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For temperatures higher than the degeneracy temperature of the spin excitations but lower than 
the average kinetic energy per atom, the thermal conductivity of liquid 3He is proportional to the 
temperature while the viscosity depends weakly on the temperature. In a wide range of tempera- 
tures and molar volumes the thermal conductivity and viscosity are characterized by a scaling 
dependence on the temperature. This makes it possible to determine the values of the kinetic 
coefficients of 3He in that region of temperatures and molar volumes in which they have still not 
been measured. At high temperatures the thermal conductivity and viscosity of 3He increase with 
increase of the density of the liquid. Relations connecting the kinetic coefficients of 3He are 
obtained. From a comparison of the properties of 3He and 4He the value of the average kinetic 
energy per 3He atom is determined. The possible result of the determination of the momentum- 
distribution function of the particles on the basis of experimental data from measurement of the 
structure factor of liquid 3He is predicted. 

1. THE PHYSICAL PICTURE 

1. Quantum effects on liquid 3He are strongly pro- 
nounced at temperatures lower than the average kinetic en- 
ergy E, per atom. The energy E, is approximately the same 
for liquid 3He and 4He, and for 3He at the saturated-vapor 
pressure this quantity is of the order of 13 K. At the end of 
the paper we determine this value from a comparison of the 
properties of 3He and 4He. We note that the quantity E, is 
appreciably greater than the analogous parameter 3/ 
5~~ z 3K of an ideal gas of the same density. A distinctive 
feature of 3He is the existence of a large temperature window 
TF < T <  E, , where TF is the spin degeneracy temperature, 
defined in terms of the magnetic susceptibility x ( T )  at 
T = O : x ( O )  = Ck/TF, where Ck is the Curie constant in the 
law x ( T) = C, / T  for T% TF . When the molar volume V of 
the liquid changes from 36.8 to 26.2 cm3/mole the param- 
eter T, changes from 0.36 to 0.185 K. In the region 
TF < T < E, the Curie law is fulfilled approximately for X, 
and the single-particle motion of an atom and the oscilla- 
tions of the total density of the liquid have a quantum char- 
acter. But the region of applicability of Fermi-liquid theory 
is bounded by the conditions T, < T< TF, where T, is the 
temperature of the phase transition of 3He to the superfluid 
state. For such T the gas ofspin excitation is also degenerate. 
Since upon increase of the density n of the liquid the scales 
Tc and E, increase while the parameter TF decreases, the 
range of applicability of Fermi-liquid theory becomes nar- 
rower and the semiquantum window TF < T < Ek becomes 
wider. The important point is that there exists an enormous 
temperature range T, < T < E, in which the parameter TF is 
the only characteristic energy scale of the liquid, since for 
such T it is possible, in the zeroth approximation, to set 
Tc = 0 and E, = CC. It is clear that in such a situation the 
thermodynamic and kinetic properties of 3He should be de- 
scribed by very simple, universal laws. And indeed, the anal- 

ysis performed in Ref. 2 of the experimental data of 
Greywall' has shown that the spin entropy of 3He has a scal- 
ing dependence on the parameter T/T,. Moreover, it has 
turned out that both the low-temperature ( T < TF ) and the 
high-temperature ( T >  TF ) expansions for the spin entropy 
S"/R per particle, where R is the gas constant, are limiting 
expressions for a more general expansion ofS" in an asymp- 
totic series in powers of the dimensionless parameter 
@ =xT/C,; 0 < @ < 1. The power series in T/TF or T,/T 
converge very slowly, but the series in powers of @ converges 
so fast that even the first approximation S"/R = So@ is in 
quantitative agreement with experiment. This result is 
important, since it has turned out that one can find simple 
relations by expanding observable quantities in series in ob- 
servable quantities without specifying a model of the liquid. 
The reason for such a surprising lack of dependence of the 
residual entropy So on the molar volume V for TF < T <  E, 
has remained an open question. The appreciable difference 
of the value So-0.97 from ln2 has not been explained either 
in the framework of Andreev's theory of semiquantum li- 
quids3 or in the theory of 3He considered by Goldsteia4 The 
paramagnon model and the model of almost antiferromag- 
netic 3He (Ref. 5) also fail to give this value ofso. Moreover, 
in the framework of gas models it is difficult to explain even 
the fact that the spin entropy approaches a constant value. In 
the linear approximation, when the interaction of the spin 
excitations is not taken into account, it is not the entropy but 
the spin specific heat that approaches a constant value at 
high T. 

2. In this paper we consider kinetic phenomena in liquid 
3He. It is shown that in the interval 0.005 < T <  2.5 K the 
thermal conductivity x and viscosity 7 of 3He at constant 
volume of the liquid, like x and Su , are characterized by a 
universal, scaling dependence of T. This implies that one can 
define normalization parameters x,, 71, and temperature 
scales T, and T, in such a way that the dimensionless func- 
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FIG. 1 .  Dependence o f  the spin-entropy, viscosity, and thermal-conduc- 
tivity temperature scales T,, T, , and T , ,  in units o f  the magnetic scale 
TF, on V d V ;  V, = 36.84 cm3/mole; 1) T , / T F ,  2 )  T , /T , ,  3 )  T s / T F .  

tions x/x, and 7/7, will not depend on the density n of the 
liquid: 

The quantities T,,T,,, Ts, TF, x,, and vO, however, are 
strong functions of the density. The important point is that 
in experiment all the scales have almost the same depen- 
dence on the molar volume, i.e., there is indeed one scale- 
TF. Figure 1 shows the dependence of the parameters Ts/ 
TF, T, /TF, and T, /TF on V. It can be seen that this depen- 
dence is indeed very weak. We note that this is evidence for 
the consistency and correctness of the experimental data 
that we analyzed in order to obtain the values of the scales 
T, , TF, T, , and T,, . It turned out that not all the experimen- 
tal data could be made consistent; only some of them satisfy 
the rather rigid constraints associated with the universality 
of the dependences of the thermodynamic and kinetic char- 
acteristics of 3He on T and n at Tc < T <  E, . All the param- 
eters in ( 1) are fixed by the values of the leading terms in the 
asymptotic forms of the observable quantities at Tc < T < TF 
and TF < T < E , :  

