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Interference of atoms due to the wavelike character of their motion is considered. Coherent 
interfering beams are produced when resonant atoms are diffracted by disjointed optical standing 
waves. In the general case, the wave acts on the atoms as an amplitude-phase grating. It is shown 
that the interference pattern can be observed with the aid of high-divergence atomic beams under 
echo conditions. The echo phenomenon in quantum-mechanical action of light on translational 
degrees of freedom is considered for the first time. In this case the phase memory can be transmit- 
ted over very large distances through the ground state of the atom. The interference manifests 
itself in formation of a periodic atom-density structure with a period smaller than the wavelength 
of the light. The modulation amplitude in various scattering regimes is found. It is shown that 
interference can be produced in a gas of resonant atoms by scattering that is selective in the 
particle velocities. 

L INTRODUCTION 

One of the manifestations of the wave properties of par- 
ticles is their interference. Great interest attaches to observa- 
tion of the interference of heavy particles (atoms, molecules, 
ion). This may lead to development of interferometry in the 
sub-angstrom band. As in any interference experiments, this 
calls for obtaining coherent particle beams. In neutron inter- 
ferometry' one uses for this purpose neutron diffraction by 
an array of silicon-crystal slabs. This mentod is not suitable 
for atoms, in view of their low penetrating power. The feasi- 
bility of an atomic interferometer, in which coherent beams 
are produced by scattering the atoms from a standing wave, 
was demonstrated in Ref. 2. 

A resonant standing light wave is an effective diffrac- 
tion grating for neutral atoms (the resonant Kapitza-Dirac 
effect). This was demonstrated in theoretical3-lo and experi- 

studies. In scattering by a standing wave, the 
recoil alters the atom momentum by an amount equal to the 
momentum * fik of the head-on photons ( k  is the standing- 
wave vector). The first standing wave (see Fig. 1) splits 
therefore the atom beam into two mutually coherent beams. 
Scattering by a second standing wave converges these beams 
and an interference pattern is produced at their intersection 
point. We emphasize that such an atomic interferometer is in 
principle feasible even now, in view of the recent progress in 
cooling of atomic beams (see Ref. 14) and obtaining coher- 
ent ultraviolet radiation ~ou rces . ' ~  Thus, if the object is a 
beam of light hydrogen atoms cooled to 2 K, and the stand- 
ing waves are resonant with the A = 1215 A transition, an 
atom of momentum p is diffracted by an angle 8, = 2fik / 
p k lo. At this diffraction angle, scattered coherent beams are 
spatially separated by as distance - 10 cm in a beam having a 
wide aperture ( - 0.1 cm) . 

As for the optical band, the radiation wavelength is here - 1 pm, the objects are large-mass atoms (Na, Ca, Rb, etc. ), 
and at a beam temperature 300 K the diffraction angle is 
8, - Ordinary atomic beam with a thermal velocity 

spread and a large angular divergence 8- 10-2-10-4 cannot 
be spatially separated at so small a diffraction angle. The 
wave properties of the particles are revealed under these con- 
ditions by the interference of the periodic structure in the 
spatial distribution of the atom density, viz., density har- 
monics with period of the order of the wavelength. We have 
shown earlier2 that despite the lack of coherence in the inci- 
dent beam and the rapid loss of the coherence after diffrac- 
tion by the standing wave, the periodic structure can be ob- 
served under echo conditions. 

Echo in a gas of standing waves has a number of proper- 
ties.16 Processes similar to the echo lead to the appearance of 
a narrow resonance in separated fields." This effect governs 
the present progress of ultrahigh-resolution spectroscopy in 
the optical band. It suffices for its purposes to quantize the 
internal degrees of freedom of the atom. If all degrees of 
freedom are quantized, however, the lines in the separated 
fields split into a number of  component^.'^ This splitting was 
theoretically investigated in Refs. 6 and 19 and was observed 
in Refs. 20 and 21. We investigate here the echo effect in a 
new dynamic situation, when only translational degrees of 
freedom are quantized. 

A standing light wave produces spatially periodic per- 
turbations of both the phase and the amplitude of the parti- 
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FIG. 1 .  Diagram of atomic interferometer. 
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cle wave function. The phase perturbation is easily realized 
even at short interaction times, owing to the high frequency 
of the induced transitions. The amplitude perturbation oc- 
curs for both elastic and inelastic scattering of the atoms by 
the standing waves. In the former case prolonged interaction 
between the atoms and the field is necessary. The latter case 
occurs when the upper working level has a large width due to 
processes such as ionization or decay to nonresonant states. 

