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The Holstein-Primakoff formalism, based on the introduction of Bose quasiparticles, is used to 
examine the low-temperature properties of easy-plane Heisenberg ferromagnets with arbitrary 
spin. A complete calculation is made of the leading quantum and temperature corrections to the 
magnetic properties of the model in three-dimensional space and in spaces of lowered dimension- 
ality. The critical properties are studied for easy-plane ferromagnets near the low-temperature 
phase transitions. 

1. INTRODUCTION 

The traditional method of studying magnetic phenom- 
ena in crystals at low temperature is based on the replace- 
ment of the spin operators by creation and annihilation oper- 
ators for quasiparticles (magnons) obeying Bose-Einstein 
statistics and on the use of the standard diagram techniques 
for Bose operators to study the Hamiltonian of the Bose 

This approach does not lead to any difficulties if the 
site spin S of the magnetic system under study is large, S) 1. 
In this case the transition from spin operators to bosons is 
accomplished through the simple (but approximate) rela- 
tions 

and all the anharmonic terms in the Bose Hamiltonian are 
small (containing the parameter 1/S), so that only the low- 
est orders of perturbation theory need to be k e ~ t . ~ . ~  

For magnetic systems with an arbitrary values of the 
spin S, however, an approach based on the introduction of 
quasiparticles encounters serious difficulties. For one thing, 
the commutation relations for spin operators are much more 
complicated than for Bose operators, so that each of the spin 
projection operators can be represented only in the form of 
an infinite series in powers of the boson creation and annihil- 
ation (see below)." In addition, for S- 1 the 
anharmonic terms of exchange origin do not have a small 
parameter. 

As a result, the problem of studying the magnetic prop- 
erties of a spin system with arbitrary S is formulated in the 
language of quasiparticles as one of studying a Bose gas with 
an infinite number of potentials describing strong interac- 
tions between magnons. Such as formulation makes sense 
only if the density of quasiparticles is small, i.e., if the Bose 
gas satisfies the weak-nonideality criterion.'g3 

For collinear ferromagnets, in which the ground state is 
the state of maximum magnetization and so the oscillations 
of the magnetic moment are solely of thermal origin, the 
weak-nonideality criterion is clearly satisfied if the tempera- 
ture Tof the crystal is small compared to the Curie tempera- 
ture T, . In this case allowance for the strong exchange inter- 
action between magnons reduces to the summation of a 
series of ladder diagrams over the number of two-particle 

exchanges. Such a summation was fiist done explicitly by 
Dyson.' 

For many ferromagnets, however, the state with maxi- 
mum projection of each of the spins along the quantization 
axis is not an eigenstate of the spin Harniltonian.' Structures 
of this kind are called noncollinear. They have the distinc- 
tive property that even at T = 0 the magnetization along the 
quantization axis is less than the nominal value. The absence 
of complete ferromagnetic ordering at absolute zero (i.e., 
the instability of the classical ground state with respect to the 
spontaneous creation of magnons) means that, because of 
quantum effects, noncollinear systems have a finite density 
of quasiparticles even at T = 0. Therefore, to satisfy the 
weak-nonideality criterion for the Bose gas it is necessary to 
impose certain conditions directly on the parameters of the 
spin Hamiltonian in addition to requiring a small ratio T /  
T, . For example, in Heisenberg-exchange systems for which 
the deviation from nominal magnetization at T = 0 is due to 
the presence of easy-plane anisotropy, the requirement of a 
low quasiparticle density means that the ratio of the anisot- 
ropy constant to the exchange constant must be small (see 
below). The study of quantum effects in such systems is the 
subject of this paper. 

Let us start from the spin Hamiltonian 

Here S, is the spin operator at site 1, A is the vector joining 
nearest neighbors in the lattice, and J is the exchange inte- 
gral. 

The type of spin structure depends on the value of the 
anisotropy constant a and the magnitude of the magnetic 
field h. If the anisotropy constant is negative, the ground 
state is characterized by a maximum magnetization along 
the Z axis for any value of the external field. A similar situa- 
tion also occurs for positive values of a but in the region of 
strong magnetic fields9: Ih / > h, = a S (  1 - 1/2S). 

In this paper we consider the case in which a > 0 and 
lh / < h,. In such fields the quantization axis deviates from 
the Z direction, and a long-range order in the XYplane arises 
in the system.2) However, because of the noncommutivity of 
Hamiltonian (2 )  and the operators for the transverse spin 
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components S x  and S Y ,  the state with maximum magneti- 
zation along the rotated (with respect to 2) quantization 
axis is not an eigenstate, and allowance for the quantum na- 
ture of the spins should lead, even at T = 0, to a change in the 
values of the magnetic properties in comparison with the 
results of a classical treatment. 

One quantum effect is well known: the renormalization 
of the single-ion anisotropy constant a ,  which appears in the 
answers only in the "quantum cornbina t i~n" '~-~~ 

a=a( l - l l2S).  (3  

Renormalization (3) is natural, since there is no single-ion 
anisotropy for S = 1/2. 