We have confined ourselves to considering the interval 
0.005 < T <  2.5 K, and do not take corrections - Tc/T  and 
T /Ek into account. The low-temperature asymptotic behav- 
ior ofx,  S, 7,  and x corresponds to the Fermi-liquid region of 
T, and has been investigated in the original basic papers of 
L a n d a ~ , ~  Pomeranchuk,' and Abrikosov and Khalatnikov.' 
The region of low T has been considered within the frame- 
work of the paramagnetic model of Rice,9 while Btal- 
Monod," by supplementing this model with sum rules forx,  
has analyzed the high-temperature limit. The paramagnon 
model, while not explaining the approach of the magnetic 
susceptibility to a Curie law at T, < T <  E,, nevertheless 

predicts a scaling dependence for x and 7 on T (Ref. 9 ) .  This 
is fully understandable. Although this gas model contains as 
an upper scale the ideal-gas parameter E,, in the model the 
small parameter AE, is introduced artificially. The limit 
A-0 corresponds to an almost ferromagnetic gas, and the 
parameter AE, plays the role of TF. Any model that leads to 
the inequality T, < T, < E, will possess this property. 
Therefore, in the present paper, as in Ref. 2, we have de- 
clined to consider a concrete model of 3He and we take the 
liquid to be as it is in experiment. The aim of the paper is to 
discover universal laws, and not to give a rigorous justifica- 
tion of them. 

3. In order to explain the dependences x a Tand 7 = 77, 

at T >  T,, we recall the derivation of the law x = x, for the 
thermal conductivity of metals at T >  w, , where w, is the 
characteristic phonon frequency, on the basis of the gas-ki- 
netic formula x a C,v,l, where I is the mean free path, v, is 
the Fermi velocity, and C ,  is the specific heat. Since in met- 
als heat is transported by electrons, for which C ,  a T, while 
their mean free path is determined by collisions with classi- 
cal (for T >  w, ) phonons, it follows that 1 a l /Tand x does 
not depend on T. The dependence l a  1/T is connected with 
the fact that the mean free path of the electrons is inversely 
proportional to the phonon-gas density, which depends lin- 
early on T a t  T >  w,. We note that the phonons themselves 
give a constant constribution to the specific heat, but do not 
make a noticeable contribution to the specific heat at 
T >  w, . A similar situation is realized in 3He at T >  T,. The 
heat is transported by single-particle excitations, and their 
mean free path is determined by collisions with classical (a t  
T >  TF) spin fluctuations, which have a temperature-inde- 
pendent entropy and density but do not themselves make a 
contribution to the thermal conductivity. This circumstance 
simplifies the problem substantially, since we are essentially 
concerned with the motion of a single particle in a field of 
static spin fluctuations. In the region T, < T < E,, in which 
the spin disorder is already a maximum but fluctuations of 
the total density of the liquid have still not developed, the 
mean free path of the single-particle excitations depends 
weakly on T. For such values of T we can assume that 
TF = 0 and E, = w , and the temperature can appear in the 
expression for I only in the form of a correction: 
l z a (  1 + TF/T), where a is the interatomic spacing-the 
natural length parameter in terms of which I can be ex- 
pressed. In experiment,',* the nonspin entropy, i.e., the en- 
tropy associated with the motion of the "center of gravity" 
of an atom, is linear in the temperature, and since the charac- 
teristic velocity of an atom does not depend on T, we have 
x a T. Analogously, the viscosity 7 does not depend on T. 
We note that the laws x a T and 7 = 7, for high T were 
obtained in the framework of a concrete model in Ref. 10. 
We have convinced ourselves that these laws are determined 
by two rather general factors: There exist collective excita- 
tions with constant entropy, which do not contribute to the 
kinetic phenomena but do determine the mean free path of 
the single-particle excitations, which have an entropy that 
depends linearly on T and make a decisive contribution to 
these phenomena. In the standard Fermi-liquid approach 
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the problem of determining the kinetic coefficients of 3He at 
T >  TF appears to be very complicated, since for such T, at 
first sight, the density of the single-particle excitations is 
large and we cannot confine ourselves to taking only their 
pair collisions into account. A specific feature of 3He is that 
an overwhelming fraction of the single-particle excitations 
are coupled into the soft diffusion spin mode, i.e., figurative- 
ly speaking, are precipitated out. Only a small fraction of 
them determine the transport phenomena. For the thermal 
conductivity and viscosity of 3He this statement agrees 
quantitatively with experiment, but for the spin-diffusion 
coefficient D there is only qualitative agreement. 

4. Below it will be shown that both the low-temperature 
q,  x ,  and D and the high-temperature x and q are asymptoti- 
cally determined entirely by global constants-the interato- 
mic spacing a and the parameter TF.  The atomic mass does 
not appear explicitly in the expressions for the kinetic coeffi- 
cients: 

x.nk,2T/aA, qmfila3 for T B T F ,  
( 3  

Xmk,2TF2/afiT, q ~ A T F 2 / a 3 T 2 ,  DmkBa2TF3/AT2 for T ~ T F .  

These expressions illustrate a fundamental difference 
between normal and quantum liquids. For quantum liquids, 
which do not freeze at T = 0, it is possible to realize the 
inequality T< E, while preserving at the same time strongly 
pronounced single-particle motion of the atoms. Since, di- 
mensionally, the parameter E, is inversely proportional to 
the atomic mass m, it follows that in the limit E, = W ,  

which is the limit we are considering, m (together with E, ) 
drops out of the final expressions for the observable quanti- 
ties. We emphasize that this is the rule and not an exception. 
For example, in papers by Tolochko and the a u t h ~ r l l * ' ~  it is 
shown that the velocities of zero sound and ordinary in 3He 
are very close for any value of the effective mass m* of the 
quasiparticles. Thus, neither the atomic mass m nor the ef- 
fective mass of an atom appear in the relations between ob- 
servable quantities. 