The density modulation under echo conditions mani- 
fests itself differently in phase and amplitude perturbations. 
In phase perturbation, the density modulation is connected 
with the quantum character of the atom motion and is zero if 
recoil is neglected. The production of a periodic atomic grat- 
ing by amplitude perturbation is analogous to the classical 
shadow effect. It is known that superposition of shadows of 
two identical gratings, separated by distance L, on a screen 
located at a distance 2L (the echo effect) results in fringes of 
different brightness and having the period of the gratings. 
Even in this case, however, the features connected with the 
recoil effect turn out to be substantial. They manifest them- 
selves most clearly in pulsed scattering of atoms and lead to 
quantum beats in the amplitudes of the density harmonics. 

We report here detailed investigation of the interference 
pattern ( IP)  produced under echo conditions in standard 
and pulsed particle scattering regimes, for both joint and 
separate action of the phase and amplitude perturbations. In 
Secs. 3 and 4 we consider the case of short interaction times, 
when all the particles are scattered. If the interaction times 
are long (Secs. 6 and 7 ) ,  the scattering becomes velocity- 
selective, so that IP can be observed in a resonant gas. 

2. STATEMENT OF PROBLEM 

We consider the conditions for observing interference 
of atoms scattered by a resonant field of a standing light 
wave E( y ) cos kx exp( - iAt), which propagates along the 
x axis and whose frequency differs by a small amount A from 
that of the atomic transition. The smooth envelope E( y )  
describes the field distribution in the light-beam cross sec- 
tion. 

Interference effects can be observed in atomic beams 
and in a gas of resonant atoms. Let the atomic beam propa- 
gate along the axis and comprise an incoherent mixture of 
plane waves with momentap, eY. In scattering by a stand- 
ing wave, the transverse momentum of the atom changes by 
an integer multiple of Wc. An atomic beam with a small 
transverse-momentum spread ( p, S fik) can naturally be 
called coherent. Under ordinary conditions, however, the 
beams are weakly coherent and their angular divergence 
6 = p, - py exceeds substantially the diffraction angle 8, 
= 2Wc /py . 

Scattering of a resonant two-level atom by a standing- 
wave field is described by the Schrodinger equation 

for a column $ of two components, $, and $, , which are the 
amplitudes of the upper ( b )  and lower ground ( a )  states of 

the atom, V(x, y )  = V( y )  cos kx, V = d ( E )  y, and d is the 
dipole matrix element of the transition. The constant I? in 
(1)  takes into account the upper-working-level damping 
due to transitions to other nonresonant states. Obviously, 
these transitions produce near resonance amplitude modula- 
tion of the atom wave function on the working levels. It is 
assumed here, of course, that T)y, where y is the rate of the 
radiative decay to the ground state. 

Spontaneous transitions between working levels upset 
the coherence of the interaction with the field and suppress 
the interference effects. We assume therefore that the follow- 
ing condition is met: 

when the spontaneous emission can be neglected. Here T, is 
the time of interaction between the atoms and the field, and 
w is the population of the upper state. 

For atoms with strong transitions (e.g., Na),  the pa- 
rameter yrO varies in a wide range, from - 1-10 for atoms 
that pass through a focused light beam, up to - lo3 for pas- 
sage through an unfocused beam. Clearly, to satisfy condi- 
tion (2)  in these cases the population of the upper level must 
be small. If the atoms are excited by a field pulse of duration 
r, < 1/r- lo-' s the population of the upper level can be 
arbitrary. 

Atoms with strong transitions can transport spatial co- 
herence over large distances only if they remain in the 
ground state after interacting with the field. This condition 
is realized for not too strong fields and when the interaction 
is adiabatic, with max(I?,A) )T; ', V/fi. In this case the real 
population of the upper level can be neglected and the system 
( 1) reduces to a scalar equation for 11 = $, 

ifi- = {p2/2M+U(x, y))g,  
d t (3 )  

VZ(y) 
U(x, y)=U(y) (l+cos qx). U(Y) = ZA(A+ir) ' 

with a Hamiltonian that is non-Hermitian near resonance. A 
scalar Schrodinger equation with such an Hamiltonian was 
first considered in Ref. 22. It is shown in [23] that it is a 
particular consequence of the generalized two-level-system 
formalism developed in Refs. 24 and 23 for nonresonant 
( A ) r )  and resonant (A - T )  excitation, respectively. 