It is of interest to study quantum effects which do not 
reduce solely to the renormalization a&. We shall show 
that for this it is necessary to calculate the properties of the 
Bose gas to the first two orders in a/J. Similar calculations 
have been done by a number of authors. 13-19 However, most 
of these authors made the additional assumption that the site 
spin of the system was large. For example, in Refs. 15 and 16 
the coefficients of the terms of second order in a/J were 
found to first and second order (respectively) in 1/S. In my 
recent paperI7 the quantum corrections to second order in 
a/Jwere calculated for arbitrary spin S. The general formal- 
ism used in Ref. 17 included diagonalizing the quadratic 
form in the Bose Hamiltonian with the aid of a generalized 
UV t r a n s f ~ r r n a t i o n . ~ . ' ~ ~ ~ ~  After this the influence of the an- 
harmonicity was taken into account by perturbation theory. 

However, this (rather standard) approach leads to seri- 
ous difficulties, since the total number of anharmonic terms 
is increased considerably after the UV transformation. For 
this reason I was unable to calculate the anharmonic correc- 
tions to the necessary accuracy17 and had to determine them 
with the aid of the a priori assumption that the easy-plane 
ferromagnet had a Goldstone spectrum, which is in general 
not completely correct, since the assumption of a Goldstone 
spectrum cannot be verified in the framework of this meth- 
od. 

In the present paper the low-temperature properties of 
Heisenberg ferromagnet (2)  are calculated using the dia- 
gram technique for Bose systems with condensation. The 
advantage of this method over the UV transformation is that 
no new interaction potentials arise in the course of solution. 
By a systematic summation of the diagrams (as is shown in 
Sec. 2) one can correctly determine the leading nontrivial 
quantum and temperature corrections determine the leading 
nontrivial quantum and temperature corrections to the mag- 
netic properties of a three-dimensional easy-plane Heisen- 
berg ferromagnet with arbitrary spin. The problem of deter- 
mining the lifetime of the elementary excitations in this 
system is also discussed. In Sec. 3 the magnetic properties of 
an easy-plane ferromagnet are considered for spatial dimen- 
sions D = 2 and D = 1. In Sec. 4 an analysis is made of the 
role of quantum fluctuations near order-disorder phase tran- 
sitions, which occur in an easy-plane Heisenberg ferromag- 
net (2) when the single-ion anisotropy constant is compara- 
ble in size to the exchange constant. 

Before turning to the calculation, let us briefly discuss 
the choice of the transformation relating the spin projection 

operators to bosons, which enables one to write the Bose 
equivalent of the spin Hamiltonian. 

For the present problem I believe it is most convenient 
to use Goldhirch's exact transformation,' which associates 
with each of the spin projection operators an infinite series in 
powers of the normal products of Bose operators a +  and a: 

n-o 

(the Z axis is taken along the quantization axis). Expres- 
sions for the coefficients 6, and C, are given in Ref. 5. 

The advantage of the Goldhirch transformation over 
the other known methods of relating the spin and Bose oper- 
ators4,6,21-z3 is that calculations can be done using the result- 

ing Bose Hamiltonian without introducing an additional 
projection operator. Of course, this transformation is not 
one-to-one. According Ref. 5, to every value S, ( IS, I (S) 
there cor~sponds an infinite number of eigenvalues of the 
operator N = a +  a, differing by a multiple of 2 s  + 1, i.e., the 
Bose space is partitioned into closed blocks, each of which is 
isomorphic to the spin space. Therefore, the problem of the 
projection operator is actually replaced by the problem of 
guaranteeing convergence of the partition function on sum- 
mation over the infinite sequence of identical blocks. It is 
important, however, that the weight factors that must be 
assigned to each block to guarantee convergence of the parti- 
tion function are independent of the parameters of the sys- 
tem, and therefore the magnetic properties, which are de- 
rivatives of the free energy, do not depend on this factor (see 
Refs. 5 and 24 for details). On the other hand, the presence 
of an infinite number of interaction potentials in the Bose 
Hamiltonian does not complicate the calculations in the 
present case, since processes involving a large number of 
magnons are ineffective at low quasiparticle densities, so 
that rather than working with the total Bose Hamiltonian 
one can truncate it, keeping only the lowest anharmonic 
terms. 

The Goldhirch transformation is a modification of the 
familiar Holstein-Primakoff transformation4 to permit 
automatic exclusion of the nonphysical states in the calcula- 
tion of the partition function. As was shown in Ref. 5, this 
modification affects only the state containing at least 2 s  + 1 
elementary excitations. The first 2 s  + 1 terms in (4)  are the 
same as the corresponding terms in the series expansion of 
the radicals in the Holstein-Primakoff formulas in powers of 
the normal products of the operators a +  and a.25 Therefore, 
in problems where only the first 2S+ 1 terms in (4)  are 
important, the calculation can actually be done using the 
Holstein-Primakoff transformation, treating it (for an arbi- 
trary value of the spin!) as exact. The analysis carried out 
below shows that for our purposes the difference between the 
Goldhirch and Holstein-Primakoff transformations is unim- 
portant. 
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2. HEISENBERG FERROMAGNET WITH EASY-PLANE 
ANISOTROPY 