2. EXPERIMENT. EMPIRICAL RESULTS. THERMAL 
CONDUCTIVITY 

The most precise data for the thermal conductivity x of 
'He at constant volume of the liquid are given in the recent 
paper of Greywall,'' which contains a comparison with the 
results of previous work. Greywall measured x in a wide 
interval of V and T: 0.07 < T< 0.5-l.OK, 26.24 < V< 36.84 

cm3/mole, and determined in particular, the values of the 
first two coefficients in the expansion of x for TxTF:  

Kerrisk and Keller14 measured the constant-pressure 
thermal conductivity x, of 'He for 1.5 < T< 4.0 K and 
0 < P < 35 bar. Using the equation of state obtained in Ref. 2 
for 3He at D TF : 

P ( T )  =P(O) -Po In (TIT,) +6T2, (5) 

we have determined on the basis of the data of Ref. 14 the 
value of x at constant volume of the liquid, and have parame- 
trized the temperature dependence of x in the interval 
1.5 < T < 2.5 K by an expression of the form 

We emphasize that the conversion x, +x is necessary, since 
for T> 1.5 K the density of 3He at constant pressure depends 
strongly on T. The quantities P O, T, and 6 in (5)  are tabulat- 
ed in Ref. 2 for several values of V. Below we have defined the 
parameters xo and T, by the relations 

Then the dimensionless thermal conductivity x / x o  is char- 
acterized by the asymptotic forms 

X 
-=- T x + ~ ~  for TKT,;  
xo T 

A,O=T,/TKo, A," =TKm/Tx .  

The parameters x,, T, , and A," for five values of the molar 
volume V are given in Table I. For comparison we also give 
in the Table the values of the parameters A:, A,", and Ts 
which characterize the asymptotic forms of the spin entropy 
per particle and which we have obtained in Ref. 2 from an 
analysis of the data of Greywall' (in the notation of Ref. 2, 
f' = So/Ts 1: 

S" T 
------=-- 

T3 e8 
Aso---;-ln- for T K T F ,  

RSo T s  T B  
S" 
-= Ts 

1-Asm - 
RSo T 

for T>T,. 

TABLE I. 

Note. The parameters T,, A:, and A," characterizing the spin entropy are determined by the 
expressions (8 ) ,  the parameters T, , A:, A,", and x, characterizing the thermal conductivity are 
determined by ( 7 ) .  and the parameters T,  and 17, characterizing the viscosity are determined by 
(11). 

I .xo, erg/ P ( T = O ) %  / ) T' ,  "1 r s  n / r r  H 1 T, , ,  / / ( i j  I 1%- sec  . cm 1 :P 
bar mole I . K  
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FIG. 2. Dependence of log(x/xo) on log(T/T, ) for two values of the 
molar volume. Solid curve: V = 36.84 cm3/mole. Dashed curve: V = 27.7 
cm3/mole. The data are those of Greywall" and Kerrisk and Keller.I4 
The straight lines are the asymptotes: x/xo = T,/T for T<T  and x/ 
x o =  T / T ,  for a T , .  

One's attention is drawn to the closeness of the values of 
A: and A,", which makes natural an empirical dependence 
of the form 

where A, is a very weak function of V and T. In Fig. 2 we 
give the dependence of l o g ( x d x )  on log( T/T, ) for two 
values of V: 36.84 and 27.7 cm3/mole. It can be seen that x /  
xo is indeed a universal (i.e., almost independent of the den- 
sity of the liquid) function of T/T, . For molar volumes in 
the range 36.84-27.7 cm3/mole scaling for the dependence 
ofx  on T holds with approximately the accuracy with which 
one can determine values of x from the data of Refs. 13 and 
14, viz., 1-3%. The point is that, unfortunately, the latter 
papers give not tabulated values of x and xp but the coeffi- 
cients of the empirical expansions of x in powers of T and V 
(Ref. 13) and in powers of P and T (Ref. 14). The accuracy 
of these expansions is estimated by the authors of Ref. 14 and 
15 to be 1% and 3%, respectively. But near the melting 
curve for V=. 26.14 cm3/mole t$e universality of the depen- 
dence ofx on T holds only with an accuracy of 10%. In Fig. 3 
we show the dependence of the parameter A, on log( T/T, ) 

FIG. 3. Dependence on log (T/T,  ) of the parameter A, defined by the 
relation (9 ) ;  V= 36.84 (O), V= 32.59 (A), V= 30.39 ( A ) ,  V= 27.70 
(0) cm3/mole. The data are from Refs. 13 and 14. 

for four values of V. The average value h, is approximately 
equal to 3, while near the minimum of x at T z T ,  the opti- 
mum value of A, = 3.15. On the V, T phase diagram there is 
a region in which there are no experimental data for x ( T). 
For V = 36.84 cm3/mole this is a wide interval 0.5 < T < 1.5 
K. Since in experiment one measures essentially one univer- 
sal function A ,  it is possible to determine x for such Vand T 
on the basis of the empirical formula (9 ) .  

The viscosity 

For the viscosity of 3He experimental data obtained 
with the same apparatus for a wide range of V and T are 
lacking. Even in the region 0.1 < T <  1.0 K, which is easily 
accessible to the modern experimenter, the data from differ- 
ent papers are in poor agreement with each other. Therefore, 
difficulty has risen in choosing an experimental dependence 
of 7 on T for 3He at the saturated-vapor pressure that could 
be adopted as a standard and used to determine the depen- 
dence of 7 on the density of the liquid. Since we expect that 
for 0.05 < T <  2.5 K the dependence of 7 on T, like that of x 
on T, is universal, and the asymptotic forms of 7 for TgTF 
and T) TF are known, a natural empirical formula for 7 has 
the form 

where A7 is a weak function of the molar volume, and the 
parameters 70 and T, are determined from the asymptotic 
forms of 7 for T) TF and T( TF : 

-=- for T t  T,, 
7,o  T2 

where 

T,Z=C,O/Cqm, qO=Cqm, Allm=Tqm/Tq, A,O= (T,IT,,"". 