When diffracted by a standing wave located at y = 0 
and having a characteristic thickness a ,  a plane atomic wave 
exp(ip.r/fi) is transformed at y > a into a superposition of 
plane waves 

nfiq nfi 
p,=ps+nfiq, p.,=p.-- -( P. + 

P v  

with momenta that satisfy the energy conservation law 
pi /2M = p2/2M. The amplitudes of the scattered waves de- 
pend on the momentum of the incident particle, on the field 
parameters, and on the excitation times. Under ordinary 
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conditions the aperture of the atomic beam is several orders 
larger than the wavelength of the light. The scattered beams 
can therefore be regarded as overlapping even at large dis- 
tances from the interaction region. As a result of the interfer- 
ence of the scattered waves, the atom density becomes spa- 
tially modulated 

Here fiE, is the recoil energy, and the angle brackets 
denote averaging over the momenta in the incident beam. 

The modulation amplitudesp, ( y )  contain two charac- 
teristic lengths: 1, and 1,. Over these distances, the atom's 
wave-function phase changes due respectively to the linear 
Doppler shift and to the recoil effect become of the order of 
unity. The length 1, changes in a rather wide range. For Na 
atoms with thermal velocity lo5 cm/s it is small, 1, -0.2 cm. 
For iodine and methane molecules it reaches several centi- 
meters. The coherence length I, depends substantially on the 
transverse-momentum spread. It  will be shown below (Sec. 
3 ) that for short interaction times the amplitudes A,  depend 
little on p, and the coherence length is determined by the 
initial angular beam divergence 1,it /8, where it = q-', so 
that for a weakly coherent atomic beam we have I, /Ir - 8, / 
84 1. In this case the periodic structure in the atom distribu- 
tion turns out to be localized at a distance of order I, from 
the interaction region, which is large compared with a and 
small compared with the distance 1, typical of quantum ef- 
fects. There exists an intermediate interaction-time range in 
which it /8 5 ~ 4 1 , .  This case is typical of beams with large 
divergence, or of a gas of atoms. A major role is assumed 
here by the resonant structure of the scattering amplitudes 
as functions of p , ,  and the standing wave separates a beam 
of resonant atoms with a divergence 8,-it /a, so that I, -a. 
The periodic structure in the presence of amplitude modula- 
tion is also localized in the region of this size. Finally, at a 
long interaction time a s l ,  the length I, coincides with 1, and 
the interference is confined to the interior of the light beam. 

Thus, in a weakly coherent beam interference can occur 
in practice only in the region where the beam interacts with 
the field. With increasing distance from the field, the IP  van- 
ishes rapidly because of the large scatter of the free-motion 
phase shifts connected with the lengths I, and 1,. These 
phase shifts can be cancelled by scattering the atoms from 
two standing waves, so that IP can be obtained at large dis- 
tances from the exciting fields. At small I, the phase shifts 
cancelled should be those connected both with the Doppler 
effect and with the recoil. In the case of weak recoil at dis- 
tances shorter than I, it suffices to cancel the Doppler phase 
shift. 

3. CASE OF SHORT INTERACTION TIMES 

Consider atoms scattering by two standing waves 
V , , ,  cos kx separated by a distance L s a .  The amplitudes of 
these waves can be different, and the detunings, the wave 
vectors, and the phase shifts can for simplicity be assumed 
equal. The interaction time is assumed to be short: 

~~-'=u,/aB kv,, ( 6 )  

so that when the particles pass through the light beam they 
are shifted by a distance shorter than the wavelength. In this 
case we can leave out in the field region the operator of the 
particle transverse (along thex axis) kinetic energy, and the 
stationary equation (3)  takes the form 

Weak field 

The main features of the IP  under echo conditions can 
be explained using as an example weak fields, when few har- 
monics take part in the interference. In first order of pertur- 
bation theory in the field U( 1 + cos qk), the amplitudes of 
the transitions in which the momentum p, changes by * 4q 
is A + 1 =: - i{ /2, where 

In the next order, the momentum changes by + 2% and the 
amplitudes are A + 2 =. - ( '/8. The phase shifts of the par- 
tial interfering waves are determined by the phase shifts of 
the free motion of the atom outside the light fields, in accor- 
dance with Eq. (4) .  

We consider the amplitudep, of the density modulation 
after scattering by two standing waves with field parameters 
{, and 6, under echo conditions. Contributions to p ,  are 
made by the elementary scattering processes (see Fig. 2),  for 
which the phase shifts of the free motion along the two inter- 
fering trajectories cancel out. For the processes shown in 
Fig. 2a, the "optical" path lengths .f p(r).dr/fi along the 
trajectories 1 and 2 are equal and the phase shifts due to the 
Doppler effect and to the recoil are completely cancelled. 
For the processes shown in Fig. 2b, only the Doppler phase 
shift is cancelled. The summary contribution of all these pro- 
cesses top ,  at y = 2L + I ( l g L )  is 

where tan p = - r/A. At L s l , ,  owing to averaging over 
the longitudinal velocities we have (1, -v ,  ) + L / 
1, ) ,-4, which corresponds to the contribution from the pro- 
cesses of type 2a. 

