# Universality of the temperature dependence of the thermal conductivity and viscosity of liquid <sup>3</sup>He

A. M. Dyugaev

L. D. Landau Institute of Theoretical Physics, Academy of Sciences of the USSR (Submitted 11 April 1985) Zh. Eksp. Teor. Fiz. 89, 1220–1236 (October 1985)

For temperatures higher than the degeneracy temperature of the spin excitations but lower than the average kinetic energy per atom, the thermal conductivity of liquid <sup>3</sup>He is proportional to the temperature while the viscosity depends weakly on the temperature. In a wide range of temperatures and molar volumes the thermal conductivity and viscosity are characterized by a scaling dependence on the temperature. This makes it possible to determine the values of the kinetic coefficients of <sup>3</sup>He in that region of temperatures and molar volumes in which they have still not been measured. At high temperatures the thermal conductivity and viscosity of <sup>3</sup>He increase with increase of the density of the liquid. Relations connecting the kinetic coefficients of <sup>3</sup>He are obtained. From a comparison of the properties of <sup>3</sup>He and <sup>4</sup>He the value of the average kinetic energy per <sup>3</sup>He atom is determined. The possible result of the determination of the momentum-distribution function of the particles on the basis of experimental data from measurement of the structure factor of liquid <sup>3</sup>He is predicted.

## **1. THE PHYSICAL PICTURE**

1. Quantum effects on liquid <sup>3</sup>He are strongly pronounced at temperatures lower than the average kinetic energy  $E_k$  per atom. The energy  $E_k$  is approximately the same for liquid <sup>3</sup>He and <sup>4</sup>He, and for <sup>3</sup>He at the saturated-vapor pressure this quantity is of the order of 13 K. At the end of the paper we determine this value from a comparison of the properties of <sup>3</sup>He and <sup>4</sup>He. We note that the quantity  $E_k$  is appreciably greater than the analogous parameter 3/  $5\varepsilon_F \approx 3K$  of an ideal gas of the same density. A distinctive feature of <sup>3</sup>He is the existence of a large temperature window  $T_F < T < E_k$ , where  $T_F$  is the spin degeneracy temperature, defined in terms of the magnetic susceptibility  $\chi(T)$  at T = 0:  $\chi(0) = C_k / T_F$ , where  $C_k$  is the Curie constant in the law  $\chi(T) = C_k / T$  for  $T \gg T_F$ . When the molar volume V of the liquid changes from 36.8 to  $26.2 \text{ cm}^3$ /mole the parameter  $T_F$  changes from 0.36 to 0.185 K. In the region  $T_F < T < E_k$  the Curie law is fulfilled approximately for  $\chi$ , and the single-particle motion of an atom and the oscillations of the total density of the liquid have a quantum character. But the region of applicability of Fermi-liquid theory is bounded by the conditions  $T_c < T < T_F$ , where  $T_c$  is the temperature of the phase transition of <sup>3</sup>He to the superfluid state. For such T the gas of spin excitation is also degenerate. Since upon increase of the density n of the liquid the scales  $T_c$  and  $E_k$  increase while the parameter  $T_F$  decreases, the range of applicability of Fermi-liquid theory becomes narrower and the semiquantum window  $T_F < T < E_k$  becomes wider. The important point is that there exists an enormous temperature range  $T_c < T < E_k$  in which the parameter  $T_F$  is the only characteristic energy scale of the liquid, since for such T it is possible, in the zeroth approximation, to set  $T_c = 0$  and  $E_k = \infty$ . It is clear that in such a situation the thermodynamic and kinetic properties of <sup>3</sup>He should be described by very simple, universal laws. And indeed, the anal-

ysis performed in Ref. 2 of the experimental data of Greywall<sup>1</sup> has shown that the spin entropy of <sup>3</sup>He has a scaling dependence on the parameter  $T/T_F$ . Moreover, it has turned out that both the low-temperature  $(T < T_F)$  and the high-temperature  $(T > T_F)$  expansions for the spin entropy  $S^{\sigma}/R$  per particle, where R is the gas constant, are limiting expressions for a more general expansion of  $S^{\sigma}$  in an asymptotic series in powers of the dimensionless parameter  $\Phi = \chi T/C_k$ ;  $0 < \Phi < 1$ . The power series in  $T/T_F$  or  $T_F/T$ converge very slowly, but the series in powers of  $\Phi$  converges so fast that even the first approximation  $S^{\sigma}/R = S_0 \Phi$  is in quantitative agreement with experiment. This result is important, since it has turned out that one can find simple relations by expanding observable quantities in series in observable quantities without specifying a model of the liquid. The reason for such a surprising lack of dependence of the residual entropy  $S_0$  on the molar volume V for  $T_F < T < E_k$ has remained an open question. The appreciable difference of the value  $S_0 \simeq 0.97$  from ln2 has not been explained either in the framework of Andreev's theory of semiguantum liquids<sup>3</sup> or in the theory of <sup>3</sup>He considered by Goldstein.<sup>4</sup> The paramagnon model and the model of almost antiferromagnetic <sup>3</sup>He (Ref. 5) also fail to give this value of  $S_0$ . Moreover, in the framework of gas models it is difficult to explain even the fact that the spin entropy approaches a constant value. In the linear approximation, when the interaction of the spin excitations is not taken into account, it is not the entropy but the spin specific heat that approaches a constant value at high T.

2. In this paper we consider kinetic phenomena in liquid <sup>3</sup>He. It is shown that in the interval 0.005 < T < 2.5 K the thermal conductivity  $\varkappa$  and viscosity  $\eta$  of <sup>3</sup>He at constant volume of the liquid, like  $\chi$  and  $S^{\sigma}$ , are characterized by a universal, scaling dependence of T. This implies that one can define normalization parameters  $\varkappa_0$ ,  $\eta_0$  and temperature scales  $T_{\varkappa}$  and  $T_{\eta}$  in such a way that the dimensionless func-



FIG. 1. Dependence of the spin-entropy, viscosity, and thermal-conductivity temperature scales  $T_S$ ,  $T_\eta$ , and  $T_x$ , in units of the magnetic scale  $T_F$ , on  $V_0/V$ ;  $V_0 = 36.84 \text{ cm}^3/\text{mole}$ ; 1)  $T_x/T_F$ , 2)  $T_\eta/T_F$ , 3)  $T_S/T_F$ .

tions  $\kappa/\kappa_0$  and  $\eta/\eta_0$  will not depend on the density *n* of the liquid:

$$\frac{\varkappa}{\varkappa_{0}} = A_{\varkappa} \left( \frac{T}{T_{\varkappa}} \right), \quad \frac{\eta}{\eta_{0}} = A_{\eta} \left( \frac{T}{T_{\eta}} \right),$$
$$\frac{S^{\sigma}}{RS_{0}} = A_{s} \left( \frac{T}{T_{s}} \right), \quad \frac{\chi T}{C_{\varkappa}} = \Phi \left( \frac{T}{T_{F}} \right). \tag{1}$$

The quantities  $T_{\chi}, T_{\eta}, T_{S}, T_{F}, \kappa_{0}$ , and  $\eta_{0}$ , however, are strong functions of the density. The important point is that in experiment all the scales have almost the same dependence on the molar volume, i.e., there is indeed one scale- $T_F$ . Figure 1 shows the dependence of the parameters  $T_S/$  $T_F$ ,  $T_{\star}/T_F$ , and  $T_n/T_F$  on V. It can be seen that this dependence is indeed very weak. We note that this is evidence for the consistency and correctness of the experimental data that we analyzed in order to obtain the values of the scales  $T_S$ ,  $T_F$ ,  $T_{\chi}$ , and  $T_{\eta}$ . It turned out that not all the experimental data could be made consistent; only some of them satisfy the rather rigid constraints associated with the universality of the dependences of the thermodynamic and kinetic characteristics of <sup>3</sup>He on T and n at  $T_c < T < E_k$ . All the parameters in (1) are fixed by the values of the leading terms in the asymptotic forms of the observable quantities at  $T_c < T < T_F$ and  $T_F < T < E_k$ :

$$\Phi = \frac{T}{T_{F}}, \quad A_{s} = \frac{T}{T_{s}}, \quad A_{z} = \frac{T_{z}}{T}, \quad A_{\eta} = \frac{T_{\eta^{2}}}{T^{2}} \quad \text{for} \quad T \ll T_{F},$$
(2)

$$\Phi=1, A_s=1, A_{\eta}=1, A_{\star}=\frac{T}{T_{\star}} \text{ for } T\gg T_F.$$

We have confined ourselves to considering the interval 0.005 < T < 2.5 K, and do not take corrections  $\sim T_c/T$  and  $T/E_k$  into account. The low-temperature asymptotic behavior of  $\chi$ , S,  $\eta$ , and  $\varkappa$  corresponds to the Fermi-liquid region of T, and has been investigated in the original basic papers of Landau,<sup>6</sup> Pomeranchuk,<sup>7</sup> and Abrikosov and Khalatnikov.<sup>8</sup> The region of low T has been considered within the framework of the paramagnetic model of Rice,<sup>9</sup> while Béal-Monod,<sup>10</sup> by supplementing this model with sum rules for  $\chi$ , has analyzed the high-temperature limit. The paramagnon model, while not explaining the approach of the magnetic susceptibility to a Curie law at  $T_F < T < E_k$ , nevertheless

predicts a scaling dependence for  $\varkappa$  and  $\eta$  on T (Ref. 9). This is fully understandable. Although this gas model contains as an upper scale the ideal-gas parameter  $\epsilon_F$ , in the model the small parameter  $\lambda \varepsilon_F$  is introduced artificially. The limit  $\lambda \rightarrow 0$  corresponds to an almost ferromagnetic gas, and the parameter  $\lambda \varepsilon_F$  plays the role of  $T_F$ . Any model that leads to the inequality  $T_c < T_F < E_k$  will possess this property. Therefore, in the present paper, as in Ref. 2, we have declined to consider a concrete model of <sup>3</sup>He and we take the liquid to be as it is in experiment. The aim of the paper is to discover universal laws, and not to give a rigorous justification of them.

