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A spiral structure to which a magnetic field is applied in a plane at right angles to the wave vector 
or whose temperature is changed, can be continuously transformed by the natural anisotropy in 
the same plane into a commensurate phase. It  is well known that if the symmetry of the order 
parameter allows a Lifshitz invariant that is linear in the gradient, the incommensurate structure 
near the commensurate phase is a lattice of solitons. We consider the inelastic magnetic scattering 
of neutrons by the normal vibration modes of this lattice which correspond to a single-band 
periodic potential. We have calculated the scattering cross section, for the cases of a magnetic 
field and of a second-order natural anisotropy, exactly in terms of elliptic functions. The exact 
solution enables us to trace the evolution of the inelastic scattering pattern when the field or the 
temperature change in the whole range where the incommensurate phase exists, including the 
transition to the commensurate phase itself. We show, in particular, that in the vicinity of the 
transition diffuse scattering occurs due to the continuous decrease in the wave vector of the 
structure. The specific picture of the scattering in the (w,q)-plane enables us to verify experimen- 
tally the soliton theory of the incommensurate phase. 

I. INTRODUCTION 

The spiral modulation of ferro- and anti-ferromagnetic 
structures in crystals is, as a rule, caused by the competition 
between exchange interactions of opposite sign, but there are 
a number of examples where the spiral magnetic structures 
are due to anisotropic interactions described by Lifshitz in- 
variants which are linear in the gradient.' Dzyaloshinskii2 
has shown that in the case when the temperature or the mag- 
netic field is changed there occurs a phase transition from an 
incommensurate phase which is a simple spiral kind of struc- 
ture to a commensurate one, and that in the vicinity of the 
transition the incommensurate phase is described as a lattice 
of solitons. Pokrovskii and T a l a p o ~ , ~ . ~  and also Bulaevskii 
and K h ~ m s k i i , ~  have studied the excitation spectrum of the 
soliton lattice and showed that the periodic potential deter- 
mining the motion of the fluctuations in the soliton lattice is 
a single-band one and the excitation spectrum is described 
by the Lam6 equation with band index 1 = 1. 

The aim of the present paper is a study of the scattering 
of neutrons by the vibrational modes of the soliton lattice. It 
turned out that thanks to the single-band nature of the po- 
tential not only the problem of the spectrum of the fluctu- 
ations3s4 but also the evaluation of the cross section for in- 
elastic scattering by them can be solved exactly in terms of 
elliptic functions. The exact solution enables us to trace the 
evolution pattern of the inelastic scattering when one 
changes the magnetic field or the temperature, right up to 
the transition to the commensurate phase, in a similar way as 
we traced earlier6 the evolution of elastic scattering by the 
soliton lattice. 

We now consider the typical situation when the modu- 
lated structure is described by a two-component order 
parameter (OP) (77 = { * ) and by a Ginzburg-Landau func- 
tional of the following form: 

Such a functional describes, in particular, the spiral magnet- 
ic structure in a uniaxial crystal with the wave vector along 
the main axis (thez axis) and an nth order anisotropy in the 
base plane while the components of the local magnetic 
moment M are connected with the OP by the relations 

The conditions for stability of such a structure require that 
u > 0, y > 0, and y, > 0, while the parameter a can have any 
sign and the parameter r a  (T-  T, ). We shall assume, 
without loss of generality, that the parameter w is positive. 

The approximation 

in which we assume that the modulus of the OP is indepen- 
dent of the coordinates, reduces ( 1.1) to a functional 
depending only on the phase p ( r ) ,  while the equilibrium 
distribution p ( z )  of the OP can be expressed in terms of a 
function of the amplitude2 

One finds the modulus x of the elliptic functions from the 
condition that Q be a minimum 

where E (and later K) are complete elliptic integrals of the 
second and first kind. 
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One can easily write the Lagrange equation for the fluc- 
tuation Sp of the O P  for a given equilibrium distribution @. 
If we write Sq, in the form 

the quantity $ will satisfy the Lame equation with band in- 
d e x / =  

d2$/du2= [2xZsn2 ( u ,  x )  - x 2 - c ] V ,  (1.7) 

where u = (v ' '~ /x)z  is the dimensionless coordinate and 

1 xZ 
E= -- [ ~ o ~ - y , ( q z ~ + q , ~ )  I. 

