the absorbed power P(w, ) compared with the 
normal phase for which we have P(w, ) a (x' + X" ) . More- 
over, the asymmetric distribution of the magnetic field in an 
Abrikosov vortex lattice also distorts the ESR line. l9 These 
two factors reduce strongly the parameter A /Bin the super- 
conducting phase to 1-1.3, which is demonstrated by practi- 
cally all the experiments carried out on samples with low 
impurity concentrations in the range 5 0.1 at.% (see Ref. 
4) .  

We can determine the influence of the X" asymmetry 
due to the field narrowing on the ESR signal profile by calcu- 
lating dP/dw, , but taking a mixture of X' and X" with the 
same weight so as to exclude all other factors that might 
affect A /B. Such calculations show (Fig. 3) that an increase 
in the exchange field (i.e., lowering of the temperature below 
T, and/or an increase in the paramagnetic impurity concen- 
tration) increases the asymmetry parameter from 2.52 for 

A,, =Oto2.8lforA,,=:0.5w,,. 
It therefore follows that the ESR line asymmetry due to 

the field narrowing prevents a reduction in A / B  by supercur- 
rents and by vortical distribution of the magnetic field, in 
agreement with the experimental results. We are of the opin- 
ion that this is an additional evidence in support of the nar- 
rowing by the exchange field, and is the reason why the ESR 
line width decreases as a result of the superconducting tran- 
sition in LaEr. 

Finally, we shall point out that far from the supercon- 
ducting temperature the increasing inhomogeneity of the 
field in an Abrikosov lattice and the associated inhomogene- 
ity of the exchange field A,, hinder the field narrowing pro- 
cess giving rise to a plateau in the temperature dependence of 
the ESR line width.' 
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