In the case of particles with low recoil energy, when I ,  is 
large enough, interest attaches to distances L 5 I, and the 
modulation amplitude is determined by the general formula 
( 9 ) .  

For weakly coherent atomic beams, the IP is localized 
near y = 2L with a width I- l,gl,. For amplitude perturba- 
tion (I? f O), the modulation of p ,  becomes of the order of 
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4P FIG. 2. Interfering trajectories for scattering by weak separated 
standing waves ( p e p ,  ). For processes of type a ) ,  under echo con- 
ditions, the free-motion phase shifts are completely cancelled. For 
processes of type b),  the phase shift cancelled is the one connected 
with the Doppler effect. 

4P k 

unity (,,, - 1.  In the absence of amplitude perturbation 
( r  = 0 )  the situation changes in two respects. First, the am- 
plitude p ,  of the density modulation is strictly zero at 
y = 2L. This can be easily understood by recognizing that at 
this distance the echo effect reproduces the structure formed 
directly after the action of the first wave. And inasmuch as 
there is no density modulation for pure phase perturbation in 
the wave function, there is likewise none at y = 2L. It is 
necessary to move away some distance from the point to 
observe the spatial bunching of the particles that have ac- 
quired a recoil momentum %. This is the gist of the quali- 
tative feature of the echo when translational degrees of free- 
dom are quantized. Second, the depth of the IP modulation 
is lower for weakly coherent beams. Indeed, at p = 0 we 
have p ,  -1, /Ir ( 1 even at the saturation ( ,,, - 1. As shown 
above, an appreciable modulation depth due to quantum ef- 
fects can be obtained only for large saturation, when (,) 1. 

Strong field 

Integration of Eq. ( 7 )  is elementary for arbitrary fields. 
After scattering by a standing wave, the atom's wave func- 
tion acquires a complex factor exp [ - i(( 1 + cos qx)  1. As a 
result, the amplitudes A,  andp, in Eqs. ( 4 )  and (5 )  can be 
expressed in terms of Bessel functions 

An== (-i)" exp (-it) Jn (E), (10) 

The scattered-wave amplitudes A ,  are independent in this 
case of the particle transverse momentum. For a coherent 
atomic beam, the averaging in ( 1 1  ) can be omitted, and it 
can be seen from (5 )  and ( 1 1  ) that the IP becomes periodic 
in space, with a period TI,. For a weakly coherent beam with 
angle divergence 8 we have y-  I ,  -2 /Bgl,. At 8 = l o p 3  we 
have 1, - l o p 2  cm. 

Using ( 4 )  and (10)  we easily obtain the modulation 
amplitude following scattering by two waves with param- 
eters (, and g,. 

If only amplitude perturbation is present ( A  = 0, 
( = -(*),p,isexpressedatadistance y=2L  + I  ( I 4 L )  
in terms of modified Bessel functions and takes in the limit- 
ing cases L(Ir and L,I, the respective forms 

Expression ( 12) determines the density modulation due to 
the shadow effect. We note thatp, ( I )  is an even function and 
reaches a maximum at I = 0. For the case of pure phase per- 
turbation ( r  = 0,( = ( *)  we obtain at L)I, 

This shows thatp, ( I )  is an odd function andp, - 1 at(, -Ir/ 
I ,  -p,  /%) 1 and (, - 1. In other words, the first wave 
should scatter the atoms through angles of the order of the 
initial beam divergence. 

In weak fields Eqs. (12)-(14) coincide with the pertur- 
bation-theory result (9 ) .  
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4. PULSED SCATTERING REGIME 

An IP can also be obtained using short pulses of stand- 
ing light waves that are separated in space and in time. The 
first beam acts on the atom beam near y = 0 at the instant 
t = 0 and its duration is r0. The second pulse (of duration 
rO) at y = L is applied at an instant t = -7,. Obviously, the 
space and time intervals between pulses must be so recon- 
ciled that T = uoT, where vo is the characteristic thermal 
velocity of the atoms in the beam. 

In the case of pulsed irradiation, the light beams need 
not be focused and the atoms can be regarded as immobile 
during the interaction time TO, if ku, r0(l and u,, ro(a. 