Y c 
(1.8) 

The parameter p occurs in the expression for the kinetic 
energy 

The spectrum of the eigenvalues E is implicitly deter- 
mined from two equations3 which can conveniently be writ- 
ten in terms of the Jacobi functions sn u, cn u, dn u and the 
zeta function Z ( u ) .  For the first band 
(0 < E  < x I 2 s  + - x2,1qI < ( X / V ~ ' ~ ) Q ~ = T / ~ K )  these 
equations have the form 

E = x ' ~  sn2 ( a ,  X I ) ,  q=Z(a. ~~' ) . tna/21r 'K1,  (1.9) 

and for the second band ( 1 < E < CC, lql> (x/u"~)Q,) 

e= 
1 

snz(a,  x ' )  ' 

cn (a,  x ' )  dn ( a ,  x ' )  nu 
q=Z (a ,  x ' )  + ---+ 

sn (a ,  x ' )  2KK' 
(1.10) 

In both cases a is a real parameter ( - K ' < a  < K ' )  and by 
eliminating it we obtain the dispersion curve (q- ( x / u " ~ ) ~ ,  
is the dimensionless momentum). All elliptic functions are 
written in standard notation.' We show the shape of the 
spectrum in Fig. 1, where the wave functions for the limiting 
points a, b, and c are 

$a (u)  -dn IL, $a ( u )  -cn u, I), ( u )  -sn u. (1.11) 

These expressions are special cases of the general expression 
for the eigenfunction of the Lam6 equation: 

FIG. 1. Vibration spectrum of the soliton lattice (in the dimensionless 
quantities E and q ) .  

where uo = i a  + K for the first band and u = i a  for the sec- 
ond band. 

Formulae ( 1.6) and ( 1.12) give the wave function of 
the normal vibrational modes of the soliton lattice and we 
can use them to evaluate the cross section for inelastic scat- 
tering by these modes. It is useful first to introduce the den- 
sity of states for one-dimensional motion in the direction of 
the z axis, N ( E )  = d q / ~ .  Using Eqs. (1.9) and (1.10) to 
eliminate a from the expression N(E)  = (dq/da) ( d d d a )  
we get for the first and second bands the simple formulae 

showing the square root singularity at  the boundaries ofboth 
bands. If there is no anisotropy (at  x = 0) they go over into 
the well known formula N(E)  1 / 2 ~ " ~  for the one-dimension- 
a1 motion of free particles and have, close to the phase transi- 
tion to the commensurate structure (as x-I), the asympto- 
tic form 

The small logarithmic factor arises here from the well 
known asymptotic form of the complete elliptic integral 
K ( x )  z l n ( 4 / x ) .  The density of states of the three-dimen- 
sional motion of the model studied by us was evaluated in 
Ref. 8. We need in what follows just the density of states of 
the one-dimensional motion. 

2. GENERAL EXPRESSION FOR THE INELASTIC 
SCATTERING CROSS SECTION 

The cross section for the magnetic scattering of neu- 
trons with an energy transfer w and a momentum transfer Q 
can be expressed in terms of the Fourier transform of the 
magnetic-moment correlator:' 

where 

e = Q/Q is the unit scattering vector p0 the polarization vec- 
tor of the incident neutron beam, and E ~ , , ~ "  the unit antisym- 
metric tensor. 

The spectrum of the fluctuations was determined in the 
preceding section for the case of a limitingly large "easy 
plane" type anisotropy, neglecting the departure of the mag- 
netic moment from the basal plane so that for the considera- 
tion of the cross section in that limit we must also use expres- 
sion ( 1.2) for the magnetic moment in terms of the OP. The 
fluctuations in the O P  reduced in the approximation ( 1.3) to 
phase fluctuations Sp. The part of Eq. (2.1 ) which is qua- 
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dratic in Sq, describes the inelastic scattering by the excita- 
tions of the soliton lattice. The scattering cross section is 
then determined by the correlator (Sp (r,t)Sp (rl,O) ) . To 
evaluate that quantity it is convenient to expand an arbitrary 
fluctuation in terms of the functions ( 1.6) : 

Sp (r, t )  = 11 d q  d oa ( q ,  (0) [S (w - w.) 1 6 (iu + q)] 

x eqmt P X P  {i ( q , i  T qy?I)) v;( , , t , , 9 ,  ( $ 2 )  . (2.2) 

where $, (u)  is an eigenfunction of the Lam6 equation and 
w, the corresponding eigenvalue (it is found from Eq. ( 1.8) 
for E) .  We express the energy functional ( 1.1 ) in terms of the 
amplitudes a(q,w) of this expansion. In the harmonic 
approximation 

m=mO+ . l d q ~ ~ ( q ) p o . z { ~ a ( q , o . )  ~ ' + / a ( q . -  I (2.3) 

3. SOLITON LATTICE PRODUCED IN A MAGNETIC FIELD 

Let there therefore be a magnetic field applied along the 
- x axis and let there be no natural anisotropy in the basal 

plane. The field H is then connected with the parameter w 
from the functional ( 1.1 ) through the relation H = 2w. The 
soliton lattice caused by the field is characterized by the 
elliptic modulus ?c which can be found from the equation 

where H, is the critical field at which the spiral structure 
changes into the ferromagnetic (commensurate) structure 
induced by the field. 