Let us consider ferromagnet ( 2 )  in the field region 
1 h I < h,  when the quantization axis is at an angle 8 # 0  to the 
Z axis, i.e., when the spin structure is noncollinear. Trans- 
forming from the spin projection operators to the Bose oper- 
ators by means of formulas ( 4 ) ,  we rewrite Hamiltonian ( 2 )  
in the form of a series of powers of the normal products of the 
operators a+ and a: 

Here H, is the classical ground-state energy but with 
allowance for the quantum renormalization of the anisotro- 
py constant: 

and HI and H ,  are, respectively, the linear and quadratic (in 
the Bose operators) forms: 

HI=- i (2NS) '"  sin 0 ( h - ~ S c o s  0 ) a O f + H . c .  ( 8 )  

The coefficients of the quadratic form are 

Ar=JZS(!-vk)+2h cos B + a S ( l - 3  COS' 0 ) ,  ( 10) 

Bk=-aS(1-112s) '" sin2 0 .  ( 1 1 )  

In formulas ( 7 ) - (  1 1  ) we have used the following notation: 
Z is the number of nearest neighbors, a = a ( 1 - 1/2S),  and 

The anharmonic potentials in (6)  can be of both ex- 
change and relativistic origin. Of the exchange anharmonici- 
ties we shall need the terms describing two- and three-parti- 
cle scattering: 

The amplitudes $Y and $: are written explicitly as 

JZ 
q4e== - 8 [ ~ t - s + ~ z - s + ~ t - ~ + v z - ~ - q  (vt+vz+vs+vJ I )  ( 13) 

JZS 
18 

i-1.2 3 

where we have used the notation q = 4S[1 - ( 1  - 1/ 
2 s )  'I2]. In the limiting case of large spins ( S )  1 ) , q is close 
to unity. 

We note that strictly speaking, formula ( 14) as written 
is valid only for S >  1 .  For the cases S  = 1/2 and S  = 1 the 
analysis must be carried out separately, since for these spin 
values the exact expansion for S z  [see Ref. 5 and Eq. ( 4 )  ] 
contains terms of sixth order in the Bose operators, giving an 
additional, wave-vector independent contribution to ampli- 

tude ( 14).  Analysis shows, however, that the presence of an 
additional constant term in the bare amplitude of the three- 
particle process for S = 1 does not affect the final results. 
And the S = 1/2 case is uninteresting, since for S = 1/2 
there is no single-ion anisotropy and, hence, no noncollin- 
earity in the structure. 

The anharmonic terms of relativistic origin describe 
processes involving both even and odd numbers of Bose op- 
erators: 

The higher anharmonicities will not be needed. 
The amplitudes $ f" appearing in ( 15 ) are given by the 

expressions 

re1 P = - i ( 2 S ) "  sin 0 [ a ( l - 1 1 2 ~ ) '  cos 0  - - - (h-bS cos 0 )  1, 
4 s  

Terms ( 8 )  and ( 1 6 )  exist only in nonzero field and stem 
from a deviation of the quantization axis from both the Z 
axis and the XY plane. 

2a. QUASIPARTICLE SPECTRUM AND THE MAGNETIZATION 

Let us study Hamiltonian ( 6 )  using the diagram tech- 
nique for Bose systems with c~ndensat ion, ' .~  introducing 
normal G + - ( k ,  w ) and anomalous G + + ( k ,  w ) and 
G -- ( k ,  w ) Green functions. The formal solution of the sys- 
tem of Dyson equations for these function is 

G + - ( k ,  o )  = [ i o + A t + Z , ( k ,  o )  - X A  ( k ,  a )  ID- ' (k ,  o ) ,  ( 18) 

G++ ( k ,  o )  = G - - ( k ,  o )  =- [Bk+Zc+ (k ,  o )  ] D-I ( k ,  a ) ,  ( 19) 

where 

D(k, o) = [o+ixA ( k ,  o ) I z f  [ A k + L  (k, 0 )  l 2  

The poles of the Green functions correspond to zeros of 
D ( k ,  - ick ) .  

Our problem is to evaluate the self-energy parts 2 + -  
and Bt + with accuracy to terms of order 

and (hlE$lnp) 
J N p  P 

inclusive. This will enable us to determine quantum effects 
which do not reduce solely to a renormalization of the an- 
isotropy constant and to find the leading temperature cor- 
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rections to the magnetization and to the spectum of elemen- 
tary excitations. 

The diagram for 8 + - and B + + are given in Figs. la 
and lb. We have used the following notation: 

In formulas ( 18)-(21) the angle of rotation 8 of the 
quantization axis relative to the Z axis enters as a parameter. 
This angle is determined from the conditionz6 

where $, is the ground-state wave function. To the adopted 
accuracy condition (23) is the requirement that all the dia- 
grams having one external line go to zero. This condition is 
depicted graphically in Fig. lc. 