3. In order to explain the dependences  $\varkappa \propto T$  and  $\eta = \eta_0$ at  $T > T_F$ , we recall the derivation of the law  $\varkappa = \varkappa_0$  for the thermal conductivity of metals at  $T > \omega_D$ , where  $\omega_D$  is the characteristic phonon frequency, on the basis of the gas-kinetic formula  $\varkappa \propto C_V v_F l$ , where l is the mean free path,  $v_F$  is the Fermi velocity, and  $C_V$  is the specific heat. Since in metals heat is transported by electrons, for which  $C_V \propto T$ , while their mean free path is determined by collisions with classical (for  $T > \omega_D$ ) phonons, it follows that  $l \propto 1/T$  and  $\varkappa$  does not depend on T. The dependence  $l \propto 1/T$  is connected with the fact that the mean free path of the electrons is inversely proportional to the phonon-gas density, which depends linearly on T at  $T > \omega_D$ . We note that the phonons themselves give a constant constribution to the specific heat, but do not make a noticeable contribution to the specific heat at  $T > \omega_D$ . A similar situation is realized in <sup>3</sup>He at  $T > T_F$ . The heat is transported by single-particle excitations, and their mean free path is determined by collisions with classical (at  $T > T_F$ ) spin fluctuations, which have a temperature-independent entropy and density but do not themselves make a contribution to the thermal conductivity. This circumstance simplifies the problem substantially, since we are essentially concerned with the motion of a single particle in a field of static spin fluctuations. In the region  $T_F < T < E_k$ , in which the spin disorder is already a maximum but fluctuations of the total density of the liquid have still not developed, the mean free path of the single-particle excitations depends weakly on T. For such values of T we can assume that  $T_F = 0$  and  $E_k = \infty$ , and the temperature can appear in the expression for l only in the form of a correction:  $l \approx a(1 + T_F/T)$ , where a is the interatomic spacing—the natural length parameter in terms of which l can be expressed. In experiment,<sup>1,2</sup> the nonspin entropy, i.e., the entropy associated with the motion of the "center of gravity" of an atom, is linear in the temperature, and since the characteristic velocity of an atom does not depend on T, we have  $\kappa \propto T$ . Analogously, the viscosity  $\eta$  does not depend on T. We note that the laws  $\varkappa \propto T$  and  $\eta = \eta_0$  for high T were obtained in the framework of a concrete model in Ref. 10. We have convinced ourselves that these laws are determined by two rather general factors: There exist collective excitations with constant entropy, which do not contribute to the kinetic phenomena but do determine the mean free path of the single-particle excitations, which have an entropy that depends linearly on T and make a decisive contribution to these phenomena. In the standard Fermi-liquid approach the problem of determining the kinetic coefficients of <sup>3</sup>He at  $T > T_F$  appears to be very complicated, since for such T, at first sight, the density of the single-particle excitations is large and we cannot confine ourselves to taking only their pair collisions into account. A specific feature of <sup>3</sup>He is that an overwhelming fraction of the single-particle excitations are coupled into the soft diffusion spin mode, i.e., figuratively speaking, are precipitated out. Only a small fraction of them determine the transport phenomena. For the thermal conductivity and viscosity of <sup>3</sup>He this statement agrees quantitatively with experiment, but for the spin-diffusion coefficient D there is only qualitative agreement.

4. Below it will be shown that both the low-temperature  $\eta$ ,  $\varkappa$ , and D and the high-temperature  $\varkappa$  and  $\eta$  are asymptotically determined entirely by global constants—the interatomic spacing a and the parameter  $T_F$ . The atomic mass does not appear explicitly in the expressions for the kinetic coefficients:

$$\begin{split} & \varkappa \circ k_{\mathbf{B}}^{2} T/a\hbar, \quad \eta \circ \hbar/a^{3} \quad \text{for} \quad T \gg T_{F}, \\ & \chi \circ k_{\mathbf{B}}^{2} T_{F}^{2}/a\hbar T, \quad \eta \circ \hbar T_{F}^{2}/a^{3} T^{2}, \quad D \circ k_{\mathbf{B}} a^{2} T_{F}^{3}/\hbar T^{2} \quad \text{for} \quad T \ll T_{F}. \end{split}$$

These expressions illustrate a fundamental difference between normal and quantum liquids. For quantum liquids, which do not freeze at T = 0, it is possible to realize the inequality  $T < E_k$  while preserving at the same time strongly pronounced single-particle motion of the atoms. Since, dimensionally, the parameter  $E_k$  is inversely proportional to the atomic mass m, it follows that in the limit  $E_k = \infty$ , which is the limit we are considering, m (together with  $E_k$ ) drops out of the final expressions for the observable quantities. We emphasize that this is the rule and not an exception. For example, in papers by Tolochko and the author<sup>11,12</sup> it is shown that the velocities of zero sound and ordinary in <sup>3</sup>He are very close for any value of the effective mass  $m^*$  of the quasiparticles. Thus, neither the atomic mass m nor the effective mass of an atom appear in the relations between observable quantities.

# 2. EXPERIMENT. EMPIRICAL RESULTS. THERMAL CONDUCTIVITY

The most precise data for the thermal conductivity  $\varkappa$  of <sup>3</sup>He at constant volume of the liquid are given in the recent paper of Greywall,<sup>13</sup> which contains a comparison with the results of previous work. Greywall measured  $\varkappa$  in a wide interval of V and T: 0.07 < T < 0.5-1.0K, 26.24 < V < 36.84

TABLE I.

| $\frac{P(T=0)}{bar},$ | V.<br>cm <sup>3</sup> /<br>mole | TF, K                     | Т <sub>S</sub> , к        | <i>т<sub>ж</sub>,</i> к   | <i>τ</i> η, κ             | $\Delta_{S^0}$            | $\Delta_S^{\infty}$       | ∆χ⁰               | $\Delta_{\varkappa}^{\infty}$ | ×₀. erg/<br>sec · cm<br>· K | η₀,<br>μΡ                |
|-----------------------|---------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-------------------|-------------------------------|-----------------------------|--------------------------|
| 0<br>5<br>10          | 36,84<br>32,59<br>30,39         | $0,359 \\ 0,286 \\ 0,250$ | $0,403 \\ 0,349 \\ 0,318$ | $0,251 \\ 0,201 \\ 0,173$ | $0,382 \\ 0,309 \\ 0,265$ | $0.832 \\ 0.970 \\ 1.030$ | $0,639 \\ 0,645 \\ 0.625$ | 3,1<br>3,2<br>3,2 | 2,8<br>2,8<br>2,9             | 115,6<br>104,0<br>96,4      | 17,5<br>21,3<br>24,0     |
| 20<br>30              | 27,70<br>26,14                  | 0,207<br>0,185            | 0,270<br>0,239            | 0,136<br>0,111            | 0,210<br>0,180            | $1,050 \\ 0,970$          | $0,602 \\ 0,581$          | 3,2<br>3,3        | 2,9<br>2,1                    | 84,6<br>76,2                | $\frac{1}{28,5}$<br>32,6 |

Note. The parameters  $T_s$ ,  $\Delta_s^0$ , and  $\Delta_s^\infty$  characterizing the spin entropy are determined by the expressions (8), the parameters  $T_x$ ,  $\Delta_x^0$ ,  $\Delta_x^\infty$ , and  $\varkappa_0$  characterizing the thermal conductivity are determined by (7), and the parameters  $T_\eta$  and  $\eta_0$  characterizing the viscosity are determined by (11).

cm<sup>3</sup>/mole, and determined in particular, the values of the first two coefficients in the expansion of  $\varkappa$  for  $T \lt T_F$ :

$$\varkappa = \frac{C_{\chi^0}}{T} \left( 1 + \frac{T}{T_{\chi^0}} \right). \tag{4}$$

Kerrisk and Keller<sup>14</sup> measured the constant-pressure thermal conductivity  $x_p$  of <sup>3</sup>He for 1.5 < T < 4.0 K and 0 < P < 35 bar. Using the equation of state obtained in Ref. 2 for <sup>3</sup>He at  $T > T_F$ :

$$P(T) = P(0) - P_0 \ln (T/T_p) + \delta T^2,$$
(5)

we have determined on the basis of the data of Ref. 14 the value of  $\varkappa$  at constant volume of the liquid, and have parametrized the temperature dependence of  $\varkappa$  in the interval 1.5 < T < 2.5 K by an expression of the form

$$\varkappa = C_{\varkappa}^{\infty} T \left( 1 + T_{\varkappa}^{\infty} / T \right). \tag{6}$$

We emphasize that the conversion  $\varkappa_p \rightarrow \varkappa$  is necessary, since for T > 1.5 K the density of <sup>3</sup>He at constant pressure depends strongly on T. The quantities  $P^0$ ,  $T_p$  and  $\delta$  in (5) are tabulated in Ref. 2 for several values of V. Below we have defined the parameters  $\varkappa_0$  and  $T_{\varkappa}$  by the relations

$$\kappa_0^2 = C_{\kappa}^0 C_{\kappa}^{\infty}, \quad T_{\kappa}^2 = C_{\kappa}^0 / C_{\kappa}^{\infty}.$$

