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Self-similar solutions of the magnetohydrodynamic equations are obtained. They provide a de- 
tailed analytic description of the cylindrically-symmetric compression and expansion of a cur- 
rent-carrying plasma in the z-pinch. The solutions describe the convergence of shock waves to the 
pinch axis for a completely skinned current in the pinch, and the convergence to the axis of 
ionizing and MHD shock waves in a transverse magnetic field in the case where the current is 
partially skinned on the outer boundary of the pinch and partially trapped on the pinch axis. 
Solutions are obtained for the collapse of the current-carrying plasma liner toward an axial 
current. Solutions describing flows in the reverse z-pinch and the motion of the shock wave 
reflected from the pinch axis through the plasma converging on the axis are also presented. Self- 
similar solutions describing similar flows in finite plasma masses bounded by a current shell 
(tangential discontinuity) are considered. 

1. INTRODUCTION 

Gas-dynamic processes occurring at high energy densi- 
ties have attracted the attention of numerous researchers 
since the time of Riemann and Rayleigh. The solution of the 
shock-wave cumulation problem obtained independently by 
Guderley' and by Landau and Stanyukovich2 was followed 
in a very short time by solutions of the problems of strong 
exp lo~ ion ,~  the motion of a gas under the influence of a short 
s h o ~ k , ~ , ~  and cavity collapse6 (see also Refs. 7-9). There has 
been a considerable recent increase in the interest in cumula- 
tion processes in connection with research into inertial ther- 
monuclear fusion (see the review in Ref. 10). 

An important and promising method of producing 
high-energy densities is to compress matter in cylindric ge- 
ometry by high-intensity electromagnetic fields (magneto- 
cumulative generators, pinches, and so on) .  Flows of this 
kind have been discussed by a number of authors."-20 In 
particular, MHD generalizations of the point explosion 
problem'3s" solutions of self-similar problems in the dynam- 
ics of the reverse z-pinch,I4*l6 and solutions for flows with 
uniform and with allowance for finite plas- 
ma c o n d ~ c t i v i t y ~ ~ . ' ~ . ' ~  have been reported. On the other 
hand, the compression stage in a plasma carrying a high cur- 
rent, ie., the pinch effect under the conditions of essentially 
inhomogeneous flow and growing total current in the plas- 
ma, has been examined only by numerical methods and in 
terms of simple models. 

It is clear that solutions describing the compression or 
expansion of current-carrying plasma must be compatible 
with a realistic variation in the total current in the circuit 
consisting of the plasma and the external device. In this pa- 
per, we obtain general self-similar solutions corresponding 
to current growth I > 0 (not necessarily in accordance with a 
power law and describing the essentially inhomogeneous 
compression and expansion of cylindrically-symmetric plas- 
ma carrying a high current. The classes of self-similar solu- 
tions discussed here describe the convergence to the axis and 
the reflection from the axis of shock waves in a magnetic 
field, the collapse to the axis of plasma current-carrying 

shells, flows of the same form but including current shells 
(tangential discontinuities) on the outer boundary of the 
plasma, and focusing of the entire plasma mass on the axis." 

The topicality of the self-similar solutions is dictated, 
above all, by the fact that they provide, in analytic form, the 
asymptotic picture of a complex nonstationary flow process 
for a wide range of initial  condition^.^ Another important 
point is that the self-similar solutions enable us to determine 
characteristic flow states from data provided by different 
numerical calculations, and open the way for an analytic 
study of the stability of compression dynamics and the real- 
ization of different possible equilibrium states of the z-pinch. 

There are two main states that can occur, depending on 
the ratio ofthe current growth time 7, = i ~ / i  to the charac- 
teristic magnetic-field diffusion time 7, = 4raR '/c2, where 
R is the pinch radius and a the plasma conductivity. When 
the current varies rapidly (T* (7, ), the current in the pinch 
is completely skinned on the surface of the plasma pinch, 
and the magnetic field in the interior of the current channel 
is zero. The pinch compression dynamics is then described 
by the corresponding gas-dynamic flow, which includes 
shock waves converging to the axis, collapsing shells, and so 
on, with a magnetic piston in the form of a current shell on 
the outer boundary of the pinch. In the other limiting case 
( r , )~,  ), or in the typical experimental situation in which 
the current initially grows slowly and then much more ra- 
pidly, the flow takes the form of shock waves or plasma 
shells converging to the axis in the nonzero magnetic field 
produced by the current trapped in the plasma on the pinch 
axis. 