The expressions ( 1  1 )  are written by analogy with (6 ) .  
Among experimenters there is no agreed opinion as to the 
value of the index v in ( 11 ) that determines the correction to 
the leading ( co T -2)  term in the expansion of 7 for T( TF. 
The values v = 1, 2, 3 have been considered. In a paper by 
Pethick15 it is shown that in the approximation of an almost 
ferromagnetic liquid x and D for 3He contain a correction 
linear in T, while for 7 this correction is equal to zero. Since 
there is no strong exclusion of such a correction, this means 
only that it is small, i.e., v = 1 but A: < 1. Therefore, we 
expect that 7 will be characterized by a scaling dependence 
( 10) on T, with an unknown function A, of T/T, that has 
the limits A: for T g  TF and A," for T> TF, with A," > A:. 
The dependence of the parameter C: on Vis determined in 
the paper by Parpia et al. l 6  For the molar volume Vo = 36.84 
cm3/mole the value C; = 2.55 ,UP K 2  from Ref. 16 agrees 
with the results of Abel et al.," who measured the attenu- 
ation of sound in 3He, this measurement being equivalent at 
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low T to a measurement of the viscosity. For the parameter 
C ,", however, we can give an estimate only for V = V,: C ," 
= 17.5 pP. This value was obtained on the basis of a para- 

metrization of the dependence of 7 on T for 0.14 < T < 1.4 K, 
as measured by Betts et al.I8 In this region of T the density of 
3He depends weakly on T and one may treat 7 and 7, as the 
same: 

We note that the expression ( 12) has the correct low-tem- 
perature limit, since Cz = 2.55. There is a later and fre- 
quently cited paper by Black et a1.I9 which gives an empirical 
dependence of 7 on Tin the wider range 0.05 < T <  3.0 K: 

We decided against parametrizing an already empirical de- 
pendence, and chose as our basis the tabulated data of Betts 
et a1.18 The dependence of the parameter C ," on V can be 
found by requiring that the ratio T,/TF, like Tx/TF, de- 
pend weakly on V. In the next section of the paper we shall 
give physical but not rigorous arguments in favor of the fol- 
lowing relation between C ," and C,": 

Values of the parameters 7, = C ," and T, = ( C  ;/C ," ) 'I2, 
determined on the basis of the data from Refs. 14 and 16 and 
the relation ( 13), are given in Table I. In Fig. 1 it can be seen 
that the relation ( 13 ) does indeed give a weak dependence of 
the parameter T,/TF on V,/V. When Vvaries from 36.84 to 
26.14 cm3/mole this parameter varies within the range 1.06- 
0.98, while the parameter Tx/TF varies within the range 
0.7-0.6. The qualitative dependence of 7 on V and T for 
T> 0.14 K can now be determined on the basis of formula 
(10) with a constant value A," = 1.41. For this value of A," 
for V= Vo the expressions (10) and (12) for g(Vo) coin- 
cide. In order to reduce as much as possible the possible 
inaccuracy in the value of 7 measured in Ref. 18, we have 
calculated the dependence of the ratio 7 ( V)/7( Vo) on n/no. 
For comparison, in Fig. 4 we also show the dependence of 
x ( V)/X ( Vo) on n/n,, calculated on the basis of data from 
Refs. 13 and 14. In Fig. 4 it can be seen that for T >  0.4 K the 
viscosity increases with increase of the density of the liquid. 
But at low T, as is known from experiment, 7 is a decreasing 
function of n. This result could have been foreseen: At high T 
quantum liquids should be similar in their properties to nor- 
mal liquids, for which x and 7 increase with increase of the 
density. Therefore, on the V,T phase diagram there should 
be lines on which dx/d V and dy/d V vanish. We are fortu- 
nate in that these lines lie in the region T<E, ,  i.e., in the 
region where x and 7 have a scaling dependence on T. We 
note that the dependence ( 10) of 7 on Tagrees qualitatively 
with the results of Betts et UI., '~ who measured 7 for P = 0 
and P = 13.7 atm in the region of low T. According to their 
data, for Tz0 .3  K the viscosity is almost the same for P = 0 
and P = 13.7 atm. 

Our results are also in qualitative agreement with the 

FIG. 4. Dependence of the ratios r ] (  V) /q(  Vo) and x (  V ) / x (  V,) on the 
parameter n/n,  = V,,/V, where no is the equilibrium density of 3He. The 
data for x are from Refs. 13 and 14, and the values of r]  are calculated using 
the expression ( 10). 

data from the papers of Dyumin, Esel'son, and Ru- 
d a v ~ k i i , ~ ' ~ ~ ~  who, on the basis of measurements of the sound 
attenuation, calculated the dependence of 7 on T and n, as- 
suming that the second viscosity of 3He is negligibly small. 
But according to the data of Refs. 22 the change of sign of the 
derivative of 7 with respect to the density of the liquid occurs 
at T-0.8 K, while our value is half this. In addition, at 
Tz0 .5  K, the value of 7 determined in Ref. 22 differs by 
20% from the data of Ref. 18, which we have taken as our 
standard. Direct measurement of 7 in the wide interval 
36.8 > V> 20 cm3/mole and T < 10 K would make it possible 
not only to determine to what accuracy the dependence of 
the viscosity on T is universal but also to what ascertain 
whether there is on the V,Tphase diagram a region in which 
the model of an amorphous solid (glass) is applicable for 
3He. The point is that the laws S a T and x a T obtained in 
the framework of this model by Andreev and K o ~ e v i c h ~ . ~ ~  
can also be explained without assuming that there is short- 
range order in the liquid. For the viscosity, however, the 
authors of Ref. 23 obtained the law 7 a 1/T, which is not 
fulfilled for 3He or 4He at densities close to the equilibrium 
density no. For such n and for 4He the dependence ( 11 ) 
holds, while the parameter T," is so small that the term 
T;/T is only a correction. At large densities, however, as 
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follows from the analysis of the experimental data per- 
formed by Andreev and Kosevich for 4He and hydrogen, 
there is a region of Tin which the term T ,"/T is of the order 
of unity, but there is no region in which the strong inequality 
T, /- 1 is fulfilled. It is possible that this is connected with 
the fact that for 4He the semiquantum window T, < T <  Ek 
is narrower than the region TF < T <  E, for 3He. Therefore, 
it is useful to trace the dependence of the parameter T ," on n 
experimentally. According to the ideas that we have devel- 
oped, the parameters T," and T," decrease with increase of 
n, and their dependence on n is the same as that of the param- 
eter TF. The glass model, however, predicts and increase of 
T," with increase of n. Therefore, the change of sign of 
d T  ,"/an would be an indication of a crossover of the depen- 
dence of 7  on T to the glass regime. It is also of interest to 
investigate the region of Tin which 7 ( T) has a minimum, in 
order to ascertain whether or not the gas dependence 
7 UJ T ' I 2  is fulfilled for T >  E, . 
3. RELATIONS BETWEEN THE KINETIC COEFFICIENTS 