Then the dimensionless thermal conductivity  $\varkappa/\varkappa_0$  is characterized by the asymptotic forms

$$\frac{\varkappa}{\varkappa_{0}} = \frac{T_{\varkappa}}{T} + \Delta_{\varkappa}^{0} \quad \text{for} \quad T \ll T_{F};$$

$$\frac{\varkappa}{\varkappa_{0}} = \frac{T}{T_{\varkappa}} + \Delta_{\varkappa}^{\infty} \quad \text{for} \quad T \gg T_{F},$$

$$\Delta_{\varkappa}^{0} = T_{\varkappa}/T_{\varkappa}^{0}, \quad \Delta_{\varkappa}^{\infty} = T_{\varkappa}^{\infty}/T_{\varkappa}.$$
(7)

The parameters  $\varkappa_0$ ,  $T_{\varkappa}$ , and  $\Delta_{\varkappa}^{\infty}$  for five values of the molar volume V are given in Table I. For comparison we also give in the Table the values of the parameters  $\Delta_S^0$ ,  $\Delta_S^{\infty}$ , and  $T_S$ which characterize the asymptotic forms of the spin entropy per particle and which we have obtained in Ref. 2 from an analysis of the data of Greywall<sup>1</sup> (in the notation of Ref. 2,  $\gamma^{\sigma} = S_0/T_S$ ):

$$\frac{S^{\sigma}}{RS_{o}} = \frac{T}{T_{s}} - \Delta_{s}^{o} \frac{T^{3}}{T_{s}^{3}} \ln \frac{\theta_{s}}{T} \quad \text{for} \quad T \ll T_{F},$$

$$\frac{S^{\sigma}}{RS_{o}} = 1 - \Delta_{s}^{\infty} \frac{T_{s}}{T} \quad \text{for} \quad T \gg T_{F}.$$
(8)



FIG. 2. Dependence of  $\log(x/x_0)$  on  $\log(T/T_x)$  for two values of the molar volume. Solid curve:  $V = 36.84 \text{ cm}^3$ /mole. Dashed curve:  $V = 27.7 \text{ cm}^3$ /mole. The data are those of Greywall<sup>13</sup> and Kerrisk and Keller.<sup>14</sup> The straight lines are the asymptotes:  $x/x_0 = T_x/T$  for  $T \lt T$  and  $x/x_0 = T/T_x$  for  $T \lor T_x$ .

One's attention is drawn to the closeness of the values of  $\Delta_x^0$  and  $\Delta_x^\infty$ , which makes natural an empirical dependence of the form

$$\kappa/\kappa_0 = T_{\star}/T + T/T_{\star} + \Delta_{\star}, \tag{9}$$

where  $\Delta_{\kappa}$  is a very weak function of V and T. In Fig. 2 we give the dependence of  $\log(\kappa_0/\kappa)$  on  $\log(T/T_{\kappa})$  for two values of V: 36.84 and 27.7 cm<sup>3</sup>/mole. It can be seen that  $\varkappa$ /  $\kappa_0$  is indeed a universal (i.e., almost independent of the density of the liquid) function of  $T/T_{\kappa}$ . For molar volumes in the range  $36.84-27.7 \text{ cm}^3$ /mole scaling for the dependence of  $\kappa$  on T holds with approximately the accuracy with which one can determine values of x from the data of Refs. 13 and 14, viz., 1-3%. The point is that, unfortunately, the latter papers give not tabulated values of x and  $x_p$  but the coefficients of the empirical expansions of x in powers of T and V (Ref. 13) and in powers of P and T (Ref. 14). The accuracy of these expansions is estimated by the authors of Ref. 14 and 15 to be 1% and 3%, respectively. But near the melting curve for  $V \approx 26.14 \text{ cm}^3$ /mole the universality of the dependence of  $\kappa$  on T holds only with an accuracy of 10%. In Fig. 3 we show the dependence of the parameter  $\Delta_{x}$  on log  $(T/T_{x})$ 



FIG. 3. Dependence on log  $(T/T_x)$  of the parameter  $\Delta_x$  defined by the relation (9); V = 36.84 ( $\oplus$ ), V = 32.59 ( $\triangle$ ), V = 30.39 ( $\blacktriangle$ ), V = 27.70 (O) cm<sup>3</sup>/mole. The data are from Refs. 13 and 14.

for four values of V. The average value  $\overline{\Delta}_{\kappa}$  is approximately equal to 3, while near the minimum of  $\kappa$  at  $T \approx T_{\kappa}$  the optimum value of  $\Delta_{\kappa} = 3.15$ . On the V,T phase diagram there is a region in which there are no experimental data for  $\kappa(T)$ . For V = 36.84 cm<sup>3</sup>/mole this is a wide interval 0.5 < T < 1.5K. Since in experiment one measures essentially one universal function  $A_{\kappa}$  it is possible to determine  $\kappa$  for such V and T on the basis of the empirical formula (9).

### The viscosity

For the viscosity of <sup>3</sup>He experimental data obtained with the same apparatus for a wide range of V and T are lacking. Even in the region 0.1 < T < 1.0 K, which is easily accessible to the modern experimenter, the data from different papers are in poor agreement with each other. Therefore, difficulty has risen in choosing an experimental dependence of  $\eta$  on T for <sup>3</sup>He at the saturated-vapor pressure that could be adopted as a standard and used to determine the dependence of  $\eta$  on the density of the liquid. Since we expect that for 0.05 < T < 2.5 K the dependence of  $\eta$  on T, like that of  $\varkappa$ on T, is universal, and the asymptotic forms of  $\eta$  for  $T \ll T_F$ and  $T \gg T_F$  are known, a natural empirical formula for  $\eta$  has the form

$$\eta/\eta_0 = T_{\eta^2}/T^2 + 1 + \Delta_{\eta}T_{\eta}/T, \qquad (10)$$

where  $\Delta \eta$  is a weak function of the molar volume, and the parameters  $\eta_0$  and  $T_{\eta}$  are determined from the asymptotic forms of  $\eta$  for  $T \gg T_F$  and  $T \ll T_F$ :

$$\eta = C_{\eta}^{\infty} \left( 1 + \frac{T_{\eta}^{\infty}}{T} \right), \quad \frac{\eta}{\eta_0} = 1 + \Delta_{\eta}^{\infty} \frac{T_{\eta}}{T} \quad \text{for} \quad T > T_F,$$
  
$$\eta = \frac{C_{\eta}^{0}}{T^2} \left[ 1 + \left( \frac{T}{T_{\eta}^{0}} \right)^{\vee} \right], \qquad (11)$$
  
$$\frac{\eta}{\eta_0} = \frac{T_{\eta}^{2}}{T^2} + \Delta_{\eta}^{0} \left( \frac{T_{\eta}}{T} \right)^{2-\nu} \quad \text{for} \quad T < T_F,$$

where

$$T_{\eta}^{2} = C_{\eta}^{0}/C_{\eta}^{\infty}, \quad \eta_{0} = C_{\eta}^{\infty}, \quad \Delta_{\eta}^{\infty} = T_{\eta}^{\infty}/T_{\eta}, \quad \Delta_{\eta}^{0} = (T_{\eta}/T_{\eta}^{0})^{\nu}.$$

The expressions (11) are written by analogy with (6). Among experimenters there is no agreed opinion as to the value of the index v in (11) that determines the correction to the leading  $(\infty T^{-2})$  term in the expansion of  $\eta$  for  $T \ll T_F$ . The values  $\nu = 1, 2, 3$  have been considered. In a paper by Pethick<sup>15</sup> it is shown that in the approximation of an almost ferromagnetic liquid  $\varkappa$  and D for <sup>3</sup>He contain a correction linear in T, while for  $\eta$  this correction is equal to zero. Since there is no strong exclusion of such a correction, this means only that it is small, i.e.,  $\nu = 1$  but  $\Delta_n^0 < 1$ . Therefore, we expect that  $\eta$  will be characterized by a scaling dependence (10) on T, with an unknown function  $\Delta_{\eta}$  of  $T/T_{\eta}$  that has the limits  $\Delta_{\eta}^{0}$  for  $T \ll T_{F}$  and  $\Delta_{\eta}^{\infty}$  for  $T \gg T_{F}$ , with  $\Delta_{\eta}^{\infty} > \Delta_{\eta}^{0}$ . The dependence of the parameter  $C_{\eta}^{0}$  on V is determined in the paper by Parpia et al.<sup>16</sup> For the molar volume  $V_0 = 36.84$ cm<sup>3</sup>/mole the value  $C_{\eta}^{0} = 2.55 \,\mu\text{P} \cdot \text{K}^{2}$  from Ref. 16 agrees with the results of Abel *et al.*,<sup>17</sup> who measured the attenuation of sound in <sup>3</sup>He, this measurement being equivalent at low T to a measurement of the viscosity. For the parameter  $C_{\eta}^{\infty}$ , however, we can give an estimate only for  $V = V_0$ :  $C_{\eta}^{\infty} = 17.5 \,\mu\text{P}$ . This value was obtained on the basis of a parametrization of the dependence of  $\eta$  on T for 0.14 < T < 1.4 K, as measured by Betts *et al.*<sup>18</sup> In this region of T the density of <sup>3</sup>He depends weakly on T and one may treat  $\eta$  and  $\eta_p$  as the same:

$$\eta = [2.55/T^2 + 17.5 + 9.4/T] \ \mu \mathbf{P} \ . \tag{12}$$

We note that the expression (12) has the correct low-temperature limit, since  $C_{\eta}^{0} = 2.55$ . There is a later and frequently cited paper by Black *et al.*<sup>19</sup> which gives an empirical dependence of  $\eta$  on T in the wider range 0.05 < T < 3.0 K:

$$\eta = 2.21/T^2 + 26.3/T^{4}$$

We decided against parametrizing an already empirical dependence, and chose as our basis the tabulated data of Betts *et al.*<sup>18</sup> The dependence of the parameter  $C_{\eta}^{\infty}$  on V can be found by requiring that the ratio  $T_{\eta}/T_F$ , like  $T_{\chi}/T_F$ , depend weakly on V. In the next section of the paper we shall give physical but not rigorous arguments in favor of the following relation between  $C_{\eta}^{\infty}$  and  $C_{\chi}^{\infty}$ :

$$\frac{C_{\eta^{\infty}}(V)}{C_{\eta^{\infty}}(V_0)} = \left(\frac{V_0}{V}\right)^{\gamma_3} \frac{C_{\chi^{\infty}}(V)}{C_{\chi^{\infty}}(V_0)}.$$
(13)