For the fast-compression processes considered here, the 
plasma flow can be described by the nondissipative magneto- 
hydrodynamic equations for which the validity criteria 

for hydrogen plasma can be written in the form 
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where Re and Rm are, respectively, the ordinary and mag- 
netic Reynolds numbers. The last two conditions are satis- 
fied in high-current discharges in practically the entire range 
of parameter values. 

2. BASIC EQUATIONS. SELF-SIMILAR REPRESENTATION OF 
SOLUTIONS 

We shall confine our attention to the cylindrically-sym- 
metric problem and write down the basic equations in terms 
of cylindric coordinates. The equation of continuity, the 
equation for the magnetic field, the adiabatic equation, and 
the equations of motion are, respectively, 

where n is the particle-number density in the plasma (n = ne 
= n, ), u is the radial component of the plasma velocity, H is 

the azimuthal component of the magnetic field, p = mi n is 
the mass density of the plasma, T is the plasma temperature 
in energy units ( T  = Te = Ti ), y is the adiabatic exponent 
( y  = 3 in all the calculations below), and P = 2nT is the 
plasma pressure. 

We shall seek self-similar solutions of (3)-(6), for 
which all the variables can be written in the form of products 
of a function of time t and a function of the dimensionless 
self-similar coordinate 

E=r/R ( t ) ,  (7)  

where R ( t )  is the time-dependent spatial scale of the prob- 
lem. If we start with some arbitrary time t = to and let 
Ro = R (to), and if we introduce the dimensionless compres- 
sion 

a  ( t )  = R ( t )  l R o ,  (8 

we can separate the variables in (3)-(9) by writing the hy- 
drodynamic variables in the form 

.(r, t ) = f i ( t ) E U ( E ) ,  

n ( r ,  t )  = n o a ( t ) z X N ( E ) ,  

T  ( r ,  t )  =Toa (t)-'% (E) , 
H (r ,  t )  = H , a ( t ) X - A B ( E ) ,  

where no, To, and H, are, respectively, constants with the 
dimensions of particle-number density, energy, and magnet- 
ic field. Without loss of generality, we may relate them as 
follows: 

The quantities U, N, 0 ,  and B introduced above, are dimen- 
sionless functions of 6 that describe the self-similar velocity, 

density, temperature, and magnetic-field profiles; x and R 
are certain exponents. 

For inhomogeneous flows that include convergent 
shock waves, collapsing plasma liners, and so on, the separa- 
tion of variables in the equation of motion is possible only if 
the function8 a ( t )  has a power-law dependence on time, and 
the exponent is uniquely related to A: 

In the special case where /2 = - 1, Eq. ( 14) is replaced with 
theexponential functiona ( t )  = exp( + t /to) (see Ref. 8).  It 
is clear from (14) that states with R > - 1 describe com- 
pression for t < 0 and expansion for t > 0. The time t = 0 cor- 
responds to collapse, i.e., the vanishing of the characteristic 
scale of the problem. When /2 < - 1, the characteristic scale 
vanishes for It I -+ cc . Thus, times t > 0 correspond to the 
compression of the plasma from a state of infinite radius at 
t = 0 to zero, which occurs asymptotically as t + CC. 

For given y, self-similar solutions belonging to this class 
form a two-parameter family in ideal magnetohydrodyna- 
mics. 

3. AUTONOMOUS DYNAMIC SYSTEM 

It is important to emphasize that we are dealing with a 
self-similar problem of the second kind, for which the self- 
similar exponent cannot be determined simply from consid- 
erations of dimensionality, or from conservative laws, but 
must be found from the solution of the problem itself either 
as an eigenvalue or a discrete or continuous series of eigen- 
values on an interval.'' To solve this type of problem, the 
initial set of equations must be reduced to an autonomous 
dynamic system whose field of integral curves determines 
possible solutions and can be related to different physical 
problems. 

To obtain the autonomous dynamic system from the 
original variables N, 0 ,  and B, we must transform to the 
variables 

We shall assume henceforth that U< 1 (see below), so that S 
and A are nonnegative. The local values of the Mach number 
of a flow relative to the acoustic, Alfven, and fast magneto- 
acoustic velocities c,, c, and cf (we recall that the last of 
these determines the rate of propagation of small perturba- 
tions across the magnetic field) can readily be expressed in 
terms of the variables U, S, and A, so that S ( l  - U), 
A ( 1 - U), and (S + A) ( 1 - U) are self-similar representa- 
tives of cf, cf,, and c;, respectively. To be specific, we intro- 
duce one more relation between the normalizing constants: 

and it is then readily shown that the Mach numbers are given 
by 

The ratio of the kinetic to magnetic pressures is 
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In terms of the variables U, S, and A, the equation of 
induction, the adiabatic equation, and the equation of mo- 
tion reduce to the following forms, respectively: 