The graphs in Fig. 1 contain loops consisting of normal 
(Ill ) and anomalous ( Il,) Green functions. To the adopted 
accuracy we can write analytical expressions for the loop 
diagrams in the form 

where 
++ (0) (0) 

Bk=Bk+ (k, - iek ) ;  E 2 = ( A ) 2 - 2 .  (25) 

For T = 0 the loop graphs consisting of normal Green func- 
tions can be neglected, since 

n,- (a/J) ,  andn,- (alI)"%n,. 

The difference between II, and 112 is due to the fact that in 
three-dimensional systems the integral II, is determined by 
the region of small wave vectors k- kcha, -a- ' (a/ 
J)1'24a-1, while integral II, is determined by large wave 
vectors k-kcha, -ap ' .  The fact that the integrals for which 
kc,,, (a-' are small compared to the integrals determined 
by values kcha, - ap1  also allows us to drop the terms 
8&,>, , , and Z,f,+, at T = 0 and to replace the total Green 
functions G + - in the remaining diagrams by the bare Green 
functions. We also note that for our purposes the quantities 
B;,;(,,, (,,, ,,, need be determined only to leading (second) 
order in C/J and for k = 0, while for 2;,+ we must know 
the first two (the linear and quadratic) terms in the expan- 
sion in C/J, and the k dependence of the linear term is impor- 
tant. 

The temperature parts of the loop diagrams IIrand IIT 
behave differently: in the region O <  T&ZSsin28, for the 
characteristic wave vectors k [such that EL')- TI the spec- 
trum is linear, A ,  z B ,  and, consequently, IIFz Il?, while in 
the region BZSsin28 the quasiparticle spectrum for the 
characteristic values of k is practically the same as in a pure- 
ly exchange ferromagnet, i.e., A ,  BB, and IITsIIT. 

It is seen that for TgZSsin28, where the characteristic 
wave vectors are very small, the contribution of the relativis- 
tic terms to the temperature parts of the diagrams B+-  and 
I:+ + is important. For calculations in this temperature re- 
gion the total Green function cannot be replaced by the bare 
function. Furthermore, for T&CSsin26 all the terms appear- 
ing in 8;)- and Z,f,+ are comparable in magnitude. 

Let us go directly to the calculation of the diagrams 
shown in Fig. 1. The main source of difficulty here is the 
presence of the total vertices (the hatched squares). They 
differ from the bare vertices by the presence of the exchange 

Ih , .+, , = 
FIG. 1. Digrams which determine the self-energy parts 

r;; =- I;+- ( a )  and I;++ (b)  and the position of the quantiza- 
tion axis (c).  
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renormalization. Allowance for the renormalization is nec- 
essary since the exchange interaction between virtual mag- 
nons is strong, and the inclusion of "exchange ladders" for 
arbitrary S does not give rise to an additional small param- 
eter. 

The graphical equations for the total vertices of interest 
to us are given in Figs. 2a-2c. Calculation of the diagrams a 
and b is quite simple, since the kernel of the corresponding 
integral equations factors: the substitution 
@ = a + b( 1 - Y, ) (@ is the total vertex) reduces each of 
these equations to a system of two algebraic equations. On 
solving the corresponding system of equations we get (the 
total vertices are denoted by the letter @ with indices): 

~ ~ , ? ~ , ~ = - i ( ? ~ ) ' s i n  0 eos 0a { I +  ( I - vp)  

FIG. 2. Graphs for the total vertices appearing 
in the diagrams in Fig. 1 .  

JZS a 

P P 

. c 

(28) 
where 

Here Wis the Watson integral." After using formulas (26)- 
(28),  we obtain an analytical expression for the diagrams 
=;,:w 

- .  
1 

x[--- I A (30) 
2 ( 8 )  +-- --2s (3sinz 0 - 2 ) - x  grip 

(26) 
(31)  

( 1 )  a 
N P  P 

Oo,o,o,o=- -(3 sinZ 0-2). 
4 (27) and for the angular deviation of the quantization axis from 

the Z axis we get 
The calculation of 2:,+ is done in an analogous way. 2 

Since it is linear in a we cannot neglect the temperature + - q. (2") ] , (32) 
terms in calculating this quantity. The result is 

S 

where 
~:)+=-as sin20 { I -  ( I - I / ~ s )  - "  

cos 0,=h/h,, h,=aS. 

The explicit form of the temperature dependence of the 
angle between the magnetic moment and the Z axis is 
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An expression for the temperature renormalization of the 
angle 0 to first order in 1/S was obtained in Ref. 28. Knowl- 
edge of the total vertex @ ~ ~ ' p ; o  also yields analytical expres- 
sions for the diagrams 2;)- and B,f ,+ .  Since the integrals 
corresponding to the diagrams B&,>, , , and B,f,+ are de- 
termined by small characteristic wave vectors, for T = 0 we 
have to the required accuracy 

Allowance for 2,f,+ and 2$,;b,c,, is necessary for a correct 
calculation of the temperature dependence of the spin wave 
energy in the region T(ESsin28, [see formula (21 ) 1. The 
expressions for the temperature parts of 86,- and X,f,+ are 
rather awkward and we shall not give them here. However, 
the total temperature correction to the spectrum from ter- 
nary terms for T(ESsin28, can be written rather compactly: 