When n = 1, by virtue of the definition ( 1.4) 

e 'W" '=2  cnL ( u ,  x) -14-2i cn ( u ,  x )  sn ( u ,  x). (3.2) 

where S(q) is the normalization integral of the eigenfunc- Using this expression and Eq. ( 1.12) we see that the inte- 
tions $, (u ) : grand in (2.7) is periodic along the real axis with period 2K 

so that it can be expanded in a Fourier series 
JP:(U)$.. ( u ) d u = ~ ( o h  ( q + q f ) .  (2.4) w 

i"l 

The averaging over the statistical ensemble with energy e ' ~ ( ~ ) 0 ~  (- 2K (u-uo) ) / o h  ($ u )  = x, a~ e x p { i l  + u } .  
1=-m 

(2.3) is a Gaussian path integral over the quantities a(q,w), 
so that one can easily write down an expression for the corre- Thanks to this expression it is possible to write (2.7) in the 
lator in which we are interested: form 

X exp {iqx (x - 5') + iq!/ (y - yf) l  where k = V"~T/?~K is the wave vector of the structure. The 
1 series coefficients a,  are found by taking the inverse Fourier 

( 2 ' 5 )  transforms, with the integration over the interval 
- K < u G  reduced to a contour integral over a quasiperio- 

Working out the sum in Eq. (2.1 ) over the vector indexes a dicity cell of the integrand7 ( ~ i g .  2): 
and /3 and using (2.5) we can write the cross-section for 2 cn2 u- I  
inelastic scattering by OP fluctuations in the following form: -I J d" {T e x p  { ( n / 2 K )  (2iK.+ie,) 2 K  c 

where the form factor of the normal vibrational mode of the The integrand has a third-order pole in the point u = iK '. 
soliton lattice is 

The remaining calculation of the cross section thus reduces 
to evaluating the quantity F(qz ,Q, ). The result depends in 
an essential way on the anisotropy index n through Eq. ( 1.4) 
which determines the equilibrium structure. First of all we Z ~ K '  

consider the case n = 1 corresponding to a magnetic field 
applied to the basal plane. The calculation of expression i ~ '  
(2.7) for n = 1 and also for n = 2 (second-order anisotropy 

O ( x (  sion in 1; the for limit n > 2 of it is small possible ?c. to obtain an asymptotic expan- -K &- 17 K ReU 
in the basal plane) is completely rigorous for all values - 

FIG. 2. Contour of integration in (3.4) 
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After evaluating the integral by the residue theorem we get 

exp { ( n / 2 K )  (21K'+iuo)) xq sh ( ( n l 2 K )  (21K1+iu,) ) 
6 (Q,-q,-kl). ( 3 . 5 )  

After long transformations of the elliptic functions we can 
write the scattering cross section in the following form: 

where 
Sz12  ( I -ex2)  +C21Z(1-e,Z) +2S32C2ie, ( e p o ) ,  I Q Z  I < Q o ,  
CZiZ(1-e52) +S,,2(1-eu2) + 2 S Z l C 2 1 e i ( e ~ o ) ,  14.1 >Qo, 

( 3 . 7 )  

In obtaining this expression we used Eqs. ( 1.9) and ( 1.10).  
We note that when n = 1 the wave vector corresponding to 
the break in the spectrum is Q, = k / 2 .  

In the framework of our adopted model Eq. ( 3 . 6 )  gives 
an exact expression for the cross section for a spiral structure 
in a magnetic field. In order to get the explicit w - and Q- 
dependences of the cross section it is necessary to use Eqs. 
( 1.9) and ( 1.10) to eliminate the parameter cr from the ex- 
pressions for S2' and C 2 ,  . This can be done in analytical form 
in the two limiting cases, x-0 and x+l ,  corresponding to a 
weak and a strong field. 