d ln S d U h+ I 
(U- I )  - +y[-+2(U--)]  = O ,  (19) 

dlnE dlnE Y 

The original nonautonomous set of equations (3)-(6) has 
thus been reduced to the three-dimensional autonomous dy- 
namic system (19)-(21), whose trajectories completely de- 
fine self-similar motion. The equation of continuity ( 3 )  can 
readily be integrated together with ( 19) if we take ( 10) into 
account and express N explicitly in terms of U, S, and 6: 

where KN is a positive constant of integration defining the 
scale N, which is arbitrary to the extent to which no is arbi- 
trary under the single restriction defined by ( 13). The pro- 
files N ( { )  and B ( { )  are constructed with the aid of (22) 
from known profiles U({), S({), and A({). 

It is readily shown that the singularities of the set ( 19)- 
(21),  which are due to the vanishing of the coefficients in 
front of the derivatives of U, S, and A in these equations 
when 

U= I (23) 
u+S+A=I, (24) 

occur when the { = const lines coincide (for particular val- 
ues of{) with the characteristics of the original set of hyper- 
bolic equations (3)-(6) on the r, t plane. Characteristics 
coinciding with particle trajectories (here, they correspond 
to all three types of perturbation, namely, perturbations of 
entropy, Alfven perturbations, and slow magnetoacoustic 
perturbations) are described by (23 ), whilst characteristics 
corresponding to fast magnetoacoustic waves are described 
by (24) (cf- or cf+ , depending on the direction of propa- 
gation, i.e., toward or away from the axis). The simplicity of 
(24) explains the particular choice of variables in ( 15). 

When U< 1 during the compression stage, condition 
(24) can be satisfied only on a certain cf- characteristic, 
called the limiting characteristic. For A > - 1, this charac- 
teristic divides the flow pattern in the r, t plane into a region 
with U + S + A > 1, which is causally related to points on 
the line r = 0, t < 0, and a region with U + S + A < 1, which 
is not causally related to the point r = 0, t = 0 that corre- 
sponds to collapse. We can therefore produce a change in the 
flow pattern in a particular region, i.e., destroy the self-simi- 
larity of the flow as a whole by introducing time-dependent 
boundary conditions and, if this is not accompanied by 
shock waves converging to the axis, the flow pattern near 

r = 0, t = 0 will not change under these conditions. 
To describe the motion of the plasma particles, we re- 

number them so that the Lagrange coordinate q of each par- 
ticle is the radius at which a given particle is located at the 
time when the corresponding self-similar coordinate as- 
sumes a particular value { = to (we recall that, in self-simi- 
lar solutions with inhomogeneous deformation, a plasma 
particle with a fixed Lagrange coordinate corresponds not to 
a constant but to a variable 4 = {, ( t ) ;  the argument t of {, 
will hereafter be omitted). Let us introduce the function 
R, ( f )  that implicitly describes the motion of this particle. 
By definition, 

and, by virtue of ( 14), 

Itit, I = ( R ,  (t,,)IE,Ro) '+I.  (26) 

Using (3 )  and integrating the equation of motion of the par- 
ticle together with ( 19), we obtain 

where the positive normalizing constant KR is determined 
from (25) and is independent of q. Substituting { = 6, in 
(27),  we obtain the parametric representation of the func- 
tions 6, ( t )  and R, ( t )  from (26) and (27).  If we know the 
density, temperature, velocity, and magnetic field profiles in 
terms of 6, we can determine, for a given particle, the depen- 
dence of these variables on time, which will not, of course, be 
of the power type. 

4. THE PHASE SPACE OF THE PROBLEM 

Equations ( 19 )-(2 1 ) are more conveniently examined 
by introducing the new independent variable T, defined by 

We thus remove singularities due to transitions across the 
characteristic (see Section 2) ,  and obtain the dynamic sys- 
tem 

dA/dr=2A{ U-h-I+S[li+h+l+2 (x-h) /y]+A ( ~ + 2 - U ) ) .  
(31) 