Values of the parameters  $\eta_0 = C_{\eta}^{\infty}$  and  $T_{\eta} = (C_{\eta}^0 / C_{\eta}^{\infty})^{1/2}$ , determined on the basis of the data from Refs. 14 and 16 and the relation (13), are given in Table I. In Fig. 1 it can be seen that the relation (13) does indeed give a weak dependence of the parameter  $T_{\eta}/T_F$  on  $V_0/V$ . When V varies from 36.84 to  $26.14 \text{ cm}^3$ /mole this parameter varies within the range 1.06-0.98, while the parameter  $T_{\chi}/T_F$  varies within the range 0.7–0.6. The qualitative dependence of  $\eta$  on V and T for T > 0.14 K can now be determined on the basis of formula (10) with a constant value  $\Delta_n^{\infty} = 1.41$ . For this value of  $\Delta_n^{\infty}$ for  $V = V_0$  the expressions (10) and (12) for  $\eta(V_0)$  coincide. In order to reduce as much as possible the possible inaccuracy in the value of  $\eta$  measured in Ref. 18, we have calculated the dependence of the ratio  $\eta(V)/\eta(V_0)$  on  $n/n_0$ . For comparison, in Fig. 4 we also show the dependence of  $\kappa(V)/\kappa(V_0)$  on  $n/n_0$ , calculated on the basis of data from Refs. 13 and 14. In Fig. 4 it can be seen that for T > 0.4 K the viscosity increases with increase of the density of the liquid. But at low T, as is known from experiment,  $\eta$  is a decreasing function of n. This result could have been foreseen: At high T quantum liquids should be similar in their properties to normal liquids, for which x and  $\eta$  increase with increase of the density. Therefore, on the V,T phase diagram there should be lines on which  $\partial \varkappa / \partial V$  and  $\partial \eta / \partial V$  vanish. We are fortunate in that these lines lie in the region  $T < E_k$ , i.e., in the region where x and  $\eta$  have a scaling dependence on T. We note that the dependence (10) of  $\eta$  on T agrees qualitatively with the results of Betts et al.,<sup>20</sup> who measured  $\eta$  for P = 0and P = 13.7 atm in the region of low T. According to their data, for  $T \approx 0.3$  K the viscosity is almost the same for P = 0and P = 13.7 atm.

Our results are also in qualitative agreement with the



FIG. 4. Dependence of the ratios  $\eta(V)/\eta(V_0)$  and  $\kappa(V)/\kappa(V_0)$  on the parameter  $n/n_0 = V_0/V$ , where  $n_0$  is the equilibrium density of <sup>3</sup>He. The data for  $\kappa$  are from Refs. 13 and 14, and the values of  $\eta$  are calculated using the expression (10).

data from the papers of Dyumin, Esel'son, and Rudavskiĭ,<sup>21,22</sup> who, on the basis of measurements of the sound attenuation, calculated the dependence of  $\eta$  on T and n, assuming that the second viscosity of <sup>3</sup>He is negligibly small. But according to the data of Refs. 22 the change of sign of the derivative of  $\eta$  with respect to the density of the liquid occurs at  $T \approx 0.8$  K, while our value is half this. In addition, at  $T \approx 0.5$  K, the value of  $\eta$  determined in Ref. 22 differs by 20% from the data of Ref. 18, which we have taken as our standard. Direct measurement of  $\eta$  in the wide interval  $36.8 > V > 20 \text{ cm}^3$ /mole and T < 10 K would make it possible not only to determine to what accuracy the dependence of the viscosity on T is universal but also to what ascertain whether there is on the V, T phase diagram a region in which the model of an amorphous solid (glass) is applicable for <sup>3</sup>He. The point is that the laws  $S \propto T$  and  $\varkappa \propto T$  obtained in the framework of this model by Andreev and Kosevich<sup>3,23</sup> can also be explained without assuming that there is shortrange order in the liquid. For the viscosity, however, the authors of Ref. 23 obtained the law  $\eta \propto 1/T$ , which is not fulfilled for <sup>3</sup>He or <sup>4</sup>He at densities close to the equilibrium density  $n_0$ . For such *n* and for <sup>4</sup>He the dependence (11) holds, while the parameter  $T_n^{\infty}$  is so small that the term  $T_n^{\infty}/T$  is only a correction. At large densities, however, as follows from the analysis of the experimental data performed by Andreev and Kosevich for <sup>4</sup>He and hydrogen, there is a region of T in which the term  $T_n^{\infty}/T$  is of the order of unity, but there is no region in which the strong inequality  $T_n/T > 1$  is fulfilled. It is possible that this is connected with the fact that for <sup>4</sup>He the semiquantum window  $T_{\lambda} < T < E_k$ is narrower than the region  $T_F < T < E_k$  for <sup>3</sup>He. Therefore, it is useful to trace the dependence of the parameter  $T_{\eta}^{\infty}$  on n experimentally. According to the ideas that we have developed, the parameters  $T_x^{\infty}$  and  $T_{\eta}^{\infty}$  decrease with increase of n, and their dependence on n is the same as that of the parameter  $T_F$ . The glass model, however, predicts and increase of  $T_n^{\infty}$  with increase of *n*. Therefore, the change of sign of  $\partial T_n^{\infty} / \partial n$  would be an indication of a crossover of the dependence of  $\eta$  on T to the glass regime. It is also of interest to investigate the region of T in which  $\eta(T)$  has a minimum, in order to ascertain whether or not the gas dependence  $\eta \propto T^{1/2}$  is fulfilled for  $T > E_k$ .

#### 3. RELATIONS BETWEEN THE KINETIC COEFFICIENTS

1. We now give the arguments that have helped us to discover such simple dependence of x and  $\eta$  on T. We shall also determine the dependence of the kinetic coefficients of the molar volume and find relations between them. We recall first of all the generally accepted expressions for x,  $\eta$ , and D, applicable at low T:

$$\kappa = \frac{1}{3} \frac{C_{v}}{V} v_{F}^{2} \tau_{x}, \qquad \eta = \frac{1}{5} n v_{F}^{2} m \cdot \tau_{\eta},$$
$$D = \frac{1}{3} v_{F}^{2} (1 + Z_{0}) \tau_{D}, \qquad (14)$$

and on the basis of the Fermi-liquid relations

$$T_{F} = \frac{P_{F}^{2}(1+Z_{0})}{3m^{*}k_{B}}, \quad v_{F} = \frac{P_{F}}{m^{*}},$$
$$\frac{C_{V}}{V}v_{F} = \frac{\pi^{4/3}Tk_{B}}{3^{1/3}a^{2}\hbar}, \quad n = \frac{1}{a^{3}} = \frac{P_{F}^{3}}{3\pi^{2}\hbar^{3}}$$

we eliminate from the expressions (14) the unobservable parameters  $Z_0$ ,  $m^*$ ,  $v_F$ , and the times  $\tau_x$ ,  $\tau_\eta$ , and  $\tau_D$  by expressing the kinetic coefficients in terms of geometrical quantities, viz., the mean free path  $l_x = v_F \tau_x$ ,  $l_\eta$  $= v_F \tau_\eta$ ,  $l_D = v_F \tau_D$ , and the interatomic spacing *a*:

$$\varkappa = \left(\frac{\pi^2}{9}\right)^{\eta_0} \frac{Tk_{\mathbf{B}}^2 l_{\kappa}(T)}{a^2 \hbar}, \quad \eta = \frac{(3\pi^2)^{\eta_0} \hbar l_{\eta}(T)}{5a^4},$$

$$D = \frac{k_{\mathbf{B}} a l_D(T) T}{\hbar (3\pi^2)^{\eta_0} \Phi(T)}.$$
(15)

The expressions (15) correspond to the dimensions adopted for the kinetic coefficients in the literature:

$$[\kappa] = \operatorname{erg/sec} \cdot \operatorname{cm} \cdot \mathbf{K}, \quad [\eta] = \operatorname{g/cm} \cdot \operatorname{sec} = \mathbf{P},$$
  
$$[D] = \operatorname{cm}^2/\operatorname{sec}, \quad [T] = \mathbf{K}.$$

Since all the Fermi-liquid parameters have dropped out of the expressions for  $\varkappa$ ,  $\eta$ , and D, it should be expected that the relations (15) have a wider region of applicability that does Fermi-liquid theory itself. As can be seen from (15), in an

experiment one is essentially measuring the mean free paths  $l_{\eta}$ ,  $l_{\kappa}$ , and  $l_D$ . The expression for D contains the function  $\Phi = \chi T/C_k$ , so that for  $T \lt T_F$  the combination  $T/\Phi$  is equal to the parameter  $T_F$ . It is convenient to normalize the kinetic coefficients to their values for  $V_0 = 36.84 \text{ cm}^3/\text{mole}$ :

$$\varkappa = \left[ \frac{V_0}{V} \right]^{\frac{1}{a}} T \lambda_{\varkappa} \frac{l_{\varkappa}(T)}{a}, \quad \eta = \frac{V_0}{V} \lambda_{\eta} \frac{l_{\eta}(T)}{a},$$

$$D = \left[ \frac{V}{V_0} \right]^{\frac{1}{a}} \frac{T l_D(T) \lambda_D}{a \Phi(T)}.$$

$$(16)$$

The parameters  $\lambda$  in (16) are determined by the expressions

$$\lambda_{x} = \left[\frac{\pi^{2}}{9}\right]^{\frac{1}{3}} \frac{k_{B}^{2}}{\hbar a_{0}} = 487.9 \frac{\text{erg}}{\text{sec} \cdot \text{cm} \cdot \text{K}^{2}} ,$$
$$\lambda_{\eta} = \frac{(3\pi^{2})^{\frac{1}{3}}\hbar}{5a_{0}^{3}} = 10.67 \cdot 10^{-6} \text{ P},$$
$$\lambda_{D} = \frac{k_{B}a_{0}^{2}}{\hbar (3\pi^{2})^{\frac{1}{3}}} = 65.68 \cdot 10^{-6} \frac{\text{cm}^{2}}{\text{sec} \cdot \text{K}} ;$$

 $a_0$  is the equilibrium interatomic spacing:  $a_0 = 3.94$  Å.