The remaining diagrams are expressed explicitly in terms of 
the total scattering amplitude &if:, -, -,;, =@,, ,, - , - ,;, : 

The dressed vertex @,, ,, - , - ,;, is determined by the set of 
graphs describing three-particle processes. This set includes 
diagrams which form a single ladder sequence, i.e., a series in 
the number of three-particle exchanges due to the sixth-or- 
der anharmonicity ( 12), ( 14), and also diagrams describing 
virtual exchanges of two or three interacting particles (dou- 
ble ladder).' Allowance for these latter diagrams compli- 
cates the calculation of @,,,  _ , - ,;, considerably, since in 
this case the kernel of the corresponding integral equation 
does not factor. Nevertheless, in this problem the vertices of 
interest, ZG,+ and 12,- + 26,- [see (36)-(38)], can be 
calculated explicitly. The intermediate steps, however, are 

rather awkward and have been relegated to the Appendix. 
The final result is 

By summing the analytical expressions for the constitu- 
ent parts of the diagrams Zt - and 2++ [formulas (30)- 
(34) and (39), (40) ]  and substituting them into (21), we 
finally get, with allowance for ( 10) and (32) ( E ,  is the total 
energy) : 

~k'=JZS(l-vr) (C2+JZS(1-vr)), (41 
where 

B 
C= ( 2 a ~ ) % [  sin2 0. + - I-S 

JZS ( + ZS(1-112s) ) sin4 0. 

and the explicit form of the function p, (T) is known in the 
limiting cases of extremely low or relatively high tempera- 
tures: 

Of course, formula (42) takes into account only the leading 
temperature and quantum corrections. Terms - ( E / J ) ~ / ~  
and (Z/J) ' I2  pE ( T )  have been dropped. 

At T = 0 and in the absence of external field formula 
(42) goes over to the corresponding expression that was ob- 
tained in Ref. 17 with the aid of additional assumptions (see 
the Introduction). 

It is seen from (42) that to leading order in 2/J the 
quantum effects reduce to a renormalization of the anisotro- 
py constant a-+Z, but in the general case the quasiparticle 
energy depends on the spin S i n  a complicated manner. 

The spin wave velocity goes to zero at the critical point 
of the phase transition 

which differs from h, on account of the temperature renor- 
malization caused by the two-body interaction of magnons. 
(There is no quantum renormalization of h c ,  since the spin 
structure is collinear above the critical point.) One can de- 
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termine h exactly for an arbitrary relationship between the 
constants a and J by calculating the temperature correction 
to the homogeneous precession frequency in the collinear 
phase and using the fact that the gap in the spectrum goes to 
zero at the transition point. This procedure leads to the fol- 
lowing r e ~ u l t : ~ '  

where 
1  - 1 

O c = ~ z s [ w - - ( w - ~ )  2 s  ] . (45) 

The magnetization vector has the following nonzero 
components: 

(p  is the Bohr magneton, and v, is the volume of the unit 
cell). To the adopted accuracy we have 

2 ~ s  i? sin2 ~ , = - c o s 0 ~ { 1 - - [ ~ +  U O  2  JZS 

where 

The asymptotic behavior of the function p, ( T )  is the same 
as that of p, ( T )  [see formula (43) ] but without the loga- 
rithmic factors. At the transition point 

This result is completely natural, since the spin structure is 
collinear above the transition point and the deviation of the 
magnetization from its nominal value is due solely to ther- 
mal fluctuations. 

In actuality, owing to the presence of dipole-dipole in- 
teractions the magnetization does not reach saturation at 
any finite value of the field (see Refs. 2 and 4 and., in applica- 
tion to our particular model, Ref. 17). We note in this regard 
that earlier in this paper, in the calculation of the spectrum 
and magnetization in the noncollinear phase, we neglected 
the complications due to dipole interactions. Such a proce- 
dure is justified if the dimensionless anisotropy constant is 
much greater than 4a.  

In concluding this section let us consider the problem of 
calculating the magnon lifetime. It is well known2 that be- 
cause of the presence of the S function the leading contribu- 
tion to the damping y, at low temperature comes from pro- 
cesses involving the smallest number of quasi-particles: in 

this case three-particle decay and coalescence. The magnon 
lifetime rL3) = 1/yL3) with respect to these processes was de- 
termined to leading order in a/J by Bar'yakhtar et ~ 1 . ~ ~  As 
we concluded earlier, in this approximation allowance for 
quantum effects reduces to just a renormalization of the an- 
isotropy constant a--ti?. Therefore, for determining y, for 
arbitrary S one need only make the replacement a+Z in the 
corresponding formulas of Ref. 28. The correctness of this 
assertion can be checked directly by calculating the sum of 
the ladder diagrams; this I have done, calculating the damp- 
ing at zero temperature (the intermediate steps are extreme- 
ly awkward). 