The self-similar solutions in which we are interested are 
described by the trajectories of (29)-(3 1 ) in the phase space 
(U, S, A) .  The asymptotic trajectories corresponding to 
T -+ + cc are determined by the singular points of this sys- 
tem (this dynamic system does not have more complicated 
attractors). The type of the singularity and the nature of the 
approach to it correspond physically to specific boundary 
conditions (for r = 0, r = C C ,  on the free surface of the plas- 
ma, or on the limiting characteristic), which the solution 
represented by the given trajectory must satisfy. Singular 
points are thus seen to determine possible states of self-simi- 
lar motion. 
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To ensure that the trajectory as a whole can be given a 
particular meaning, it must not cross the plane (24) in phase 
space (we recall that we have assumed that U< 1 ) since, oth- 
erwise, (28) shows that d l  /dr  will change sign and the de- 
pendence of the hydrodynamic variables on the self-similar 
coordinate will not be single-valued, which is physically un- 
satisfactory. A phase curve crossing the plane (24) is per- 
missible only if it is made up of three trajectories of (29)- 
(31 ), one of which is a singular point of (29)-(31) on the 
plane (24) and the other two tend to this point from either 
side of the plane for T -+ + cc which, according to (28),  
corresponds to a continuously increasing f .  On the plane 
(24), the points form a line whose equation is 

It can be shown that the hyperbola (32) is a nondegen- 
erate singular line upon which one eigenvalue is zero at al- 
most every point, and two others are nonzero. The possibil- 
ity ofcontinuing the trajectory of (29)-(3 1) through a given 
point P '  on the hyperbola (32) into the other side of the 
plane (24), i.e., the possibility of constructing a phase curve 
representing the self-similar solution from the three trajec- 
tories of (29)-(31), is determined by the nonzero eigenval- 
ues w ,  and w, at this singular point. When w, and w, are real 
but have different signs, only one phase curve can be drawn 
through the point P '  in the direction of increasing f from 
each side of the plane (24), and both these curves are analyt- 
ic at P '. When w, and a, are real and have the same sign, the 
phase curves continued through the point P'  tend to it from 
one side of the plane (24) and form a two-dimensional mani- 
fold, but only two of these curves continue through P '  
smoothly (analytically) whilst all others are self-similar so- 
lutions with a weak discontinuity on the limiting character- 
istic (see Refs. 6 , 2  1, and 22). When w, and w, are complex, 
the trajectories near the point P '  cross the plane (24) an 
infinite number of times, and are therefore physically mean- 
ingless. 

It is clear from ( 19 )-(2 1 ) that, apart from the hyperbo- 
la (32),  the system (29)-(31) will have no singular points 
for A # - 1 outside the invariant planes of the system: 
U = 1, S = 0, and A = 0 [Fig. 1 illustrates the trajectories of 
( 19)-(21) on the invariant planes]. The trajectories on the 
invariant planes do not in themselves have a physical mean- 
ing within the framework of our problem ofz-pinch dynam- 
ics. Actually, motions with U = 1 should be examined with- 
in the framework of the homogeneous deformation 
m ~ d e l ; ' ~ , ~ ~  the plane A = 0 corresponds to the pure gas-dy- 
namic problem (see Refs. 1, 6-8, l o ) ,  and the plane S = 0 
corresponds to self-similar motion of the plasma with f i  =0, 
which is unrealistic under the conditions of the pinch. From 
our point of view, the most interesting trajectories are those 
running outside the invariant planes in phase space, and the 
singular points to which these trajectories tend for 
T -+ + m. It is clear from Fig. 1 that this condition is not 
satisfied by singular saddle points lying on a finite part of the 
U = 1  plane: P, ( S = A = O ) ,  P, ( S = y A / 2 ( ~ + 1 ) ,  
A =O),P, (S=O,A = A / ( x +  l)).Thisalsoappliestothe 

FIG. 1. Trajectories of the dynamic system (19)-(21) on the invariant 
planes (A = 0.22, ,y = 0). Arrows show the direction of increasing 4. The 
plane (24) cuts the invariant planes along the dashed lines. 

singular points P, and P, on the A = 0 plane and P, on the 
S = 0 plane, which are intersections of the singular hyperbo- 
la (32) with the invariant planes. 

The singular point Po ( U = S = A = 0 )  is an attracting 
nodeforf-  when/Z> - l andfor l -+OwhenA< - 1. 
It can correspond both to the exact solution of the equations 
of self-similar motion, describing stationary cold plasma in 
the absence of the magnetic field and density profile n -?", 
and the asymptotic state for f - 0 or f -+ cc . When A > - 1 
and the trajectory tends to Po for 6 + cc , we obtain the fol- 
lowing asymptotic behavior from (29)-( 3 1 ) : 

This means that the trajectory entering Po for f + cc is char- 
acterized by definite limiting values of the local Mach num- 
ber (M,, , MA, , Mf, ) and the parameterg, [see ( 17) 1. 
At time t = 0 , l =  cc will correspond to any finite value of r, 
i.e., 

u ( r ,  0 )  =const.r-" n ( r ,  0 )  =const.rZx, 
(34) 

T ( r ,  0) =con~ t . r -~ ' ,  H ( r ,  0 )  =const.rx-'. 