Since we have verified that the characteristic scale for <sup>3</sup>He at temperature  $T_c < T < E_k$  is the magnetic temperature  $T_F$ , and since it is known that for  $T \ll T_F$  the mean free path increases like  $T^{-2}$ , it is convenient to define the lengths  $l^0$  by the expressions

$$l_{x}(T) = l_{x}^{0} \frac{T_{F}^{2}}{T^{2}}, \quad l_{\eta}(T) = l_{\eta}^{0} \frac{T_{F}^{2}}{T^{2}}, \quad l_{D}(T) = l_{D}^{0} \frac{T_{F}^{2}}{T^{2}}.$$
 (17)

On the basis of the experimental data and the relations (16) and (17) it is possible to find the dependence of  $l^0$  on the molar volume. In Fig. 5 we show the dependence of the parameters  $l_x^0/a$  and  $l_y^0/a$  on  $n/n_0 = V_0/V$ . It is seen that this dependence is weak, and the interatomic spacing a is the only geometrical scale for the liquid at  $T < T_F$ . The parameter  $l_x^0/a$  varies in the range 0.45–0.52, while  $l_y^0/a$  varies in the range 1.85–2.13. The dependence of the parameter  $C_D^0$  in the law  $D = C_D^0/T^2$  for  $T < T_F$  on V has not been determined experimentally, but can be predicted by assuming that the parameter  $l_D^0/a$ , like  $l_x^0/a$  and  $l_y^0/a$ , depends weakly on V. Neglecting the dependence of all the parameters  $l^0/a$  on V, from (16) and (17) we obtain

$$\frac{C_{x^{0}}(V)}{C_{x^{0}}(V_{0})} = \left[\frac{V_{0}}{V}\right]^{\frac{1}{2}} \frac{T_{F}^{2}(V)}{T_{F}^{2}(V_{0})}, \quad \frac{C_{\eta}^{0}(V)}{C_{\eta}^{0}(V_{0})} = \frac{V_{0}}{V} \frac{T_{F}^{2}(V)}{T_{F}^{2}(V_{0})}, \\ \frac{C_{D}^{0}(V)}{C_{D}^{0}(V_{0})} = \left[\frac{V}{V_{0}}\right]^{\frac{1}{2}} \frac{T_{F}^{3}(V)}{T_{F}^{3}(V_{0})}.$$
(18)

As shown in Ref. 2, the parameter  $T_F$  measured by Thompson *et al.*<sup>24</sup> is characterized by a power dependence on V. Therefore, the kinetic coefficients, as can be seen from (18), also have a power dependence on V:

$$\frac{T_{F}(V)}{T_{F}(V_{0})} = \left[\frac{V}{V_{0}}\right]^{\mathsf{v}_{F}}, \quad \frac{C_{\mathsf{x}}^{\circ}(V)}{C_{\mathsf{x}}^{\circ}(V_{0})} = \left[\frac{V}{V_{0}}\right]^{\mathsf{v}_{\mathsf{x}}}, \\
\frac{C_{\mathsf{\eta}}^{\circ}(V)}{C_{\mathsf{\eta}}^{\circ}(V_{0})} = \left[\frac{V}{V_{0}}\right]^{\mathsf{v}_{\mathsf{\eta}}}, \quad \frac{C_{D}^{\circ}(V)}{C_{D}^{\circ}(V_{0})} = \left[\frac{V}{V_{0}}\right]^{\mathsf{v}_{D}}.$$
(19)

The indices v in (19) can be expressed in terms of  $v_F$ :  $v_F = 1.93$ ,  $v_x = 2v_F - 1/3 = 3.53$ ,  $v_\eta = 2v_F - 1 = 2.86$ ,

| <sub>V,</sub> cm <sup>3</sup> /<br>mole                                       | <i>т<sub>F</sub></i> , к                                                      | $C_{\varkappa^0}, \frac{\text{erg}}{\sec \cdot \text{cm}}$                    | $\frac{C_{\eta^0}, \mathbf{P} \cdot (\mathbf{mK})^2}{(\text{Ref. 16})}$ | $C_{\eta^0}, \mathbf{P} \cdot (\mathbf{mK})^2$ | $C_{D^0}, \frac{\mathrm{cm}^2}{(\mathrm{mK})^2/\mathrm{sec}}$                |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------|
| 36,84<br>33,87<br>32,07<br>30,76<br>29,71<br>28,86<br>28,13<br>27,56<br>27,06 | 0.359<br>0.305<br>0.277<br>0.256<br>0.238<br>0.224<br>0.212<br>0.205<br>0.198 | 29.08<br>23.36<br>19.89<br>17.37<br>15.35<br>13.71<br>12.30<br>11.20<br>10.24 | 2.55<br>2,23<br>1.97<br>1.75<br>1.63<br>1.46<br>1.33<br>1.22<br>1.16    | 2.632.231.971.771.601.461.331.221.14           | 1,44<br>0,904<br>0,662<br>0,512<br>0,406<br>0,332<br>0,274<br>0,237<br>0,205 |
| 27,06<br>26.58<br>26,14                                                       | 0,198<br>0,191<br>0.185                                                       | 9,32<br>8,47                                                                  | 1,10<br>1,10<br>1,06                                                    | 1,14<br>1,04<br>0,96                           | 0,205                                                                        |

Note. The dependences of the pressure P, chemical potential  $\mu$ , sound velocity u, average energy  $E^+$  per atom, average potential energy  $\overline{V}$ , and average kinetic energy  $E_k$  on the density are calculated from the expressions (24), (29), (31), and (32);  $n_0 = 0.01635 \text{ Å}^{-3}$  is the equilibrium density of <sup>3</sup>He.

 $v_D = 3v_F + 2/3 = 6.46$ . For  $C_x^0$  and  $C_y^0$  the relations (19) agree with the data of Refs. 13 and 16 to within 15%. In deriving them we have relied only on the assumption that at low T there are, for <sup>3</sup>He, no other scales besides  $T_F$  and a. Since the inaccuracy of the expressions (19) may be partly due to the inaccuracy of the measurement in Ref. 25 of the dependence of  $T_F$  on V, we have also determined the relative quantities, in order to reduce the power of the parameter  $T_F$  by as much as possible:

$$\frac{C_{\eta^{0}}(V)}{C_{\eta^{0}}(V_{0})} = \frac{C_{\kappa^{0}}(V)}{C_{\kappa}^{0}(V_{0})} \left[ \frac{V_{0}}{V} \right]^{\gamma_{0}},$$

$$\frac{C_{D}^{0}(V)}{C_{D}^{0}(V_{0})} = \frac{C_{\kappa^{0}}(V) V T_{F}(V)}{C_{\kappa^{0}}(V_{0}) V_{0} T_{F}(V_{0})}.$$
(20)

In the interval 36.8 > V > 27.0 cm<sup>3</sup>/mole, the relationship (20) of  $C_{x}^{0}$  tp  $C_{y}^{0}$  agrees with the data of Greywall<sup>13</sup> and Parpia et al.<sup>16</sup> to within 3%, and it was this that determined our choice of these data as the basis for the analysis of experiment for x and  $\eta$ . We emphasize that these are the only two papers in which the data are in such exact agreement. In Table II we give experimental values of  $C_x^0$ ,  $C_y^0$ , and  $C_D^0$ , and the corresponding values calculated on the basis of (20). The data of Greywall are adopted as the standard. For the parameter  $C_{\eta}^{0}$  for  $V = V_{0}$  the optimal value is 2.63  $\mathbf{P} \cdot (\mu \mathbf{K})^2$ , which gives the best agreement between the relation (20) and the data of Refs. 13 and 16 in a wide range of V. For  $C_D^0$  at  $V = V_0$  we have adopted the value  $1.44 \cdot 10^{-6}$  $cm^2 \cdot K^2/sec$  determined by Wheatley.<sup>25</sup> The dependence of  $C_D^0$  on V has not been investigated in detail, but the value  $C_D^0 = 0.177 \cdot 10^{-6} \text{ cm}^2 \cdot \text{K}^2/\text{ sec}$  at  $V = 26.6 \text{ cm}^3/\text{mole}$ (Table II) agrees well with the value  $C_D^0 = 0.167 \cdot 10^{-6}$  $cm^2 \cdot K^2/sec$  also determined by Wheatley.<sup>25</sup> The relations (20) are based only on the scaling hypothesis, i.e., on the assumption that at low T all the mean free paths have the same dependence on V:

$$l_{x}(V)/l_{x}(V_{0}) = l_{\eta}(V)/l_{\eta}(V_{0}) = l_{D}(V)/l_{D}(V_{0}).$$

The expressions (18), on the other hand, are more specific and less exact. They are based on the assumption that the dependence of l on a and  $T_F$  can be factorized: $l \approx a T_F^2/T^2$ .