We note that because of the noncollinearity of the spin 
structure, the magnon lifetime is finite even at T = 0. In the 
region of comparatively large k, when l>ak>ak, = (ti/ 
J) 112sin~o, the damping increases linearly with temperature, 
while for small k(k<kc ) the exponent of the temperature 
varies depending on the relationship between JS(ak,  ) 2  and 
T. It should be emphasized that the damping of the quasipar- 
ticles turns out to be rather weak, since the smearing of the 
spectrum is always small in comparison to the value found 
above for the energy renormalization. 

For h = 0 the damping due to the three-particle anhar- 
monicity ( 16) goes to zero. Therefore, in the region of small 
fields the leading contribution to y is from other processes. 
In this regard it is of interest to compare the formulas for y r '  
with the results of Bar'yakhtar et uZ.,~' who calculated the 
quasiparticle damping (for h = 0 )  due to the fourth-order 
anharmonicity ( y c ' ) .  Such a comparison shows that at 
small wave vectors kgk, , even in the case of "intermediate" 
temperature k /kc <T/JS(ak, )2g1,  

i.e., the damping due to fourth-order processes can be mani- 
fested only in extremely weak external fields. Most likely 
this damping will actually not be manifested at all, since the 
Hamiltonian always contains third-order anharmonicities 
due to the dipole-dipole interaction. Very large values of the 
anisotropy constant would be needed in order for the four- 
particle process to compete with the three-particle dipole 
process. 

3. LOW-DIMENSIONAL SYSTEMS 

It is known that the role of effects due to quasiparticles 
is larger in two-dimensional ( 2 0 )  and 1D magnets than in 
3 0  magnets, and allowance for fluctuations (both quantum 
and classical) can qualitatively alter the spin structure from 
that given by the classical description. In this section we look 
at the results of a calculation of the fluctuational corrections 
to the spin wave spectrum and magnetization of 2 0  and 1D 
easy-plane ferromagnets [the corresponding spin Hamilto- 
nians are the low-dimensional analogs of Hamiltonian (2 )  1. 

Let us begin with the 2 0  case. At T = 0 the calculation 
of the quantum corrections is completely analogous to the 
calculation we have done for 3 0  systems, since, as before, the 
leading contribution to the renormalization comes from in- 
tegrals for which the characteristic wave vectors obey 

768 Sov. Phys. JETP 62 (4), October 1985 A. V. Chubukov 768 



ak,,,, > (Z/J) ' I 2 .  The only change for the 3 0  case is the val- 
ue of the small parameter used in selecting the diagrams: in 
2 0  magnets this parameter is the logarithm of the ratio of the 
exchange to the anisotropy. The answers in the 2 0  case differ 
from the formulas of Sec. 2 [ (42),  (46), (47) ] only in that 
the Watson integral W (which is formally divergent for 
D = 2)  must be replaced by the more exact expression 

It is seen that in 2 0  magnets the quantum effects are stronger 
than in the analogous 3 0  systems, but they are not enough to 
completely smear out the order in the XY plane.4' 

For T # O  the Mermin-Wagner theorem33 states that 
there is no long-range order. This is confirmed by the diver- 
gence of the temperature corrections to the magnetization 
M, in 2 0  space [see (33) and (46) ] : N - ' Z, ( A ,  /&kO)) n, 
diverges logarithmically. However, the temperature correc- 
tions to the spin wave velocity and to the magnetization 
along the Z axis remain finite. With allowance for these cor- 
rections, we have, outside the fluctuation region, 

where 

and the asymptotic behavior of p $) (T)  for T9ZSsin28, 
differs from (52') only by the absence of the factor contain- 
ing cot28,. Here M 1,":2) and C are the values of the quan- 
tities at T = 0. 

The finding of a finite spin wave velocity for 0 < T(JS 
agrees with general ideas about the structure of the low-tem- 
perature phase of 2 0  magnets having a two-component or- 
der ~ a r a m e t e r : ~ ~ . ~ ~  there is no long-range order, but the cor- 
relation length is infinite (the correlators decay by a power 
law), and so the low-lying excitation are spin waves. 

Let us turn to a description of 1D magnets. Here the 
long-range order is destropyed even at T = 0 because of the 
logarithmic divergences of the quantum corrections 
- N  -'Z, ( & L o ) )  -'. However, as in 2 0  space for T fO, the 
spin wave velocity remains finite. To calculate the spin wave 
velocity we must take into account not only the loop graphs 
consisting of the anomalous Green functions but also the 
loop graphs consisting of the normal Green functions, since 
in 1D space all integrals are determined by the same charac- 
terisitic wave vector ak,,,, - (E/J) ' I 2 .  For the same reasons 
all the third-order diagrams appearing in 2;)- and Z,f,+ 

are important. Without dwelling on the details of the calcu- 
lations, let us give the final results: 

( 0 ,  ~ P S  1 Mz,,,) = -COS 0. [I - - (a) 'I' sin 0.1 . (53') 
00 2'"nS J 

The presence of a finite spin wave velocity means that the 
correlators of the transverse X and Ycomponents of the spin 
fall off a large distances in accordance with a power law (see 
Refs. 22, 36, and 37 for details). Strictly speaking, formulas 
(53) and (53') are valid for (h, - h)/h, >a/J,  i.e., outside 
the immediate vicinity of the phase transition point. How- 
ever formula (53') correctly describes the field dependence 
of the longitudinal magnetization in the opposite limiting 
case as well, i.e., for (h, - h)/h, <Z/J: 

The reason for this is that the value of the longitudinal-sus- 
ceptibility exponent for this orientational transition at T = 0 
is given exactly in the framework of the Gaussian theory 
[ a  = 1/2, Eq. (54);  see Sec. 4 for details]. 