From (27),  we find that R, (f -+ m ) -+ const as t -+ 0. 
This means that solutions represented by trajectories of this 
type are similar to those known in gas dynamics for shock- 
wave cumulation or collapsing cavities, for which plasma 
particles are at finite distances from the axis at the instant of 
collapse. From (34),  we conclude that these solutions are 
meaningful only for combinations of indices A and x for 
which the mass, energy, and current densities at the time of 
collapse do not have nonintegrable singularities on the axis, 
i.e., for 

I y,-h+l>O. (35 

The singular point P, on the A = 0 plane is defined by 

In Fig. 1, it is a node on the A = 0 plane, which is attracting 
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for f + cu but, for other values of A and X, it may lie on the 
other side of the plane (24) and constitute a saddle. For 
A > - 1, the trajectories tend to the singular point P3 from 
space (A # O )  when 6 +  W .  Near this singular point, 
Rq ( f )  -+ 0 and O ( f )  -+ cu for f + C O ,  i.e., the singular 
point P3 represents the asymptotic self-similar flow corre- 
sponding to the focusing of the entire plasma mass in the 
pinch into a single line along the axis. 

Of all the singular points at infinity, the following two 
are ofparticular interest for us. First, the point P,, which is a 
node when (35) is satisfied and is attractive for .r -. co : 

It corresponds to the free surface of the plasma in a finite 
magnetic field, since NO + 0 and f + const as the point is 
approached. Second, the point P,, which exists when both 
( 35) and the condition A > X  are satisfied, is defined by 

This singular point corresponds to a two-dimensional at- 
tracting manifold for T + cu (i.e., for 6 + 0) .  In other 
words, it corresponds to a trajectory which tends to it for 
6  +. 0 and forms a two-dimensional surface. The point P, 
describes the state of the plasma on the axis of the pinch after 
the collapse, when a reflectd shock wave propagates away 
from the axis. 

Apart from the smooth-flow regions described by the 
trajectories of (29)- ( 3  1 ) , the self-similar solutions that we 
are considering may include either type of discontinuity al- 
lowed in magnetohydrodynamics for a transverse magnetic 
field, namely, shock waves and tangential di~continuities.~' 
Since the shock wave front corresponds to a fixed value 
f = f ,, and if we label states ahead of and behind the shock- 
wave front with indices 1 and 2, we can use ( 9 ) and ( 17 ) to 
deduce that the Mach numbers of the plasma flowing onto 
and away from the shock-wave front, in the frame in which 
this front is at rest, are respectively given by 

where k = 1, 2. We can use (39) together with the well- 
known expressions for shock adiabats of transverse ionizing 
and MHD shock waves in terms of Mach numbers (see, for 
example, Refs. 23 and 24) to determine state 2 from state 1 in 
terms of our variables, and vice versa. Thus, for the MHD 
shock wave, we can readily show that possible states 1 lie 
below the plane (24) in phase space (for U + S + A < 1 ), 
whereas states 2 (behind the shock-wave front) fill the space 
between the plane (24) and the conical surface with apex at 
U = 1, S = 0, A = 0, whose parametric equation is 

The tangential discontinuity in the above solutions can 
take the form of a current shell (magnetic piston) separating 
the plasma from the vacuum. The discontinuity moves to- 

gether with the plasma particles, i.e., it is characterized by a 
fixed Lagrange coordinate q and a time dependent self-simi- 
lar coordinate f q  ( t )  (see Section 2 ) .  The continuity of the 
resultant pressure across the d i s ~ o n t i n u i t y ~ ~  can be written 
in terms of our variables in the form 

In the quasistationary approximation (i.e., to within small 
terms of the order of R 2 / ~ 2 ) ,  the magnetic field in the vacu- 
um region has the profile 

[see ( 12) 1, where H, is determined from (41 ) and the time 
dependence o f l ,  (which is not of the power type) is given by 
(26) and (27).  This means that, when the tangential discon- 
tinuity is present, the time dependence of the parameters of 
the flow as a whole may differ from the power-type depen- 
dence (see Section 5 below). 

5. SELF-SIMILAR STATES OF MOTION 

Collapse of the plasma liner 

We shall now consider self-similar solutions for the 
range of parameters (35) that was not previously examined 
(other types of solution can be found in the literature cited in 
Section 1 ). The phase-space trajectories, which correspond 
for R > - 1 to physically meaningful solutions prior to col- 
lapse, tend to the singular point Po or P, as f + m . 