2. For higher  $T > T_F$  the question arises of the limits of

applicability of the expressions (16). Since they do not contain model, unobservable quantities, the only limitation lies in the requirement that the mean free paths be greater than a. For l < a the concept of a mean free path loses its meaning. For  $T_F < T < E_k$  we shall define lengths  $l^{\infty}$  by the expressions

$$l_{\mathbf{x}}(T) = l_{\mathbf{x}^{\infty}} \left( 1 + \frac{T_{\mathbf{x}^{\infty}}}{T} \right), \quad l_{\eta}(T) = l_{\eta^{\infty}} \left( 1 + \frac{T_{\eta^{\infty}}}{T} \right),$$

$$l_{D}(T) = l_{D^{\infty}} \left( 1 + \frac{T_{D^{\infty}}}{T} \right).$$
(21)

In the region  $T_F < T < E_k$ , besides corrections  $\propto T_F/T$  there are also corrections  $\propto T^2/E_k^2$ , which may be disregarded for  $T^3 < E_k^2 T_F$ . In Fig. 5 we show the dependence of the parameter  $l_{\infty}^{\infty}/a$  on *n*, determined on the basis of the data from Refs. 13 and 14, and the expressions (16) and (21); this parameter varies in the range 0.95–1.25. Since the dependence of the parameter  $C_{\eta}^{\infty}$  on *n* has still not been determined experimentally, it is reasonable to find it on the basis



FIG. 5. Dependence of the ratios  $l_{\alpha}^{\circ}/a(1)$ ,  $l_{\alpha}^{\circ}/a(2)$ ,  $l_{\eta}^{\circ}/a(3)$ , and  $l_{\eta}^{\circ}/a(4)$  on the parameter  $V_0/V$ ; *a* is the interatomic spacing. The mean free paths  $l_{\alpha}^{\circ}$ ,  $l_{\alpha}^{\circ}$ ,  $l_{\eta}^{\circ}$ , and  $l_{\eta}^{\circ}$  are determined from the relations (16), (17), (21), and (22) and the data of Refs. 13, 14, and 16.

of the scaling hypothesis for high  $T \leq T_F$ :

$$l_{\eta}^{\infty}(V)/l_{\eta}^{\infty}(V_{0}) = l_{x}^{\infty}(V)/l_{x}^{\infty}(V_{0}).$$
(22)

It was the relation (22) which, with allowance for (16), led us to the relation (13) between  $C_x^{\infty}$  and  $C_{\eta}^{\infty}$  that enabled us to define the scale  $T_{\eta}$ . Since it has turned out that the parameter  $T_{\eta}/T_F$  depends weakly on V, the scaling hypothesis for  $T > T_F$  agrees with the universality of the dependence of  $\eta$ on T. The parameter  $l_{\eta}^{\infty}/a$ , determined from the relation (22), varies in the range 1.64–2.17 upon variation of n (Fig. 5).

3. The expression (16) gives a qualitatively correct description of the dependence of the spin-diffusion coefficient D on T as measured by Hart and Wheatley.<sup>26</sup> For  $T \gg T_F$  the parameter  $\Phi$  in (16) can be replaced by 1, which corresponds to a Curie law for  $\gamma$ ; in this case  $D \propto T(1 + T_D^{\infty}/T)$ . But since for low T we have  $D \propto 1/T^2$ , the dependence of D on T is characterized by a minimum at  $T \sim T_F$ . However, there is no quantitative agreement: The parameter  $T_D^{\infty}$  is too large, so that up to  $T \sim 3$  K we cannot neglect the correction  $\propto T_{D}^{\infty}/T$ . This is not surprising, since already at  $T \approx 0.5$  K the mean free path  $l_{D}(T)$ , determined on the basis of the data of Ref. 26 and the relation (16), is comparable to the interatomic distance, and this makes the very definition (21) of the length  $l_{D}^{\infty}$  meaningless. Thus, the region of applicability of the expression (16) for D is considerably narrower than the regions of applicability of the expressions (16) for  $\varkappa$  and  $\eta$ . In our opinion, this is due to the fact that for  $T > T_F$  the transport of spin is no longer determined by single-particle excitations and has a collective character, since it is associated with the establishment of equilibrium in a dense gas of spin excitations. For phenomena associated with the transport of energy and momentum, on the other hand, the system of spin excitations is passive, and plays the role of an external field for the single-particle excitations. It is for this reason that the elementary gas-kinetic relations (16) for x and  $\eta$  are in such good agreement with experiment in a wide range of T and n, and the lengths  $l_{x}^{\infty}$  and  $l_{n}^{\infty}$ are greater than a.

#### 4. ENERGY OF THE GROUND STATE OF <sup>3</sup>He

1. The average kinetic energy  $E_k$  of one <sup>3</sup>He atom at T = 0 is the most important quantum scale of the liquid. For  $T < E_k$  the rough, global properties of the liquid depend weakly on T. It turns out that this important characteristic of the substance can be determined with good accuracy from a comparison of the properties of liquid <sup>3</sup>He and <sup>4</sup>He. We give the definition of the quantities  $E_k$  and  $E_{k4}$  for <sup>3</sup>He and <sup>4</sup>He:

$$E_{k} = 2 \int n_{p} \frac{p^{2}}{2m} \frac{d^{3}p}{(2\pi)^{3}} / n,$$

$$E_{k} = \int n_{p_{4}} \frac{p^{2}}{2m_{4}} \frac{d^{3}p}{(2\pi)^{3}} / n_{4}.$$
(23)

In (23) n and  $n_4$  are the densities of <sup>3</sup>He and <sup>4</sup>He, and  $n_p$  and  $n_{p4}$  are the momentum-distribution functions of the particles. The function  $n_{p4}$  has been measured in experiments on



FIG. 6. Dependence on r of 1) the correlation function g of <sup>3</sup>He, and 2) the difference of the correlation functions g of <sup>3</sup>He and the correlation function  $g_4$  of <sup>4</sup>He. The data are those of Achter and Meyer.<sup>28</sup>

neutron scattering in <sup>4</sup>He, and this enabled Woods and Sears<sup>27</sup> to find the values  $E_{k4} = 13.5 \pm 1.2$  K at T = 1.1 K, and  $E_{k4} = 14.1 \pm 1.0$  K at T = 4.2 K. For <sup>4</sup>He the quantities  $E_{k4}$  and  $n_{p4}$  depend weakly on T for  $T < E_{k4}$ . Since <sup>3</sup>He absorbs neutrons strongly, the experimental determination of the function  $n_p$  is difficult. But if we assume that the atoms of the liquid interact only through a paired nonretarded potential v(r) that is the same for <sup>3</sup>He and <sup>4</sup>He, we can determine  $E_k$  from the expressions for the total average energies  $E^+$  and  $E_4^+$  per atom:

$$E^+ = E_k + \overline{V}, \quad E_4^+ = E_{k4} + \overline{V}_4. \tag{24}$$

The average potential energies  $\overline{V}$  and  $\overline{V}_4$  can be expressed in terms of the potential v and the pair correlation functions g and  $g_4$ :

$$\overline{V} = \frac{n}{2} \int v(r)g(r)d^3r,$$

$$\overline{V}_{\star} = \frac{n_{\star}}{2} \int v(r)g_{\star}(r)d^3r.$$
(25)

We note that the energies  $E^+$ ,  $E_k$ , and  $\overline{V}$  depend on T implicitly, through the functions g and  $n_p$ . The functions g and  $g_4$ , unlike  $n_p$ , have been investigated in detail in experiments on x-ray scattering both in <sup>4</sup>He and in <sup>3</sup>He. In Fig. 6 we give the dependences of g and  $g - g_4$  on r in the interval 2–6 Å, as constructed from the data of Achter and Meyer.<sup>28</sup> It can be seen that g and  $g_4$  differ little, and therefore it is reasonable on the basis of the expressions (24) and (25) to separate out in the energy  $E_k$  the small contribution  $g - g_4$ :

$$E_{k} = E^{+} + \frac{n}{n_{4}} (E_{k4} - E_{4}^{+}) - \delta E_{k}, \quad \delta E_{k} = \frac{n}{2} \int (g - g_{4}) v \, d^{3}r.$$
(26)

In the zeroth approximation ( $\delta E_k = 0$ ) and with the values  $E_4^+ = -7.14$ ,  $E^+ = -2.52$  K given in Ref. 28, and the value  $n_0/n_4 = 0.75$  for the ratio of the equilibrium densities of <sup>3</sup>He and <sup>4</sup>He, we arrive on the basis of (26) at the estimate  $E_k = 13 \pm 0.9$  K. An exact calculation of  $\delta E_k$  is impossible, since at short distances, where the potential v is large, the functions g and  $g_4$  are poorly determined from the experimental x-ray scattering data. But since it is known that small r the potential v corresponds to repulsion of the atoms, and  $g < g_4$ , we can give an upper bound for  $\delta E_k$ :

$$\delta E_{k} < \frac{n}{2} \int_{r_{0}} v(g - g_{k}) d^{3}r, \qquad (27)$$

where  $r_0$  is the value of r at which v vanishes.