In contrast to the stationary regime, the particle longi- 
tudinal velocity v, remains unchanged, and the kinetic ener- 
gy changes by an amount [ ( p, + n@12 - pi ] /2M. The 
modulation amplitudep, at the instant t = 2T + T (T(T) is 
obtained in the same manner as in Sec. 3. All that are needed 
are the following obvious substitutions: 

l/l,+qv,.c, l / l , -+e , z ,  L / l , -+e ,T ,  

Ei+qi ( Y )  + i f  ( Y - ~ v J ) ,  Ez-+qz(y)=Ezf  ( Y - L - ~ J ) ,  

where the function f ( y)  describes the spatial distribution 
of the intensity in the cross section of the light beam, has a 
natural width a,  and is normalized to unity at the maximum. 

It is important to emphasize that the phase shift E, T due 
to the recoil is now independent of the particle velocity. 
Thereforep, receives contributions from all the trajectories 
that interfere under "classical" conditions, i.e., for which 
the Doppler effect is cancelled out. 

Weak field 

In a weak field ({ ,,, (1 ) it is necessary to take into ac- 
count all the scattering processes shown in Figs. 2a and 2b. 
As a result we get 

pi ( y ,  z) ='/2IE1Ez2lsin (cp+e,z) 

win2(cp+e,T)  ( e x p ( - i q v , t )  f ( y - 2 v , T )  f ( y - L - v U T )  ). ( 15) 

The function sin2(p + E,  T) describes quantum oscillations 
caused by the recoil effect when T is changed. Obviously, 
these oscillations can be observed in broad light beams with 
a% I,, when the T dependence contained in the functions f is 
a smooth one. 

Strong field 

For fields of arbitrary intensity, in the case of pure am- 
plitude or phase perturbation, we have for p,  the following 
respective expressions 

PI(Y, 7)=-(exp[-2((ql(+lq21)-iqvx~l 

~ I i ( 2 1 1 1 1 1 ) I ~ ( 2 l q ~ l s i n  (16) 

P i  ( Y ,  7 )  = ( e x p ( - i q v , ~ )  Ji ( 2 q 1 ~ 1 . 2 )  

X  J z ( 2 q 2  s in  E ~ T )  ). (17) 

The amplitudep, as a function of y is localized near y = 2L 
in an interval of the order ofa. To prevent attenuation of the 
signal by thermal spreading of the irradiated atom-beam re- 
gion during the time T, it is advisable to use broad light 

beams with a 5 L. The IP exists as a function of time near 
t = 2T in a small interval of on the order of the coherence 
time T, = jt / u 0 8  At an angular divergence 8 = lop3 and 
u, = 5.104 cm/s we have T, = lop's. 

Thus, in the pulsed regime (in contrast to the stationary 
one), the resultant atomic interference grating has a short 
lifetime T, , but occupies in space a larger region, of the order 
of the light-beam thickness. This offers definite advantages 
when such a grating is detected by backward reflection of a 
test signal. 

5. NONLINEAR ATOMIC INTERFEROMETPY 

Another possible way of studying interference makes 
use of nonlinear effects in the detection of an atomic beam. 
Whereas the modulation ( 11 ) of the average atom density 
exists only over distances on the order of I,, the modulation 
in the density correlator is preserved over longer distances. 

If the atoms are detected with the aid of two thin heated 
wires, the signal due to mixing of the currents of these detec- 
tors can be measured. It is proportional to the two-point 
correlator of the atom density 

in the beam. 
For stationary scattering of atoms by one standing wave 

we obtain with the aid of (4)  and ( 10) at y ,  = y, and A > r  

x i - x )  = -  1 )  +(Joz [2E  s in  k ( x i - x 2 )  ] ) . ( I s )  

This expression is independent of y, so that the phase mem- 
ory is preserved in the correlation function p over arbitrary 
large distances from the exciting field. 

6. INFLUENCE OF SPONTANEOUS EMISSION ON THE IP 

Near resonance and in the absence of inelastic processes 
(r  = O), the IP can be substantially influenced by spontane- 
ous transitions between the working levels. 

In the presence of spontaneous relaxation the behavior 
of the atom is described by a density matrix 

P=~aB(xi ,  52, Y ,  p v )  (a ,  @=a, b ) ,  

in which we changed over to the Wigner representation for 
the motion along the y axis. Such a two-point (i.e., depen- 
dent on x, and x,) density matrix was used in Ref. 10 to 
describe diffraction of atoms by a standing wave with 
allowance for spontaneous transitions. 