For T # O  the long-range order in 1D space is always 
destroyed, and the correlation of the spins in the XY plane 
falls off exponentially. The fact that the correlation length is 
finite means that a 1D magnet is in the paramagnetic phase at 
any nonzero temperature. The destruction of the long-range 
order occurs through a breakup of the spin structure into 
domains. At low temperatures the dimensions of the do- 
mains are exponentially large and so for wave vectors that 
are not too small the magnons can be treated as elementary 
excitations above a homogeneous ferromagnetic ground 
state. The velocity of such magnons is finite: 

[the notation is the same as in (52) l ;  the asymptotic forms 
of this function are: 

cp:" (TI 

4. PHASE TRANSITIONS IN EASY-PLANE FERROMAGNETS 

In this section we discuss the critical properties of easy- 
plane ferromagnets near the low-temperature phase transi- 
tions. These transitions can occur both upon a change in the 
magnetic field and upon a change in the single-ion anisotro- 
py constant. In the latter case the transition is brought on 
purely by quantum effects: At largeE/J the quantum fluctu- 
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ations are so strong that under certain conditions they des- 
troy the order in the XY plane. The properties of the low- 
temperature phase transitions are conveniently studied by 
first contructing an effective classical functional He, with 
the same value of the partition function as for the original 
quantum f u n c t i ~ n a l . ~ ~  For an easy-plane ferromagnet one 
can construct He, by making use of the equivalence of the 
low-temperature limit of the ~aks- arki in-Pikin39 diagram 
technique to the diagram technique of the classical theory of 
phase  transition^.^' This analogy has been used in Refs. 11 
and 41. 

Let us first t a k e s  = 1. Then we easily obtain the follow- 
ing formula for the effective classical functional: 

where a,,, is the two-component order parameter, and 
w = 2 r n T  is the Matsubara frequency. The appearance of 
this frequency in the classical functional (56) reflects the 
quantum nature of the original spin Hamiltonian. 

The bare propagator in the strong-field and weak-field 
regions is:5' 

Here we have used the notation 

A = 5 ( 1  2 -?)[ I - ( ; ) ~ ]  , 

2h 
6=2 (h-h,) , hl = -. 

1 , I * = - .  
a 2 a  

The condition A = 0 determines the line of phase transitions 
a,  = a, ( h )  in the mean field approximation, while the con- 
dition S = 0 determines the critical field h = h, for the 
orientational transition. 

For T # 0 the Matsubarafrequency isdiscrete, andso its 
appearance in functional (56) does not affect the critical 
behavior. The values of the exponents in this case are the 
same as for the transition at the Curie point.38 The situation 
is different at T = 0: the Matsubara frequency becomes a 
continuous variable, and the wave vector, as it were, ac- 
quires an additional dimension. For orientational transi- 
tions, as was shown in Refs. 42-46, the linear frequency de- 
pendence of K 'O' [see (58) ] leads to an extremely peculiar 
critical behavior: Below the critical dimensionality D,, = 2 
the values of the three exponents v ,  7, and y remain the same 
as in Landau theory, while the rest of the exponents are given 
by the scaling relations: P = D/4,  a = ( 2  - D)/2,  
S = ( D  + 4)/D. 

The transition upon a change in the anisotropy constant 
has been considered" in 3 0  space only for h = 0. According 
to (57),  in the absence of field the frequency appears in the 

FIG. 3. Phase diagram in the variables a/J and h /a for the cases S = 2. 
The hatched region corresponds to the ordered phase. The equations of 
the critical lines a,  ( h )  in the mean field approximation are found in Ref. 
49; h ,  ~ 0 . 9 5 a .  

effective functional to the same power as does the wave vec- 
tor, and so the critical behavior of a D-dimensional quantum 
system at T = 0 turns out to be the same as the behavior in 
the vicinity of T, for its ( D  + 1 )-dimensional classical ana- 
log. This has been confirmed for 1D systems by the results of 
numerical experiments4' 

It is seen from (57) that the imposition of a magnetic 
field sharply alters the characteristic of the critical behavior: 
the propagator acquires a linear frequency term which is 
much larger than the quadratic term in the region of the 
characteristic frequencies w,,,, - A/A ,. For this reason the 
values of the exponents in a nonzero field are the same as for 
the orientational transition at the point h,. We note that the 
difference in the structure of propagators (57) and (58) in 
the high-frequency region [the presence of a quadratic fre- 
quency term in (57) ] does not affect the values of the expo- 
nents but leads only to a shift in the transition point a, ( h )  
from the value obtained in the mean field approximation. 
(Recall that there is no such shift for the orientational tran- 
sition) .9 

For arbitrary S the phase diagram of an easy-plane fer- 
romagnet in the (a/J ,  h /a) plane consists of repeating 
blocks of length Ah = a (see Fig. 3)  .48 In each of the blocks 
there is a single value of the field h, at  which the transition 
following a change in the anisotropy constant is character- 
ized by the same exponents as is the transition in the equiva- 
lent classical system in a space of one-higher dimension. In  
the mean field approximation 

At all the remaining values ofh the critical exponents are the 
same as for the orientational transition at  the point h = h,. 