For  $r > r_0$  the interaction of two inert-gas atoms is well described by the Lennard-Jones potential

$$v(r) = 4\varepsilon^{0} \{ (r_{c}/r)^{12} - (r_{0}/r)^{6} \}.$$
(28)

For <sup>3</sup>He and <sup>4</sup>He the values  $\varepsilon^0 = 10.22$  K and  $r_0 = 2.556$  Å are adopted. A rough estimate for  $\delta E_k$  can now be obtained from (27), (28) if we replace the function  $g - g_4$  in (27) by its minimum value, equal to -0.157;  $\delta E_k < 1.6$  K. But numerical integration on the basis of Achter's and Meyer's tabulated values of the functions g and  $g_4$  gives the bound  $\delta E_k < 1$  K. Thus, we have a reliable lower bound for the average kinetic energy of a <sup>3</sup>He atom:  $E_k > 12 \pm 0.9$  K.

2. The pair correlation functions g and  $g_4$  carry the maximum possible information about the local properties of the liquids. These functions have the meaning of the probability of finding an atom at the point r if another is situated at the point r = 0. If there are no correlations in the positions of the particles, then  $g = g_4 = 1$ . But if the correlations are so strong that the Frenkel picture of the liquid state<sup>29</sup> is applicable and the substance is an amorphous solid, then g has a gigantic peak at  $r \approx a$ . In addition, g falls off extremely fast with decrease of r, since the atoms are well localized and separated by a barrier. According to the data of Ref. 28, the maximum value of  $g_4$  is 1.33, and maximum value of g is 1.24. In our opinion, the numbers 0.33 and 0.24 are an objective measure of the short-range order in liquid <sup>3</sup>He and <sup>4</sup>He. These substances are the most non-Frenkel of all known liquids. It seems that the concepts of "short-range order" and "low temperatures" for quantum liquids are incompatible. From the analysis performed in Ref. 2 and the present paper of the experimental data for the magnetic susceptibility, specific heat, thermal conductivity, and viscosity it also follows that for molar volumes  $36.8 > V > 26.2 \text{ cm}^3/\text{mole}$  and temperatures T < 2.5 K for <sup>3</sup>He the physical laws are the same. No indications of the appearance or development of any sharply expressed short-range order have been discovered. Of course, this does not rule out the applicability of the Frenkel picture for high T > 3 K and low molar volumes V < 20 $cm^3$ /mole. Since the Frenkel correlations are small, we shall

|--|

| TADLE II                                                             | 1.                                                                        |                                                                                        |                                                                                   |                                                                                                                       |                                                                               |                                                                                                              |
|----------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| $n/n_0$                                                              | P, bar                                                                    | u, m/sec                                                                               | μ, Κ                                                                              | E+, K/atom                                                                                                            | E <sub>k</sub> , K/atom                                                       | ₹, K/atom                                                                                                    |
| 1,00<br>1,05<br>1,10<br>1,15<br>1,20<br>1,25<br>1,30<br>1,35<br>1,40 | 0<br>1,562<br>3,587<br>6,134<br>9,262<br>13,03<br>17,50<br>22,74<br>28,79 | 181,7<br>208,7<br>235,7<br>262,8<br>289,8<br>316,8<br>343,9<br>370,9<br>370,9<br>398,0 | -2,520<br>-1,845<br>-1,011<br>-0,009<br>1,169<br>2,532<br>4,085<br>5,834<br>7,784 | $\begin{array}{r} -2.520 \\ -2.504 \\ -2.456 \\ -2.372 \\ -2.250 \\ -2.086 \\ -1.880 \\ -1.627 \\ -1.326 \end{array}$ | 13.06<br>13,86<br>14,68<br>15,55<br>16,45<br>17,38<br>18,37<br>19,40<br>20,48 | $\begin{array}{r} -15,58\\ -16,36\\ -17,14\\ -17,92\\ -18,70\\ -19,47\\ -20,25\\ -21,03\\ -21,81\end{array}$ |

Note. The parameters  $C_{\eta}^{0} = \eta T^{2}$  and  $C_{D}^{0} = DT^{2}$  are calculated using the relation (20). The values of  $C_{\chi}^{0} = \kappa T$  are the data of Greywall,<sup>13</sup> the values of  $C_{\eta}^{0}$  are the data of Parpia *et al.*,<sup>16</sup> and the values of  $T_{F}$  are the data of Thompson *et al.*<sup>24</sup>

neglect them and determined the quantities  $\overline{V}$  and  $\overline{V}_4$  (25) using the function  $g = g_4 = 1$  for  $r > r_0$  and  $g = g_4 = 0$  for  $r < r_0$ . The calculation with the potential (28) leads to the value  $\overline{V}_4 = -20.8$  K and  $E_{k4} = 13.7$  K. Comparison with the empirical value  $E_{k4} = 13.5$  K convinces us that the choice of g and  $g_4$  is reasonable, and makes it possible to determine the dependence of  $\overline{V}$  on the density n from (25):

$$\overline{V} = \frac{n}{2} \int_{r_0} v(r) d^3 r = \overline{V}(n_0) \frac{n}{n_0},$$
  
$$\overline{V}(n_0) = \frac{16\pi r_0{}^3 n_0 g^0}{9} = 15.58 \text{ K.}$$
(29)

To find the average kinetic energy  $E_k$  on the basis of this dependence and the relation (24) we need the values of the total average energy  $E^+$ . The dependence of  $E^+$  on n at T = 0 is found from the thermodynamic identities that relate the sound velocity u, chemical potential  $\mu$ , pressure P, and energy  $E^+$ :

$$u^{2} = \frac{\partial \mu}{\partial n} \frac{n}{m} = \frac{\partial P}{\partial n} \frac{1}{m}, \quad \mu = E^{+} + \frac{\partial E^{+}}{\partial n} n.$$
(30)

The most precise measurements of the velocity of sound in <sup>3</sup>He have been carried out by Roach *et al.*<sup>30</sup> The data of Ref. 30 agree to within 0.5% with the linear dependence

$$u = -u_1 + u_2 \frac{n}{n_0}$$
,  $u_1 = 359.084 \text{ m/sec} \ u_2 = 540.75 \text{ m/sec} (31)$ 

We note that, as shown by Dyumin and Essel'son,<sup>22</sup> a linear dependence of u on n holds for all T < 1.4 K. Integrating the identities (30) with allowance for (31), we find the dependences of  $P, \mu$ , and  $E^+$  on the parameter  $x = n/n_0 - 1$ :

$$\frac{P}{mn_0} = u_0^2 x + u_0 u_2 x^2 + \frac{u_2^2}{3} x^3,$$

$$\frac{\mu(n) - \mu(n_0)}{m} = u_0^2 x + \frac{u_2^2 x^2}{2} + u_1^2 [\ln(1+x) - x], (32)$$

$$\frac{E^+(n) - E^+(n_0)}{m} = \frac{u_0^2}{2} x^2 - \left[ u_1^2 - u_1 u_2 + \frac{1}{3} u_2^2 \right] \frac{x^3}{1+x}$$

$$+ u_1^2 \left[ \ln(1+x) - x + \frac{x^2}{2} \right].$$

At the equilibrium density,  $\partial E^+ / \partial n = 0$ , and, according to (31),  $\mu(n_0) = E^+(n_0)$ . Since the equilibrium value  $u_0$  of the



FIG. 7. Dependence on the parameter  $n/n_0$  of 1) the average kinetic energy  $E_k$ , and 2) the average potential energy  $\overline{V}$ . The solid curves are the result of calculations using the expressions (29) and (32), and the dashed curves are the results of Manousakis *et al.*<sup>32</sup>

sound velocity is related to the velocities  $u_1$  and  $u_2$  (30) by  $u_0 = u_2 - u_1$ , it follows that, by determining the four parameters  $n_0$ ,  $u_0$ ,  $u_2$ , and  $\mu(n_0)$  experimentally, it is possible to find from (32), (31) the dependences of P,  $u, \mu$ , and  $E^+$  on n, while the relations (29), (24) determined  $E_k$  as a function on n. In Table III we give the calculated values of the parameters  $P, \mu, u, E^+, E_k$ , and  $\overline{V}$ . For  $n_0$  and  $\mu(n_0)$  we take the values  $n_0 = 0.01635 \text{ Å}^{-3}$  and  $\mu(n_0) = -2.52 \text{ K}$ . To within 25% the calculated values of P and u agree with the data of Abraham and Osborne.<sup>31</sup> The values that we have determined for  $\overline{V}$  and  $E_k$  also agree with the results of a microscopic calculation of these quantities by Manousakis et al., 32 as can be seen from Fig. 7. This agreement is not accidental. At T = 0<sup>3</sup>He is a simple liquid: The correlation function g depends weakly on the density n and on the atomic mass, as can be seen by comparing g and  $g_4$ . The average potential energy  $\overline{V}$  depends chiefly on the parameters of the potential v (29). We note that in Ref. 32 the calculation of the groundstate energy was performed with a potential with similar values of the parameters  $\varepsilon^0$  and  $r_0$  in (28). It is of interest to trace the dependence of  $\overline{V}$  on the atomic mass m on the basis of a microscopic calculation. In our opinion, the quantities  $\overline{V}$ and  $\overline{V}_4$  as functions of m and  $m_4$  for real <sup>3</sup>He and <sup>4</sup>He are close to their limiting values for  $m = m_4 = 0$ . This is the limit of a dense quantum gas. An amorphous solid, however, is close to the limit  $m = m_4 = \infty$ , which corresponds to an ideal classical crystal.