Consider the case of exact resonance (A = 0)  and short 
interaction time rO( l/y, l/ku, . The change of the diagonal 
elements of after scattering by a standing wave located near 
y = 0 is described by the solutions of the two-component 
equation ( 1 ) at A = r = 0 and is of the form 

pGa ( x i ,  X Z ,  y=+O) = C O S  I;E cos kx1) 

x cos (t cos k x 2 )  pa ( x i ,  x z ,  Y=-O), (19) 
pbb ( x i ,  X Z ,  y=+O) =sin  (bas k x , )  

x s in  ( g  cos kxz)  pa ( X I ,  X Z ,  y=-O) , 

E = v ~ o / h .  

689 Sov. Phys. JETP 62 (4), October 1985 DubetskiletaL 689 



The spontaneous emission causes the element p,, as well as 
the off-diagonal elements of the density matrix to attenuate 
over a distance of the order of I, = vy /y. For atoms with 
strong transitions this distance is much shorter than I, rela- 
tive to the parameter 1,/1, - ~ , / y g l .  At vy = 5.104 cm/s 
and y = 10's-' we have 1 , ~ 5 . 1 0 - ~  cm. As a result, at ys l ,  
all the atoms turn out to be in the ground state, with a density 
matrix 

h 

where T is the transverse kinetic energy operator. The first 
term in the curly brackets describes the atoms that remain in 
the ground state after being scattered by the standing waves, 
and constitutes a mixture, incoherent inp, , of atomic beams 
each of which is a coherent superposition of partial waves 
with momentap, + 2nfik. The second term corresponds to 
arrival from the excited state as a result of spontaneous re- 
laxation. The function f (x,  - x,) describes the atom's 
transverse recoil due to spontaneous emission, and its Four- 
ier components f (q)  differ from zero only if I q l ~ k .  The 
reason for factoring this term fpbb is due to the fact that its 
relaxation rate (over the length I,) is much faster than the 
rate at which the recoil disturbs the spatial coherence pro- 
duced in the excited state after the scattering (this takes 
place over the length I ,  ) . The second term is therefore also 
an incoherent mixture, with respect t o p  , + fiq, of beams of 
which each is a coherent superposition of waves with mo- 
menta p, + fiq + (2n + 1 Ifik. Owing to the scatter over the 
recoil momentum fiq, there is no coherence between the first 
and second terms. 

After scattering by two waves spaced L,I, apart, we 
obtain under the echo conditions the following density-mo- 
dulation amplitude: 

In the short-interaction-time approximation the standing 
wave, as can be seen from ( 19) does not lead to density mo- 
dulation, i.e., 

Sp p (x, x, y=+O) =Sp p (x, x, y=-0). 

We therefore have under echo conditionsp, ( I  = 0) = 0. In 
contrast to ( 141, however now p ,  is an even function of I. 

7. CASE OF LONG INTERACTION TIMES 

The preceding results were based on the assumption 
that the interaction time (6 )  is short for all atoms. This is 
equivalent to the condition a &  /8. In this case the standing 
wave "has no time" to sort out the particles by transverse 
velocity and all of them take part in the interference. 

For atomic beams with large divergence or in a gas of 
resonant atoms, where 8- 1, the condition a <it  /8 does not 
hold. 

We consider long enough interaction times, such that 

In this case the amplitudes A. in ( 4 )  depend substantially on 

p, and the scattering becomes selective in the transverse 
velocities of the particles. If the velocity change Sv, during 
the time r0 is small, so that kr,Sv, g 1, the scattering ampli- 
tudesA, can be obtained as before by using the given-motion 
approximation and let v, 6' /dy-+v in Eq. ( 7 )  .6,2s The A, dif- 
fer then from ( 1 ) by an additional phase factor exp [ina (v, / 
vy ) ] and in that the Bessel functions have different argu- 
ments: 

where the function f ( y )  describes the intensity profile in 
the light beam. 

The modulation amplitude p ,  after scattering of the 
atoms by two standing waves of like profile is determined by 
Eqs. (12)-(14), in which an additional phase factor 
exp [ia (u, /v, ) ] appears in the average over the velocities. 

It can be seen from (23) that under the conditions of the 
inequality (22) only atoms with sufficiently low transverse 
velocities, v, /u, 5 8 = it /a, are effectively scattered. The 
standing wave separates thus from the initial beam with di- 
vergence 8 a narrower beam with divergence 8,s 8, and it is 
this which determines the IP. 