As x 4  one obtains easily the asymptotic behavior of 
the quantities determining the scattering intensity in the 1 th 
magnetic Brillouin zone. We have 

and a similar expression for I < 0. We can obtain the analyti- 
cal q, -dependence of a and E only in two limiting cases: 

far from the gap in the spectrum, when S E ~  1 - q t /  
Qi1>x2:  

and close to the gap when 6 5 x2: 

We consider separately the contributions to the scattering 
cross section ( 3 . 6 )  from two regions of q-space correspond- 
ing to scattering by modes with momenta far from the 
momentum at the break in the spectrum and to momenta 
close to it. Using the available asymptotic behavior the first 
contribution is given by the expression 

The second contribution is given by the formula 

We note that (3 .12)  is valid only when q, =: Q,; the expres- 
sion for q, z - Q, is obtained from (3 .12 )  by the formal 
substitution p,-+ - p,, k-+ - k .  

Expressions (3.11 ) and (3 .12 )  describe the scattering 
cross section in weak fields H ( H c ,  since we have x2  = (.rr2/ 
4 )  ( H  /Hc ) for x( 1 .  The formulae introduced here show the 
existence of inelastic-scattering peaks in different magnetic 
Brillouin zones and a reduction in their intensity proportion- 
al to H 2 ' ,  when the number I of the zone increases. The pat- 

758 Sov. Phys. JETP 62 (4), October 1985 Y. A. lzyumov and V. M. Laptev 758 



FIG. 3. Evolution of the pattern of inelastic scattering in the case n = 1 
when x changes from 0 ( H  = 0) to 1 ( H  = H, ). 

tern of the scattering in the (w2,Qz ) plane which follows 
from these formulae is shown in Fig. 3. The lines show here 
the locations of the inelastic peaks. The heavy lines corre- 
spond arbitrarily to unity, intensity and the dashed ones to 
intensities reduced by factor x4, x8, and so on. For small x, 
the sections having unity intensity correspond to the disper- 
sion curve centered on the wave vectors Q, = * k. On the 
curves centered in the neighboring magnetic-lattice points 
lattice (Q, = 0, f 2k) the intensity is a x4, and so on. Near 
the points where there is a break in the spectrum 
(Q, = + k /2) the intensity changes smoothly thanks to the 
branch hybridization described by Eq. (3.12). 

When x increases the wave vector k of the structure 
decreases and the whole pattern is compressed towards the 
ordinate axis. In the limit as x-1 there occurs a complicated 
distribution of the scattering intensity in regions of the 
(w,Q, ) plane. The whole of the asymptotic behavior is in an 
essential way determined by the known asymptotic behavior 
of the elliptic integral K, in particular, the wave vector 
k = .rrq0/ln(4/x1), where the parameter go = (a/4) ( l o l / y )  
is of the order of the wavevector of the spiral for x = 0. The 
asymptotic form of Eqs. ( 1.9) and ( 1.10) which parametri- 
cally determine the dispersion laws in the two zones has the 
form 

and 

As we have k-0 when x-1 we can change in the sum over I 
in Eq. (3.6) to an integral which can be removed thanks to 

the &-function of the momenta. We can get rid of the integra- 
tion over q, in (3.12) through &(w f w, ) after introducing 
the density of states in the spectrum: 

where the quantity N ( E )  in both zones is given by Eq. 
( 1.13). As a result we get for the cross section for scattering 
by the modes belonging to the first and second zones, respec- 
tively 

Here 

Q z - q z ( o )  
+2e, (ep.) sh-' (?- 

4 u  ) 

Formula (3.16) shows that there is in the (w2, Q, ) -  
plane a continuous intensity distribution around Q, = 0 
with a width 2 q d a  in the variable Q, and around 
w2 = (S/p) (Q: + Q i )  one with a width (yv/p) (xt2/x2) 
in the variable w2. The intensity of this contribution tends to 
zero as (ln-'(4/x1) ). A similar contribution is contained 
also in Eq. (3.17) but it occurs in the vicinity of the singular 
contribution which is approximately described by the first 
term. In that term we neglected a decrease by a factor - (In-'(4/x1) ) due to the transition of part of the scatter- 
ing to the second diffusive term. When x = 1 the whole 
expression (3.16) and the second term in (3.17) vanish so 
that the scattering is completely described by the first term 
of (3.17) and corresponds to the inelastic scattering by exci- 
tations of the commensurate ferromagnetic phase which has 
a frequency spectrum 

Figure 3 shows the evolution of the inelastic scattering in the 
whole range where the incommensurate phase exists-from 
the spiral structure in zero field to the ferromagnetic struc- 
ture in the critical field. 
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4. SOLITON LATTICE RESULTING TO NATURAL 
ANISOTROPY 