1. We now give the arguments that have helped us to 
discover such simple dependence of x and 7 on T. We shall 
also determine the dependence of the kinetic coefficients of 
the molar volume and find relations between them. We recall 
first of all the generally accepted expressions for x, 7 ,  and D, 
applicable at low T: 

1 c v  .=-- 1 

3 v vF2tx, q = - nuF2rn'~,,, 
5 

and on the basis of the Fermi-liquid relations 

we eliminate from the expressions ( 14) the unobservable 
parameters Z,, m*, v,, and the times r,, r,,, and rD by 
expressing the kinetic coefficients in terms of geometrical 
quantities, viz., the mean free path I, = uFr, ,I, 
= vFr7 ,ID = VFTD, and the interatomic spacing a :  

"' Tk ,ZL(T )  ( 3 n Z )  'l'fil, ( T )  

3a' 7 

(15) 

D =  kBalD (TI T  
h (3n2 )  ' l l @  ( T )  * 

The expressions ( 15) correspond to the dimensions adopted 
for the kinetic coefficients in the literature: 

[ x ]  = erg/sec . cm . K, [v]  = g/cm . sec = P, 

[Dl = cm2/sec, [ TI = K. 

Since all the Fermi-liquid parameters have dropped out of 
the expressions for x, 7, and D, it should be expected that the 
relations ( 15) have a wider region of applicability that does 
Fermi-liquid theory itself. As can be seen from ( 15), in an 

experiment one is essentially measuring the mean free paths 
I,, I,, and I,. The expression for D contains the function 
@ = X T  /C, , so that for T(TF the combination T /@ is equal 
to the parameter T,. It is convenient to normalize the kinetic 
coefficients to their values for V, = 36.84 cm3/mole: 

I '  TZD ( T )  AD '=[$I a @ ( ~ )  ' '  

The parameters A in ( 16) are determined by the expressions 

:!a k  z 
Ax= [$] -=487.9 erg 

hao sec . cm . K~ ' 

JCBaOz AD = - cm2 
- 65.68.10-a - ; 

h ( 3 n z )  "' sec . K 

a, is the equilibrium interatomic spacing: a, = 3.94 A. 
Since we have verified that the characteristic scale for 

3He at temperature T, < T <  Ek is the magnetic temperature 
T,, and since it is known that for T(T, the mean free path 
increases like T -2 ,  it is convenient to define the lengths I O by 
the expressions 

On the basis of the experimental data and the relations ( 16) 
and (17) it is possible to find the dependence of I O on the 
molar volume. In Fig. 5 we show the dependence of the pa- 
rameters I :/a and I :/a on n/n, = V,/V. It is seen that this 
dependence is weak, and the interatomic spacing a is the 
only geometrical scale for the liquid at T( TF. The param- 
eter I ",a varies in the range 0.45-0.52, while I ",a varies in 
the range 1.85-2.13. The dependence of the parameter C in 
the law D = C g / T  for T a  TF on V has not been determined 
experimentally, but can be predicted by assuming that the 
parameter l i / a ,  like I : / a  and I ;/a, depends weakly on V. 
Neglecting the dependence of all the parameters I '/a on V, 
from (16) and (17) we obtain 

As shown in Ref. 2, the parameter TF measured by Thomp- 
son et is characterized by a power dependence on V. 
Therefore, the kinetic coefficients, as can be seen from ( l a ) ,  
also have a power dependence on V: 

The indices v in (19) can be expressed in terms of vF: 
vF = 1.93, v, = 2vF - 1/3 = 3.53, v, = 2yF - 1 = 2.86, 
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TABLE 11. 

Nore. The dependences of the pressure P, ghemical potentialp, sound velocity u, average energy 
E + per atom, average potential energy V, and average kinetic energy f, on the density are 
calculated from theexpressions (24) ,  (29),  ( 3 l ) ,  and (32);  no = 0.01635 A-3  is theequilibrium 
density of 'He. 

I C D o ,  cm2 ' 
mole (mK) '/set 

Y, = 3vF + 213 = 6.46. For Cz and C: the relations ( 19) 
agree with the data of Refs. 13 and 16 to within 15%. In 
deriving them we have relied only on the assumption that at 
low T there are, for 3He, no other scales besides TF and a .  
Since the inaccuracy of the expressions (19) may be partly 

36.84 
33.87 
32.07 
30.76 
29,71 
28.86 
28.13 
27,56 
27,06 
26.58 
26,14 

2.63 
2.23 
1.97 
1.77 
1.60 
1.46 
1.33 
1,22 
1.14 
1.04 
0.96 

due to the inaccuracy of the measurement in Ref. 25 of the 

29.08 
23.36 
19.89 
17 37 
15.35 
13.71 
12.30 
11.20 
10.24 
9.32 
8.47 

0.359 
0.305 
0.277 
0.256 
0.238 
0,224 
0.212 
0.205 
0.198 
0,191 
0.185 

1,44 
0.904 
0.662 
0.512 
0.406 
0.332 
0.274 
0.237 
0,205 
0.177 
0.153 

dependence of TF on V, we have also determined the relative 

2.55 
2,23 
1.97 
1.75 
1.63 
1.46 
1.33 
1.22 
1.16 
1.10 
1,06 

in order to reduce the power of the parameter TF 
by as much as possible: 

C," V )  cx0 ( V )  Vo ?'' -- 
C,,Q(V.) - ~ [ T I  

c," (V) C: ( v) VTF ( V ,  -= 
C 0 V  C,O(Vo)VaTF(Vo) ' 