By continuing the trajectory in the direction of decreas- 
ing f ,  we arrive at the point P, for a finite value of 6  (we can 
choose f = 1 ) . The motion over the phase curve between P, 
and Po includes transitions through one of the points of the 
singular hyperbola ( 32) that represents the limiting charac- 
teristic. This type of solution describes the motion of a cur- 
rent-carrying plasma shell converging (if t < 0 )  to an axial 
current surrounded by an evacuated region, or to a shell 
diverging from it (if t > 0 ) .  The plasma density vanishes on 
the inner boundary of the shell (free surface, on which the 
magnetic field is continuous) and at infinity. 

The behavior of the solution for f -+ is given by ( 33 ) 
and (34) and, as f + 1, i.e., on the inner boundary of the 
plasma liner, we have 

This flow can be given a number of physical interpretations. 
For example, it describes the collapse, under the influence of 
a strong current, of the liner formed by parallel wires, one of 
which lies along the pinch axis and the other is the generator 
of a cylinder drawn around this axis. Another possibility is 
the motion of plasma around a current filament, whose com- 
pression is accompanied by the concentration of the plasma 
in the neighborhood of the filament, so that it is surrounded 
by a vacuous region. 

For an arbitrary choice ofR a n d x  in the range ( 3 5 ) ,  the 
solution can be constructed as follows. We first choose an 

698 Sov. Phys. JETP 62 (4), October 1985 A. L. Velikovich and M. A. Liberrnan 698 



FIG. 2. Current-carrying plasma shell collapsing onto a concentrated axi- 
al current (A = 0. l ,  x = - 0.4). 

arbitrary point P' on the singular hyperbola (32), whose 
neighborhood for U + S + A > 1 lies in the region of attrac- 
tion of the node P, as T + a. Next, we choose an intrinsic 
direction corresponding to the departure from P' as T in- 
creases. Trajectories leaving P' in this direction with 
U + S + A decreasing and increasing with increasing T are 
attracted to nodes Po and P,, respectively. Simultaneous nu- 
merical integration of (28)-(3 1 ) by this method, augment- 
ed by the well-known asymptotic behavior near singular 
points, enables us to construct the required self-similar solu- 
tion. Solutions differing by the choice of the initial point P ' 
should be similar provided analyticity is preserved at P'. 
Quantitatively, each such trajectory corresponds uniquely 
to a particular combination of limiting mass numbers M,, 
and MA,  that describe the approach to the singular point Po. 
Figure 2 shows the profiles of the self-similar variables for a 
solution of this kind that is analytic at P'. In this figure, 
M,, = 1.53 and M A ,  = 0.99. 

We emphasize that the values of the exponents A a n d x  
are not determined in this case by some additional consider- 
ations, such as, for example, those in the gas-dynamic prob- 
lem of self-similar collapse of a shell (see Ref. 6 ) . In this 
case, there are physically sensible solutions on a two-dimen- 
sional region of the A,  x plane. Different combinations of the 
indices determine the time-dependence of the pinch radius 
and the current through it, as well as the asymptotic profiles 
of self-similar variables near the axis and at infinity. 

Shock waves converging on an axis with a localized current 

Consider a phase curve which describes the collapse of a 
shell and passes through some non-singular point Q ' whose 
projection onto the A = 0 plane coincides with the point Q 
( U =  2/(y + I ) ,  S =  2y/(y + I ) ) ,  joined to the singular 
point Po by a shock transition. It is readily shown that, at Q ', 
the self-similar solution allows contact through the ionizing 
shock wave with the trivial solution described by the singu- 
lar point Po, i.e., with the cold nonconducting gas in which 
the density has the profile n - ? x ,  and the magnetic field is 
H- l / r .  On the shock-wave front, the gas becomes conduct- 
ing and thus conveys the interaction between the flow and 

FIG. 3. Convergence of an ionizing shock wave through a stationary non- 
conducting gas onto a current along the axis. Solid curve-gas-dynamic 
motion of ionizing shock waves in a magnetic field; dashed curve-MHD 
state (1 = 0 . 2 5 , ~  = 0 ) .  The gas-dynamic analog of the flow corresponds 
to the Guderley problem.' 

the magnetic field.23*24 The portion of the phase curve 
between Q ' and the singular point Po (which now represents 
the state of the plasma at infinity) describes the self-similar 
solution of the problem of ionizing shock waves converging 
toward the current-carrying axis, and is meaningful only for 
t < 0. The solution constructed in this way can describe the 
initial stage of development of the pinch if the breakdown 
within the pinch occurs not only on the periphery but also on 
its axis, so that the current shell travels through a neutral gas 
which it traps and ionizes until it reaches the axial current 
filament. This type of flow can also occur in cylindrically 
symmetric systems with a central electrode along the axis if 
the breakdown is first initiated on the periphery and this is 
followed by compression toward the axis. The correspond- 
ing profiles are shown in Fig. 3. The solid and dashed distri- 
butions B ( 6 )  correspond, respectively, to the gas-dynamic 
(magnetic field continuous across the shock wave) and 
MHD [magnetic field compressed by the shock wave by the 
factor (y  + l ) / ( S  - 1 ) ]  limiting states of propagation of 
the ionizing shock wave.24 