The size of the IP  localization region is I, -a, and its 
amplitude decreases and becomes of the order of p, -2 / 
a 8  = 8,/0. In a resonant gas (8- 1) at a = 0.1 cm this 
amounts to p, - lop4, while for atomic beams it is several 
orders larger. If the resultant atomic grating with period 772 
is used to observe the reflection of a test resonant field, the 
smallness ofp,  compared with the average atom density is of 
no importance, since only the alternating part of the density 
contributes to the backscattering. 

8. BRAGG SCATTERING 

A different situation obtains in weak fields at a s l ,  .25 If 

the only effectively scattered atoms are those whose momen- 
tum satisfies the Bragg condition / p, I z p ,  + 2fik 1 .  

Let p, = - fik + Sp (Spgfik). The only two harmon- 
ics that matter in the expansion (4 )  are then 

and their amplitudes satisfy at r = 0 the equations 

with the initial condition A,( - a, ) = 1, A,( - w ) = 0. 
Under real conditions the field has a smooth envelope. 

For a potential that varies like 

v" ( t )  =V/ch ( t l ~ )  , 
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Eqs. (26) can be integrated exactly, and at t > T we obtain 

a = arg 
F2 ( i / 2 + i p )  

I ' ( i / z+g+ip)  I ' ( i / 2 - t + i ~ )  ' 

where r is the gamma function. The intensities of the dif- 
fraction maxima satisfy the normalization condition 
(Ao/' + JA2I2 = 1. 

The width Sp of the Bragg resonance is determined by 
the time of flight 

and its amplitude depends on the field and reaches a maxi- 
mum a t l -1 .  

A symmetric diffraction pattern is produced obviously 
also at p, = fik + 6p. The scattering amplitudes A, and A -, 
are determined by Eqs. (25) and (27) with the substitution 
k-t - k. 

A weak standing wave of thickness a)l, can thus select 
with high resolution the atoms in accordance with their 
transverse velocities, and "cuts out" from their broad initial 
distribution two narrow beams with momenta p, = + fik 
and width 6pgfik. 

The contributions of these particles to the IP are deter- 
mined by the amplitude products A d  : forp, = - fik and 
A-,A ,* = -A& : for p, = fik. The density modulation is 
therefore proportional to the asymmetry of the atoms' distri- 
bution function Fo( p, , py ) in the region of small transverse 
momenta: 

We have then at y > a  

p i ( y ) =  I ~ ( ~ P ) ~ P . F ( P , ) A ~ A ;  e x p ( - - 2 i k 6 p ~ ~ p . ) .  (29) 

Since the effective transverse momenta are / p, / zfik, the 
coherence length is I, --,I,. The large phase shifts connected 
with the lengths I, and I, cancel out accurate to the width of 
the Bragg resonance. The phase shift connected with this 
width is of order unity only within the limits of the light 
beam y 5 a,  and becomes large outside the beam, so that the 
IP is located practically in the interaction region. 

We consider now Bragg scattering by two standing 
waves. The amplitudes for scattering by the first and second 
waves, A,, A *, and B,, B +, are determined by Eq. (27). 
The density modulation at y = 2L + 1 ( l<L) takes then the 
form 

Interference, as already noted, exists if the atoms have 
an asymmetric distribution in the transverse velocities. This 
asymmetry can be obtained, for example, by oblique inci- 
dence of the atomic beam on the standing wave as a gas of 
resonant atoms flows through the interaction region. It is 

possible also to introduce a small difference between the fre- 
quencies of the opposing waves that form the standing 
waves; this moves the light-field profile along the x axis at a 
certain velocity. 

The coefficients A and B can be of the order of unity 
even in weak fields. The modulation depth p ,  is therefore 
limited by two factors: by a distribution-function asymmetry 
of the order of fik /p, - Wc /po6 and by the scattered-particle 
fraction, which is of the order of 6p/px -A /a8, so that 
p,  -fi/p& '. For an atom beam with divergence 8- loF2- 
lop3 and an incidence angle (with the normal) of the same 
order, at a light-beam thickness a-0.1 cm, we have 
p,  - 10-4-10-2. For a gas of resonant atoms this quantity is 
very small ( -- lo-'), unless special measures are taken to 
produce a local nonequilibrium structure in the velocity dis- 
tribution. The size of the coherence region in which an IP 
exists is determined by the light-beam thickness I-py/ 
kop-a. 

In a weak field (641 at py -po) Eq. (30) takes the 
form 

where the function @, which describes the spatial localiza- 
tion of the IP on the y axis, is of the order of unity at I S  a. 
The coefficient of @ determines the scale of the modulation 
amplitude. The integrand in ( 3  1 ) describes the distribution 
with respect to the longitudinal (-I/{) and transverse 
( - p )  momenta of the interfering particles. The distribution 
in the transverse momenta comprises two narrow peaks of 
width Sp near f fik. At a)l, the effective transverse tem- 
perature 

can be considerably lower than the recoil energy. 