In the interval 36.8 > V >  27.0 cm3/mole, the relationship 
(20) of C: tp C: agrees with the data of Greywall13 and 
Parpia et a1.I6 to within 3%, and it was this that determined 
our choice of these data as the basis for the analysis of experi- 
ment for x and 7. We emphasize that these are the only two 
papers in which the data are in such exact agreement. In 
Table I1 we give experimental values of C  2 ,  C  :, and C  i , 
and the corresponding values calculated on the basis of (20). 
The data of Greywall are adopted as the standard. For the 
parameter C; for V =  Vo the optimal value is 2.63 
P which gives the best agreement between the rela- 
tion (20) and the data of Refs. 13 and 16 in a wide range of V. 
For C i  at V =  Vo we have adopted the value 1.44 
cm2 . K2/ sec determined by W h e a t l e ~ . ~ ~  The dependence of 
C i  on V has not been investigated in detail, but the value 
C i  = 0.177 . cm2 K2/ sec at V = 26.6 cm3/mole 
(Table 11) agrees well with the value C i  = 0.167 - 10W6 
cm2. K2/ sec also determined by Wheat le~ .*~  The relations 
(20) are based only on the scaling hypothesis, i.e., on the 
assumption that at low Tall the mean free paths have the 
same dependence on V: 

The expressions ( 18 ) , on the other hand, are more specific 
and less exact. They are based on the assumption that the 
dependence of I on a and TF can be factorized:l-aTi/T2. 

2. For higher T >  TF the question arises of the limits of 

applicability of the expressions ( 16). Since they do not con- 
tain model, unobservable quantities, the only limitation lies 
in the requirement that the mean free paths be greater than a. 
For I < a the concept of a mean free path loses its meaning. 
For TF < T < E k  we shall define lengths I" by the expres- 
sions 

TD" 
1,  ( T )  =bm ( 1  + 1) 

In the region TF < T < Ek , besides corrections a TF/T there 
are also corrections a T '/E i ,  which may be disregarded for 
T < E : TF. In Fig. 5 we show the dependence of the param- 
eter I ,"/a on n, determined on the basis of the data from 
Refs. 13 and 14, and the expressions ( 16) and (21 ); this 
parameter varies in the range 0.95-1.25. Since the depen- 
dence of the parameter C," on n has still not been deter- 
mined experimentally, it is reasonable to find it on the basis 

FIG. 5 .  DependenceoftheratiosI~/a ( I ) ,  [,"/a ( 2 ) ,  /:/a (3),andI,"/a 
( 4 )  on the parameter Vo/V; a is the interatomic spacing. The mean free 
paths I:, I , " ,  I:, and I," are determined from the relations (16),  (17), 
(21) ,  and (22) and the data of Refs. 13, 14, and 16. 
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of the scaling hypothesis for high T 4  TF : 

1," ( V )  11," ( Vo) =l," ( V )  11," ( Vo) . (22) 

It was the relation (22) which, with allowance for ( 16), led 
us to the relation ( 13) between C ," and C ," that enabled us 
to define the scale T, . Since it has turned out that the param- 
eter T, /TF depends weakly on V, the scaling hypothesis for 
T >  TF agrees with the universality of the dependence of 7 
on T. The parameter I ; /a ,  determined from the relation 
(22) ,  varies in the range 1.64-2.17 upon variation of n (Fig. 
5 ) .  

3. The expression (16) gives a qualitatively correct de- 
scription of the dependence of the spin-diffusion coefficient 
D on T as measured by Hart and Wheatley.26 For T)TF the 
parameter @ in ( 16) can be replaced by 1 ,  which corre- 
sponds to a Curie law forx; in this case D a T (  1 + T," /T) .  
But since for low T we have D a 1/T ', the dependence of D 
on T is characterized by a minimum at T-  T F .  However, 
there is no quantitative agreement: The parameter T ," is too 
large, so that up to T-  3 K we cannot neglect the correction 
a T,"/T. This is not surprising, since already at Tz0.5  K 
the mean free path 1, ( T ) ,  determined on the basis of the 
data of Ref. 26 and the relation ( 16), is comparable to the 
interatomic distance, and this makes the very definition 
(21 ) of the length I ," meaningless. Thus, the region of appli- 
cability of the expression ( 16) for D is considerably narrow- 
er than the regions of applicability of the expressions ( 16) 
for x and 7. In our opinion, this is due to the fact that for 
T >  TF the transport of spin is no longer determined by sin- 
gle-particle excitations and has a collective character, since 
it is associated with the establishment of equilibrium in a 
dense gas of spin excitations. For phenomena associated 
with the transport of energy and momentum, on the other 
hand, the system of spin excitations is passive, and plays the 
role of an external field for the single-particle excitations. It 
is for this reason that the elementary gas-kinetic relations 
(16) for x and 7 are in such good agreement with experi- 
ment in a wide range of T and n, and the lengths 1 ," and 1 
are greater than a. 

4. ENERGY OF THE GROUND STATE OF aHe 

1.  The average kinetic energy Ek of one 3He atom at 
T = 0 is the most important quantum scale of the liquid. For 
T <  E, the rough, global properties of the liquid depend 
weakly on T. It turns out that this important characteristic 
of the substance can be determined with good accuracy from 
a comparison of the properties of liquid 3He and ,He. We 
give the definition of the quantities Ek and E,, for 3He and 
,He: 

In (23) n and n, are the densities of 3He and ,He, and n, and 
n,, are the momentum-distribution functions of the parti- 
cles. The function n,, has been measured in experiments on 

FIG. 6. Dependence on r of 1 ) the correlation functiong of 3He, and 2) the 
difference of the correlation functions g of 'He and the correlation func- 
tion g4 of 4He. The data are those of Achter and Meyer.*' 

neutron scattering in ,He, and this enabled Woods and 
Sears27tofindthevaluesEk4 = 13.5 + 1.2Kat  T =  1.1 K ,  
and E,, = 14.1 + 1.0 K at T = 4.2 K .  For ,He the quanti- 
ties E,, and n,, depend weakly on T for T < E,, . Since 3He 
absorbs neutrons strongly, the experimental determination 
of the function n, is difficult. But if we assume that the 
atoms of the liquid interact only through a paired nonretard- 
ed potential u ( r )  that is the same for 3He and ,He, we can 
determine Ek from the expressions for the total average en- 
ergies E + and E : per atom: 