When n > 1 the last term in the functional ( 1.1) de- 
scribes the natural anisotropy in the base plane. Unfortu- 
nately we can obtain an exact analytical evaluation of the 
form-factor (2.7) only for n = 2 when 

etc(i'=cn (u, x )  + i  sn(u, H )  . (4.1) 

The calculations for the scattering cross section lead to the 
following formula which is formally analogous to (3.6): 

where 

while in this case Q, = k. 
Consideration of the asymptotic behavior as x-+O leads 

to the following results. A gap appears in the spectrum for 
Qz = 0, k 2k, + 4k. The dispersion curves centered on the 
reciprocal-lattice sites 0, f 2k, k 4k do not manifest them- 
selves in the scattering. It is clear from (4.2) that the scatter- 
ing occurs only by odd lattice sites. The intensities on the 
branches of the dispersion curves centered on the sites 
f k, + 3k, + 5k are, respectively, of order of magnitude 
l,x4,x8. AS x-1 there occurs diffuse scattering in the 
(w2,QZ )-plane as in the case of a magnetic field when n = 1. 

In the case n = 2 the anisotropy parameter v defined in 
(1.5) is temperature-independent so that it is impossible to 
study the evolution of the scattering corresponding to a for- 
mal change of x in the range [O, 1 ] by changing the tempera- 
ture. This possibility occurs for higher-order anisotropies 
n = 4,6 when v changes with temperature through a change 
in the OP modulusp. One can use the following representa- 
tion of the equilibrium phase function? 

2 
(a) =ka+ z- ch-I (4.3) 

o=1 

and expand the factor ei@") for small x in Eq. (2.7) for the 
form factor in powers of the harmonic terms. After this the 
integral in (2.7) can be evaluated and appears as a power 
series in x. One can verify that inelastic scattering occurs 
only by the dispersion branches centered on the sites f k, 
+ k 2Q,, . . . , + k + 21Q0 with intensities of the order x4'. 

We show the intensity distribution in the (w2Qz )-plane in 
Fig. 4. The intersection of the branches shown in the figure 
does not lead to their hybridization and the appearance of 
new gaps in the spectrum. This is all a consequence of the 

FIG. 4. Schematic picture of the inelastic scattering in the case of nth 
order anisotropy in the base plane. 

fact that the potential has a finite number of bands. 
When the temperature is lowered p increases and the 

effective anisotropy parameter v+v,, which corresponds to 
x-I. In that limit the pattern of the inelastic scattering 
evolves with temperature in exactly the same way as in the 
case of an external magnetic field (see the lower part of Fig. 
3) .  

If we forgo the approximation p = const., there must 
appear in the spectrum of the fluctuations of the two-compo- 
nent OP an infinite number of gaps in the points where the 
branches shown in Fig. 3 intersect because of their hybridi- 
zation. 

An experimental study of the inelastic scattering of neu- 
trons by spiral structures caused by relativistic interactions 
and a comparison of the results with the present theory 
would enable us to verify the validity of the concept of the 
incommensurate structure as a soliton lattice. We have given 
earlier in Ref. 6 the picture of the elastic scattering by such 
structures. Possible objects for a study of elastic and inelastic 
scattering by a soliton lattice might, for instance, be the iso- 
morphic cubic crystals MnSi and FeGe in which the spiral 
structures are caused by relativistic interactions described 
by Lifshitz invariants. 

In the comparison with experiments it is necessary to 
take into account the role of damping, in particular, for the 
low-frequency part of the spectrum near the Goldstone 
modes. In the present paper we neglect the damping in the 
system as otherwise we would not get an exact solution. We 
have studied in Ref. 10 the scattering of neutrons by excita- 
tions of a system described by two-component OP with the 
functional ( 1.1 ) without using the approximation 
p = const. Without this approximation we cannot come 
close to the boundary of the transition from the incommen- 
surate to the commensurate phase, but on the other hand we 
can introduce damping through a dissipative function. Our 
analysis shows that the dissipative terms conserving the total 
z-component of the spin are unimportant for the Goldstone 
modes which have frequencies linear in the wavevector, 
whereas the damping is quadratic. However, terms which do 
not conserve the total spin component can transfer the Gold- 
stone mode at sufficiently high intensity to the regime of an 
overdamped oscillator. It is thus necessary to reduce as 
much as possible their role by first of all removing the defects 
from the crystal. 
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