9. COMBINED SCATTERING REGIME 

We see that under Bragg scattering conditions the inde- 
pendent contributions to the IP from two groups of atoms 
with transverse momenta + fik cancel each other. This can 
be avoided by changing the condition for the scattering by 
the first field. 

Let the first field, which acts near y = 0, be a superposi- 
tion of two traveling waves: 

where ex is a unit vector along thex axis. At large detunings 
from resonance the potential of the atom in the scalar equa- 
tion ( 3 )  

has then a period double that of the case of a standing wave. 
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unity, the modulation depth decreased, as in the case of in- 
termediate interaction times, by a factor 2 /a@. 

10. CONCLUSION 

FIG. 3. Scheme of interference in Bragg scattering. In the case when the 
scattering by the first standing wave (at y = 0 )  is selective in the trans- 
verse velocities, contributions (of opposite sign) are made to the IP by 
particles with momenta p, = * ftk. In the combined scattering regime, 
contributions come from three groups of particles with momenta p ,  = 0, * ftk. 

We assume that the time 7 ,  = al /uy  of interaction with this 
field is short (kv, T,( 1 ), so that the wave function of the 
atom acquires after the scattering a phase factor 

exp (I:, cos k r )  = A. exp ( i n k r ) ,  
n 

(33) 
A n =(- '  l)"Jn(Ei) r E I = ~ U I U Z T I I ~ ~ ~ A .  

Scattering by the second field (near y = L with thick- 
ness a2)a1 ) takes place, as before, under Bragg conditions, 
i.e., only particles with transverse momenta + fik are scat- 
tered. The IP  at the distance y = 2L + I is then determined 
by three groups of particles with initial momenta p, = 0 ,  
+ fik and with a spread Sp(fik. The trajectories of these 

particles and the corresponding scattering amplitudes are 
shown in Fig. 3. 

The contributions made t o p ,  by these groups of parti- 
cles are 

where the amplitude of scattering by the second wave is de- 
termined at a2>l, by the expression (27),  the distributions 
in the transverse momenta no longer cancel each other even 
if the initial function is symmetric. 

For an atomic beam with large angular divergence or in 
a gas of resonant atoms, we then obtain forp,  

(34) 

The angle brackets denote here averaging over the Iongitudi- 
nal velocities of the atoms, with a distribution function 
F,, ( py ) = Fo ( px = O,py ). The grating amplitude is a maxi- 
mum at 1 = 0 and exists in a region of I on the order of the 
thickness a ,  of the second exciting field. If the field param- 
eters 6 ,  and l2 for the thermal velocities are of the order of 

Thus, using the high atom-scattering efficiency in a res- 
onant light field, it is possible to obtain interference of heavy 
neutral particles. The IP  can be observed in atomic beams 
having a sufficiently large angular divergence: 8 -  
l o p 3 ,  and also in a gas of resonant atoms. Under the echo 
condition, the IP  is localized at large distances from the in- 
teraction region. 

The IP  parameters can vary in a wide range, depending 
on the characteristics of the light field and of the atoms. 

At short interaction times, all the particles participate 
in the interference, so that the density modulation amplitude 
can be of the order of unity. Under stationary conditions, the 
half-width of the resultant atomic grating is determined by 
the angular divergence of the particle beam I ,  -2 /8. Inas- 
much as under adiabatic scattering conditions the atoms are 
in the ground state, the spatial coherence can be transported 
in an atom beam over very large distances, - 10'-lo3 cm. 
For pulsed irradiation one can use unfocused light beams. In 
this case the size of the IP  becomes large, of the order of the 
beam thickness, and its lifetime is of the order of I ,  /uy . 

At long interaction times, scattering in a weak field be- 
comes selective in the particle velocities. The atomic grating 
is made up of atoms having a very small transverse-momen- 
tum scatter. The corresponding effective temperature can 
become lower than the recoil energy. The interference can be 
realized in a large region with linear dimension of the order 
of the thickness of the light beam. It is important that in this 
case one can use beams that have a large angular divergence 
and even an ordinary resonant gas of atoms. 

Atom diffraction in light waves thus promises feasibil- 
ity of atomic interferometry. This is of interest for high-pre- 
cision experiments in laser spectroscopy, as well as for appli- 
cations, such as obtaining submicron structures in 
sputtering atoms on a plate, recording and transmitting in- 
formation with the aid of long atomic beams, and others. 
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