3. Having determined the energy  $E_k$ , it is possible to find the value of the mean square momentum  $p^2$  of the particles. For an ideal gas  $p^2 = 3p_F^2/5$ , while for real <sup>3</sup>He, as can be seen from (23),  $p^2/p_F^2 = E_k/\varepsilon_F$ . Upon change of the density *n* the parameter  $p^2/p_F^2$  changes from 2.6 to 3.3. Thus, for <sup>3</sup>He the Fermi momentum is not the characteristic momentum, while the Fermi energy is the characteristic energy. Even at T = 0 the occupation numbers  $n_p$  are small, and this weakens the effects associated with the Pauli principle. The Landau quasiparticles have a small statistical weight against the background of the total number of particles, this being due to the very small value of the Migdal discontinuity a (Ref. 33) of the function  $n_p$ . We shall show that the function  $n_p$  has not only this discontinuity but also a logarithmic branch point at  $p = p_F$ , and shall give an estimate the parameter a. For this, using the results of Galitskiĭ,<sup>34</sup> we relate the function  $n_p$  to the imaginary part of the one-particle Green function G:

$$n_{p} = \frac{1}{\pi} \int_{-\infty}^{0} \operatorname{Im} G(p, \varepsilon) d\varepsilon.$$
(33)

For momenta p close to  $p_F$  and for small  $\varepsilon$  the function G has the form

$$G = \frac{a}{\varepsilon - \xi + i |\varepsilon| \varepsilon/\varepsilon_0}, \quad \xi = (p - p_F) v_F.$$
(34)

We divide the region of integration in (33) into two parts:

$$n_{p} = \frac{1}{\pi} \int_{-\omega_{0}}^{0} \operatorname{Im} G(p, \varepsilon) d\varepsilon + \frac{1}{\pi} \int_{-\infty}^{-\omega_{0}} \operatorname{Im} G(p, \varepsilon) d\varepsilon = n_{p}^{F} + n_{p}^{R}$$

and choose the parameter  $\omega_0$  to be smaller than  $\varepsilon_0$ , so that it becomes possible to determine the function  $n_p^F$  from (34). With logarithmic accuracy,

 $\theta =$ 

$$n_{p}^{F} = a\theta(p) - a \frac{\xi}{\pi \varepsilon_{0}} \ln \frac{\varepsilon_{0}^{2}}{\xi^{2}},$$
(35)  
1 for  $p < p_{F}, \quad \theta = 0$  for  $p > p_{F}.$ 

Since the function  $n_p$  can be measured in experiments on the scattering of fast neutrons in <sup>3</sup>He, we have the theoretical possibility of finding all three parameters  $a, p_F$ , and  $\varepsilon_0$  characterizing the function G (34) for  $p \rightarrow p_F$  and  $\varepsilon \rightarrow 0$ . The difficulties encountered by experiments here are the same as in the analogous problem of the determination of the density of condensate particles in liquid <sup>4</sup>He: The discontinuity a is very small. On the basis of the results of Refs. 11 and 12 we can give an upper bound for the parameter  $a: a < m_0^*/m^*$ where  $m^*$  is the effective mass of the heavy quasiparticles and  $m_0^*$  is the effective mass of the light quasiparticles. The mass  $m^*$  is determined from the experimental data for the specific heat for  $T < T_F$ , while the mass  $m_0^*$  is determined from the corresponding data for  $T > T_F$  (Ref. 2). This estimate is based on the relation  $a/a_0 = m_0^*/m^*$  obtained in Ref. 11, where  $a_0$  is the "bare" discontinuity of the function  $n_p$  the discontinuity determined without allowance for the effect of the spin excitations on the one-particle excitations. The parameter  $a_0$  is difficult to calculate, but it is known that  $a_0 < 1$ , since allowance for the contribution of other, nonspin excitations can only decrease the statistical weight of the one-particle states. The same bound exists on the magnitude of the discontinuity of the electron function  $n_p$  in metals. Having determined the parameter a with allowance for only the electron-phonon interaction, we can be sure that allowance for the electron-electron interaction will only decrease the quantity a. According to the data of Refs. 1 and 2, the parameter  $m_0^*/m^*$  varies for <sup>3</sup>He in the range 0.127–0.05 when the density is varied from  $n_0$  to  $n = 1.4n_0$ . On the basis of (23) and (25) we can give an estimate for the contribution of the Landau quasiparticles to the energy  $E_k$ . This contribution is equal to  $3a\varepsilon_F/5$ , and is small than  $3\varepsilon_F m_0^*/5m^*$ , which amounts to 3% of the value of  $E_k$  when  $n = n_0$ , and 1% when  $n = 1.4n_0$ . Thus, in its global properties, liquid <sup>3</sup>He is very far removed both from an amorphous solid and from an ideal Fermi gas.

In conclusion, it is pleasant to thank G. M. Éliashberg and D. E. Khmel'nitskiĭ for discussions, and L. A. Tolochko for assistance in the work.

- <sup>1</sup>D. S. Greywall, Phys. Rev. B 27, 2747 (1983).
- <sup>2</sup>A. M. Dyugaev, Zh. Eksp. Teor. Fiz. 87, 1232 (1984) [Sov. Phys. JETP 60, 704 (1984)].
- <sup>3</sup>A. F. Andreev, Pis'ma Zh. Eksp. Teor. Fiz. **28**, 603 (1978) [JETP Lett. **28**, 556 (1978)].
- <sup>4</sup>L. Goldstein, Phys. Rev. 96, 1455 (1954).
- <sup>5</sup>A. M. Dyugaev, Zh. Eksp. Teor. Fiz. **70**, 2390 (1976) [Sov. Phys. JETP **43**, 1247 (1976)].
- <sup>6</sup>L. D. Landau, Zh. Eksp. Teor. Fiz. **30**, 1058 (1956) [Sov. Phys. JETP **3**, 920 (1956)].
- <sup>7</sup>I. Ya. Pomeranchuk, Zh. Eksp. Teor. Fiz. 20, 919 (1950).
- <sup>8</sup>A. A. Abrikosov and I. M. Khalatnikov, Zh. Eksp. Teor. Fiz. **32**, 1083 (1957) [Sov. Phys. JETP 5, 887 (1957)].
- <sup>9</sup>M. J. Rice, Phys. Rev. **162**, 189 (1967).
- <sup>10</sup>M. T. Beal-Monod, Phys. Rev. Lett. **31**, 513 (1973).
- <sup>11</sup>A. A. Tolochko and A. M. Dyugaev, Zh. Eksp. Teor. Fiz. **86**, 502 (1984) [Sov. Phys. JETP **59**, 293 (1984)].
- <sup>12</sup>A. M. Dyugaev, Phys. Lett. 102A, 247 (1984).
- <sup>13</sup>D. S. Greywall, Phys. Rev. B **29**, 4933 (1984).
- <sup>14</sup>J. F. Kerrisk and W. E. Keller, Phys. Rev. 117, 341 (1969).
- <sup>15</sup>C. J. Pethick, Phys. Rev. 177, 391 (1969).
- <sup>16</sup>J. M. Parpia, D. J. Sandiford, J. E. Berthold, and J. D. Reppy, Phys.

Rev. Lett. 40, 565 (1978).

- <sup>17</sup>W. R. Abel, A. C. Anderson, and J. C. Wheatley, Phys. Rev. Lett. **17**, 74 (1966).
- <sup>18</sup>D. S. Betts, D. W. Osborne, B. Webber, and J. Wilks, Philos. Mag. 8, 977 (1963).
- <sup>19</sup>M. A. Black, H. F. Hall, and K. Thompson, J. Phys. C4, 129 (1971).
- <sup>20</sup>D. S. Betts, B. E. Keen, and J. Wilks, Proc. R. Soc. (London) A289, 34 (1965).
- <sup>21</sup>N. E. Dyumin, B. N. Esel'son, and É. Ya. Radavskiĭ, Zh. Eksp. Teor. Fiz. **65**, 237 (1973) [Sov. Phys. JETP **38**, 116 (1973)].
- <sup>22</sup>N. E. Dyumin and B. N. Esel'son, Fiz. Nizk. Temp. 6, 867 (1980) [Sov. J. Low Temp. Phys. 6, 421 (1980)].
- <sup>23</sup>A. F. Andreev and Yu. A. Kosevich, Zh. Eksp. Teor. Fiz. 77, 2518 (1979) [Sov. Phys. JETP 50, 1218 (1979)].
- <sup>24</sup>J. R. Thompson, Jr., H. Ramm, J. F. Jarvis, and H. J. Meyer, J. Low Temp. Phys. 2, 521 (1970).
- <sup>25</sup>J. C. Wheatley, Phys. Rev. 165, 304 (1968).
- <sup>26</sup>H. R. Hart, Jr., and J. C. Wheatley, Phys. Rev. Lett. 4, 3 (1960).
- <sup>27</sup>A. D. B. Woods and V. F. Sears, J. Phys. C10, L341 (1977).
- <sup>28</sup>F. K. Achter and L. Meyer, Phys. Rev. 188, 291 (1969).
- <sup>29</sup>Ya. I. Frenkel', Kineticheskaya teoriya zhidkosteĭ (Kinetic Theory of Liquids), Nauka, Leningrad (1975) [English translation of first edition published by Oxford University Press (1946)].
- <sup>30</sup>P. R. Roach, Y. Eckstein, M. W. Meisel, and L. Aniola-Jedrzejek, J. Low Temp. Phys. 52, 433 (1983).
- <sup>31</sup>B. M. Abraham and D. W. Osborne, J. Low Temp. Phys. 5, 335 (1971).
- <sup>32</sup>E. Manousakis, S. Fantoni, V. R. Pandharipande, and Q. N. Usmani, Phys. Rev. B 28, 3770 (1983).
- <sup>33</sup>A. B. Migdal, Zh. Eksp. Teor. Fiz. **32**, 399 (1957) [Sov. Phys. JETP 5, 333 (1957)].
- <sup>34</sup>V. M. Galitskiĭ, Issledovaniya po teoreticheskoĭ fizike (Investigations in Theoretical Physics), Nauka, Moscow (1983).

Translated by P. J. Shepherd