Reverse z-pinch 

The segment of the trajectory between P ' and the singu- 
lar point P, is the self-similar solution with the shock wave 
propagating through a cold neutral gas in the direction away 
from the pinch axis. It is followed by moving plasma bound- 
ed at the rear by the free surface which is separated by a 
vacuous region from the current-carrying axis (here, we 
must have t > 0 ) .  This flow configuration corresponds to ex- 
periments with the reverse z-pinch, where the azimuthal 
magnetic field repels the shock wave away from the axis.26 
Figure 4 shows the corresponding profiles obtained for the 
same exponent values as in Fig. 3. We emphasize once again 
that Figs. 3 and 4 are portions of the same phase trajectory in 
the U, S, A space. The parameter x has a direct physical 
meaning for these curves: it determines the density profile in 
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FIG. 4. Motion in the reverse z-pinch: the current shell pushes the shock 
wave away from the pinch axis. The values of R,  x and the significance of 
the dashed lines are the same as in Fig. 3. 

the undisturbed gas. In the case of uniform d e n s i t y , ~  = 0, as 
in Figs. 3 and 4. 

Shock waves reflected from the axis 

After the collapse at t = 0, the reflected shock wave 
begins to propagate through the medium away from the axis, 
whilst the medium continues to converge on the axis. The 
corresponding profiles can be constructed in the same way as 
in the analogous gas-dynamic problem. l v 1 0  The solution has 
the following qualitative form in phase space: ( 1 ) segment of 
the trajectory entering the singular point P, for 6 -+ 0 (it 
describes the motion of the plasma between the axis and the 
reflected shock wave), ( 2 )  the MHD shock wave, and (3 )  
segment of the trajectory tending to the singular point Po as 
6 -+ a, from the side of negative U (it describes the motion 
of the plasma ahead of the reflected shock-wave front, and is 
characterized by the same limiting values of the Mach 
numbers Ms, , M A ,  , Mfi and the parameter p, as the 
corresponding solution prior to collapse). Figure 5 shows 

FIG. 5. Plasma flow in the neighborhood of a shock wave reflected from 
the axis under the same conditions as in Fig. 2. 

the profiles of self-similar variables near the reflected shock 
wave for the same self-similar solution as in Fig. 2 (the same 
il and X )  but with t > 0, i.e., after collapse. As in the analo- 
gous gas-dynamic the reflected shock wave has 
a finite intensity (although the pressure on the axis at the 
time it is formed becomes infinite), since the plasma ahead of 
the shock wave front is also highly compressed and hot. In 
the special case of Fig. 5, the shock wave reflected from the 
axis is characterized by Mach numbers M s l  = 2.7 and 
M A ,  = 3.0, plasma and magnetic-field compression N2/ 
N,  = B,/Bl = 2.2, and heating @ , / a l  = 2.3. 

Solutions of this type are of independent physical inter- 
est, since the flow with the shock wave reflected from the 
axis and moving through the converging plasma is charac- 
teristic of the early stage of development of the pinch, i.e., 
immediately after the convergence of the shock wave on the 
axis. 

6. SELF-SIMILAR MOTION OF FINITE PLASMA MASSES 

The interpretation of self-similar solutions is compli- 
cated by the fact that, according to (34) and when (35) is 
satisfied, the plasma mass, energy, and current densities di- 
verge as r + cc . The most natural way of avoiding this diver- 
gence is to consider a self-similar flow limited by a magnetic 
piston, i.e., a tangential discontinuity with a given Lagrange 
coordinate q. Physically, this corresponds to the skinning of 
part of the current flowing through the pinch on its outer 
surface. This approach retains only the trivial divergence 
due to the assumed cylindrical symmetry of the problem, 
i.e., the logarithmic divergence of the magnetic-field energy 
in the vacuum part, due to the fact that the field decreases as 
l / r .  In the real geometry, in which the plasma column has a 
finite length L, the assumption of cylindrical symmetry is 
justified for r<L, and this is one further argument in favor of 
introducing the pinch boundary in an explicit form, since 
self-similar profiles have no meaning for r 2 L .  In this formu- 
lation, pure gas-dynamic problems appear to be the most 
natural, as well. Thus, the Guderley problem' corresponds 
to the self-similar solution of the MHD problem that de- 
scribes the compression of a pinch in which the current rises 
so rapidly that it is completely skinned on its outer surface 
(see Section 1 ). 