For finite, but extremely low temperatures the quantum 
critical behavior will be manifested everywhere except in the 
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immediate vicinity of the transition point. The transition 
from the quantum critical behavior to the classical critical 
behavior will occur when the characteristic frequencies 
w,,,, acquire a substantially discrete nature, i.e., when 
w,,,, - 2 n T  or (for S = 1 ) 

Here it must be taken into account that at room temperature 
the transition point itself is shifted to lower fields: 

ad0'-acT (h/ato) ) l h  ( T / ~ ( , O )  ) %, T/h<l, - ( T a )  T/h>l. (62) 

Here a:'' is the value of a, at T = 0. 
Unfortunately, the experimental observation of such a 

transition in 3 0  space is hardly feasible, since the quantum 
critical behavior of 3 0  systems is described by Landau the- 
ory and the classical fluctuation region begins at values 

which for T4h lie well inside the region of classical critical 
behavior and for T%h lie close to  the boundary of this region. 

Quantum critical behavior near phase transitions both 
on a charge in the anisotropy constant and on a change in the 
magnetic field may well be observable in experiments on 
quasi-one-dimensional easy-plane ferromagnets such as 
CsNiF,. 

I would like to take this opportunity to thank M. I. 
Kagan for many discussions of this study at various stages 
and for many comments. I am also grateful to A. F. Andreev, 
D. A. Yablonskii, and V. N. Krivoruchko for a discussion of 
the results. 

APPENDIX 

The integral equation for the total amplitude 
@,,,, -, -,;, is written (see Fig. 2c): 

1 JZS 
3 - v3 - v4 - v3+, +XT 

a, r 

where the ellipses denote a cyclic permutation, and the po- 
tentials $7 and $: and the bare amplitude 4 ~ '  are given by 
( 13), ( 14), and ( 17), respectively. Let us first consider the 
case T = 0. We introduce the notation: 

11,* = 3 - v1- Vp-V1+a . 
Substituting the combination Y, Z, E, F into the right- 

hand side of (A. 1 ) and summing over the wave vectors, we 
obtain a system of four equations in six unknowns: 

Y=61+3X[ I- (I-11s)-'"I, (A.3) 

(A.6) 
The expressions for the coefficients 6,- a,, are awkward, 
and we shall not give them here. 

Using (A.5 1, we can eliminate the dependence on E and 
R on the right-hand side of (A.6).  We can then write a 
closed system of linear equations for F, Y, and Z in which X 
plays a role of a parameter. Solving this system we find 

Z=K+2[1- (1-1IS)'"]X, 

where 

1 
h=W+ 

2 ~ ( 1 - 1 / 2 s j  ' 

After summing the terms in (36) and (37) we are satis- 
fied that, with allowance for condition (A.7), the desired 
quantity 

does not depend on X. In an analogous way we can calculate 
the total scattering amplitude in the limit of zero wave vec- 
tors [see (40) 1 : 

@o,o,o, = lim 0 ,,-,, O; o .  
q-+o 

Generalization of these results to the case T # 0 does not 
present any difficulties, since to the required accuracy the 
temperature dependence of the vertex @ ,,,, _ , -,;, is deter- 
mined solely by the temperature parts of its constituent loop 
diagrams which consist of anomalous Green functions (see 
Fig. 2c). The result is that for T f 0 the quantity R should be 
replaced by 2 ,  where 

JZS 
r=a+2 -C 5 

N e ' ; ) '  

"An alternative version is to work with finite sums but with two types of 
quaslparticles-bosons and f e r m i o n ~ . ~  

"We are talking, of course, only about slightly anisotropic magnets, for 
which a / J (  1 .  When a / J >  1, the long-range order in the XYplane an be 
completely smeared out on account of strong quantum fluctu- 
ations, I 1 .I" 14 

771 Sov. Phys. JETP 62 (4), October 1985 A. V. Chubukov 771 



"A correct calculation of the temperature correction to the homogeneous 
precession frequency of a uniaxial collinear ferromagnet in the Dyson- 
Maleev formalism is given in Ref. 29. 

4'This assertion is apparently also valid for 2 0  noncollinear systems which 
lack a small parameter-antiferromagnets and the XY m ~ d e l . ~ ' . ~ ~  

"For h > h, formula (56) can also be obtained by the coherent states 
t e c h n i q ~ e . ~ ~ . ~ ~  
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