The average potential energies Fand  7, can be expressed in 
terms of the potential v and the pair correlation functions g 
and g,: 

We note that the energies E + , E, , and 7 depend on T impli- 
citly, through the functionsg and n, . The functionsg andg,, 
unlike n, , have been investigated in detail in experiments on 
x-ray scattering both in ,He and in 3He. In Fig. 6 we give the 
dependences of g and g - g, on r  in the interval 2-6 A, as 
constructed from the data of Achter and M e ~ e r . ~ '  It can be 
seen that g and g, differ little, and therefore it is reasonable 
on the basis of the expressions (24) and (25)  to separate out 
in the energy E, the small contribution g - g,: 

n 
Ek=E* f -(Ek,-E,+) -6Ek, 6Ek = 2 J (g-g,) u d3r. 

nr 2 

In the zeroth approximation (6Ek = 0) and with the values 
E ,+ = - 7.14, E ' = - 2.52 K given in Ref. 28, and the 
value n,/n, = 0.75 for the ratio of the equilibrium densities 
of 3He and ,He, we arrive on the basis of (26)  at the estimate 
E, = 13 f 0.9 K .  An exact calculation ofSE, is impossible, 
since at short distances, where the potential v is large, the 
functions g and g, are poorly determined from the experi- 
mental x-ray scattering data. But since it is known that small 
r the potential u  corresponds to repulsion of the atoms, and 
g <g,, we can give an upper bound for SE, : 
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where r, is the value of r at which v vanishes. 
For r > r, the interaction of two inert-gas atoms is well 

described by the Lennard-Jones potential 

u ( r )  = 4 ~ ' {  ( r c / r )  "- ( r o / r )  '1. (28 

For 3He and ,He the values EO = 10.22 K and r, = 2.556 A 
are adopted. A rough estimate for SE, can now be obtained 
from (27), (28) if we replace the function g - g, in (27) by 
its minimum value, equal to - 0.157; SE, < 1.6 K. But nu- 
merical integration on the basis of Achter's and Meyer's tab- 
ulated values of the functions g and g, gives the bound 
6Ek < 1 K. Thus, we have a reliable lower bound for the 
average kinetic energy of a 3He atom: E, > 12 0.9 K. 

2. The pair correlation functionsg and g, carry the max- 
imum possible information about the local properties of the 
liquids. These functions have the meaning of the probability 
of finding an atom at the point r if another is situated at the 
point r = 0. If there are no correlations in the positions of the 
particles, then g = g, = 1. But if the correlations are so 
strong that the Frenkel picture of the liquid state29 is appli- 
cable and the substance is an amorphous solid, then g has a 
gigantic peak at r z a .  In addition, g falls off extremely fast 
with decrease of r, since the atoms are well localized and 
separated by a barrier. According to the data of Ref. 28, the 
maximum value of g, is 1.33, and maximum value of g is 
1.24. In our opinion, the numbers 0.33 and 0.24 are an objec- 
tive measure of the short-range order in liquid 3He and ,He. 
These substances are the most non-Frenkel of all known li- 
quids. It seems that the concepts of "short-range order" and 
"low temperatures" for quantum liquids are incompatible. 
From the analysis performed in Ref. 2 and the present paper 
of the experimental data for the magnetic susceptibility, spe- 
cific heat, thermal conductivity, and viscosity it also follows 
that for molar volumes 36.8 > V >  26.2 cm3/mole and tem- 
peratures T< 2.5 K for 3He the physical laws are the same. 
No indications of the appearance or development of any 
sharply expressed short-range order have been discovered. 
Ofcourse, this does not rule out the applicability of the Fren- 
kel picture for high T> 3 K and low molar volumes V <  20 
cm3/mole. Since the Frenkel correlations are small, we shall 

neglect them and determined the quantities 7 and 7, (25) 
using the function g = g, = 1 for r > r, and g = g, = 0 for 
r < r,. The calculation with the potential (28) leads to the 
value 7, = - 20.8 K and E,, = 13.7 K. Comparison with 
the empirical value E,, = 13.5 K convinces us that the 
choice of g and g, is reasonable, and makes it possible to 
determine the dependence of T o n  the density n from (25) : 

To find the average kinetic energy E, on the basis of this 
dependence and the relation (24) we need the values of the 
total average energy E +. The dependence of E + on n at 
T = 0 is found from the thermodynamic identities that relate 
the sound velocity u, chemical potential p ,  pressure P, and 
energy E + : 

d p  n dP 1 
u 2 = - - =  -- dE+ 

p=E+ + - n. 
dnm d n m '  d n 

The most precise measurements of the velocity of sound in 
3He have been carried out by Roach et ~ 1 . ~ '  The data of Ref. 
30 agree to within 0.5% with the linear dependence 

We note that, as shown by Dyumin and E~se l ' son ,~~  a 
linear dependence of u on n holds for all T < 1.4 K. Integrat- 
ing the identities (30) with allowance for (3  1 ), we find the 
dependences ofP,p, and E + on the parameterx = n/no - 1: 

At the equilibrium density, aE +/an = 0, and, according to 
( 3  1 ) , p  (no)  = E + (no). Since the equilibrium value u, of the 

TABLE 111. 