The introduction of the current shell has an obvious 
effect on the solutions of Section 4, which describe the col- 
lapse of the plasma shell and the convergence of shock waves 
(the reverse z-pinch configuration involves a finite mass per 
unit length, by definition). For the first of these, Fig. 6 shows 
the time dependence of the concentrated current I,  flowing 
along the axis (power-type dependence) and the current I, 
flowing through the plasma: 

where the time dependence of the self-similar coordinate 6, 
of the current shell is given by (26) and (27) ,  and Bp is 
obtained from (41 ). 1, -+ 0 as t -+ 0 and I, remains finite, 
i.e., close to the time of collapse, most of the current,flows 
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FIG. 6. Time dependence of the axial current I, and the current I, flowing 
through the plasma (different scales) under the conditions of Fig. 2 when 
the current is partially skinned on the pinch boundary. 

through the plasma of the collapsing shell and not along the 
axis. 

The introduction of tangential discontinuities will also 
enable us to interpret self-similar solutions for which the 
corresponding trajectories cannot be satisfied by any reason- 
able boundary conditions at r = 0 and r = oo . An example is 
provided by any of the trajectories joining the nodal points 
P, and P, under the conditions of Fig. 2, for which the pres- 
sure diverges as 6 -t oo. However, since we then have 
R, (6) + 0, this type of solution describes the collapse of a 
plasma shell onto the axis or the expansion away from the 
axis for t < 0 and t > 0, respectively. This state differs from 
the situation described in Section 4 by the fact that, at the 
time of collapse, all the plasma particles are collected on the 
axis, and this is responsible for the divergence in pressure at 
this time. Figure 7 shows the profiles for this particular flow 
at any finite time t .  They contain no divergences. We empha- 
size that Figs. 2 and 7 are constructed for the same set of 
indices A, X, but the solutions are quite different. In particu- 

FIG. 8. Motion in the z-pinch for A = - 2, x = 0 well before the appear- 
ance of the shock wave on the surface of the pinch on which the current is 
partially skinned. 

lar, the radius of the pinch and the current have a different 
time dependence for the same law of variation of the scale in 
( 14). Thus, I, remains finite as t -+ 0 under the conditions 
of Fig. 6 but, in Fig. 7, this current diverges. This means that 
the state that we are considering can be realized under the 
same physical conditions as were examined in Section 4, but 
for a more rapid rise in the current with time. 

Another example is the solution for A = - 2 , ~  = 0, for 
which the singular point Po is an attracting node as 6 + 0, 
and the asymptotic expressions (33) describe the situation 
near the axis. Here, there is no reasonable way of passing 
through the plane (24) and continuing the solution on the 
other side of it. The self-similar solutions corresponding to 
the segment of the trajectory between Po and some point Q ' 
at which the plane (24) is crossed for { = 6 ' is valid up to the 
time t ' at which the self-similar coordinate of the tangential 
discontinuity, lq, becomes equal to 6 '. As this time is ap- 
proached, the profiles of self-similar variables near the pinch 
boundary continue to sharpen up until their derivatives with 
respect to 6 become infinite at time t = t ', which corresponds 
to the formation of a strong discontinuity (shock wave) on 
the outer boundary of the pinch, after which the solution 
becomes meaningless. The corresponding profiles are shown 
in Fig. 8. 

7. CONCLUSIONS 

The above solutions enable us to describe the dynamics 
of a current channel under compression, as follows. As the 
electric current in the pinch circuit increases, the plasma in 
the current channel is concentrated on the axis by the con- 
verging shock wave and the collapsing plasma shells. Since 
only part of the plasma mass is concentrated in this way, the 
compression process takes the form of several cycles in 
which shock waves reflected from the axis are replaced by 

V l i l S l  

converging shocks. Different stages of this process are de- 
FIG. 7. Collapse of a current-carrying plasma shell onto an axial current, scribed by the above self-similar solutions. ~ ~ ~ ~ t ~ ~ l l ~ ,  the 
with the entire plasma mass concentrated on the axis at time t = 0 (the 
values of /1 and y are the same as in Fig. 2 ) .  The current is ~art ial lv process the inhomogeneous pulsing cOmpres- - .  
skinned on the &ch surface. sion relaxes to homogeneous deformation for which the cur- 
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rent in the external circuit remains constant (near the maxi- 
mum) and each plasma particle is associated with a 
particular phase of the profile representing the pinch struc- 
ture. Dissipative processes may turn out to be important 
during the subsequent stages. The flow structure in the latter 
case will be examined in another paper. 
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