Note. The parameters C; = v T 2  and C: = DT2 are calculated using the relation (20). The 
valuesof Cz = xT are the data ofGreywall,13 the values of C :  are the data of Parpia etal.,16 and 
the values of T, are the data of Thompson et 
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-2,520 
- 1,845 
-1,011 
-0,009 

1,169 
2,532 
4,085 
5,834 
7,784 

-2,520 
-2,504 
-2,456 
-2.372 
-2.250 
-2.086 
-1,880 
- 1,62i 
-1,326 

181.7 
208,7 
235.7 
2623 
239,8 
316,8 
343.9 
370,9 
398.0 

1,OO 
1,05 
1.10 
1.15 
1,20 
1,25 
1,30 
1,35 
1,40 

13.06 
13,86 
14.68 
15.55 
16.45 
17,38 
18.37 
19,40 
20,48 

0 
1,562 
3,587 
6,134 
9,262 

13,03 
17.50 
22.74 
28,79 

-15.58 
-16,36 
-17,14 
-17,92 
-18,70 
-19,47 
-20,25 
-21,03 
-21,81 



K /  atom 

FIG. 7. Dependence on the parameter n/n, o f l  ) the average kinetic ener- 
gy E,, and 2)  the average potential energy V. The solid curves are the 
result o f  calculations using the expressions (29)  and (32 ) ,  and the dashed 
curves are the results o f  Manousakis et u I . ~ *  

sound velocity is related to the velocities u, and u, (30) by 
u, = u, - u,, it follows that, by determining the four param- 
eters no, u,, u,, and p(n,)  experimentally, it is possible to 
find from (32), (3  1 ) the dependences of P, u, p ,  and E + on 
n, while the relations (29),  (24) determinedEk as afunction 
on n. In Table 111 we give the calculated values of the param- 
eters P, p ,  u, E +, Ekd and 7 .  For no and p (no) we take the 
values no = 0.01635 A-3 andp(n,) = - 2.52 K. To within 
25% the calculated values of P and u agree with the data of 
Abraham and O ~ b o r n e . ~ '  The values that we have deter- 
mined for 7 and Ek also agree with the results of a micro- 
scopic calculation of these quantities by Manousakis et UI.,~' 
as can be seen from Fig. 7. This agreement is not accidental. 
At T  = 0 3He is a simple liquid: The correlation function g 
depends weakly on the density n and on the atomic mass, as 
can be seen by comparing g and g,. The average potential 
energy 7 depends chiefly on the parameters ofthe potential v 
(29). We note that in Ref. 32 the calculation of the ground- 
state energy was performed with a potential with similar val- 
ues of the parameters EO and r, in (28). It is of interest to 
trace the dependence of F o n  the atomic mass m on the basis 
of a microscopic calculation. In our opinion, the quantities 7 
and 7, as functions of m and m, for real 3He and ,He are 
close to their limiting values for m = m, = 0. This is the 
limit of a dense quantum gas. An amorphous solid, however, 
is close to the limit m = m, = a, which corresponds to an 
ideal classical crystal. 

3. Having determined the energy E,, it is possible to 
find the value of the mean square momentum ?of the parti- 
cles. For an ideal gas y = 3pi/5, while for real 3He, as can 
be seen from (23), ?/pi = Ek /E,. Upon change of the 
density n the parameter ?/pi changes from 2.6 to 3.3. 
Thus, for 3He the Fermi momentum is not the characteristic 
momentum, while the Fermi energy is the characteristic en- 
ergy. Even at T = 0 the occupation numbers n, are small, 
and this weakens the effects associated with the Pauli princi- 
ple. The Landau quasiparticles have a small statistical 
weight against the background of the total number of parti- 
cles, this being due to the very small value of the Migdal 

discontinuity a (Ref. 33) of the function n,. We shall show 
that the function n, has not only this discontinuity but also a 
logarithmic branch point at p = p F ,  and shall give an esti- 
mate the parameter a. For this, using the results of Ga- 
l i t ~ k i y , ~ ~  we relate the function n, to the imaginary part of 
the one-particle Green function G: 

1 

1 
nP=- j Im G ( p ,  E )  d ~ .  (33 

n-= 

For momentap close top, and for small E the function G has 
the form 

We divide the region of integration in (33) into two parts: 
0 -On 

1 1 
n, = - I Irn G ( p ,  e )  d c  + - j Irn G ( p ,  e) de=nPF+n," 

-0" - m  

and choose the parameter w, to be smaller than E,,, SO that it 
becomes possible to determine the function nc from (34). 
With logarithmic accuracy, 

r; eo2 nPF=a0 ( p )  -a - In - 
31Eo E2 ' 

for p<p., 0=0 for P>PF.  

Since the function n, can be measured in experiments on the 
scattering of fast neutrons in 3He, we have the theoretical 
possibility of finding all three parameters a, p,, and E, char- 
acterizing the function G (34) forp-p, and E-0. The diffi- 
culties encountered by experiments here are the same as in 
the analogous problem of the determination of the density of 
condensate particles in liquid ,He: The discontinuity a is 
very small. On the basis of the results of Refs. 11 and 12 we 
can give an upper bound for the parameter a: a < m,*/m* 
where m* is the effective mass of the heavy quasiparticles 
and m,* is the effective mass of the light quasiparticles. The 
mass m* is determined from the experimental data for the 
specific heat for T< T,, while the mass m,* is determined 
from the corresponding data for T> TF (Ref. 2). This esti- 
mate is based on the relation a/a,  = m,*/m* obtained in Ref. 
1 1, where a, is the "bare" discontinuity of the function n, - 
the discontinuity determined without allowance for the ef- 
fect of the spin excitations on the one-particle excitations. 
The parameter a, is difficult to calculate, but it is known that 
a, < 1, since allowance for the contribution of other, nonspin 
excitations can only decrease the statistical weight of the 
one-particle states. The same bound exists on the magnitude 
of the discontinuity of the electron function n, in metals. 
Having determined the parameter a with allowance for only 
the electron-phonon interaction, we can be sure that 
allowance for the electron-electron interaction will only de- 
crease the quantity a.  According to the data of Refs. 1 and 2, 
the parameter m,*/m* varies for 3He in the range 0.127-0.05 
when the density is varied from no to n = 1 .4n0. On the basis 
of (23) and (25) we can give an estimate for the contribution 
of the Landau quasiparticles to the energy Ek.  This contri- 
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bution is equal to 3a&,/5, and is small than 3~,md/5m*, 
which amounts to 3% of the value of E, when n = no, and 
1% when n = 1.4n0. Thus, in its global properties, liquid 
3He is very far removed both from an amorphous solid and 
from an ideal Fermi gas. 

In conclusion, it is pleasant to thank G. M. ~ l i a s h b e r ~  
and D. E. Khmel'nitskii for discussions, and L. A. Tolochko 
for assistance in the work. 
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