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A microscopic quantum theory of transition scattering is constructed under the assumption that 
the scattered permittivity wave has a classical character, i.e., that +iqo(Ep and fi, (p, whereq, and 
q are the frequency and wave vector of the scattered wave, while Ep and p are the energy and 
momentum of the particle. It is shown that, for particle energies Ep )Ecr = ( m ~ ~ ) ~ / 2 q c f i ,  the 
scattering spectrum for electromagnetic waves extends to a maximum frequency a,,, -Ep //, 
whereas for Ep (E,, (i.e., in the classical limit) this spectrum extends, as is well known, to 
2qc(Ep /mc2)'. The spectral intensity of the transition scattering is computed in the ultraquan- 
turn limit. It is shown that the total radiation intensity virtually does not change on going from the 
energy region Ep (Ecr into the region Ep ).Ecr. The problem of the detection of high-energy 
particles (cosmic rays) with counters based on transition scattering is considered. 

01. INTRODUCTION 

The classical (nonquantum) theory of transition radi- 
ation and transition scattering is now a thoroughly devel- 
oped theory (see Ref. 1).  But the problem of the quantum 
corrections to transition scattering has thus far not been dis- 
cussed, and a quantum theory of transition radiation has 
been constructed only in the special case ofa sharp boundary 
between the two media, using a phenomenological ap- 
proach,* the limits of applicability of which need to be 
further examined. It should be noted that transition 5d i -  
ation, like transition scattering, and unlike the Vavilov-Cer- 
enkov radiation hzs no upper emission-frequency bound. 
For the Vavilov-Cerenkov radiatio?, the existence of a 
threshold condition-the Vavilov-Cerenkov condition- 
makes the quantum corrections to the radiation intensity 
small, in view of the absence from the radiation spectrum of 
high frequencies on the order of Ep /fi, where E, is the parti- 
cle energy. But in the case of transition radiation and transi- 
tion scattering the classical theory does not yield a frequency 
spectrum that is bounded from above, and this compels us to 
regard as pressing the problem of the construction of a quan- 
tum theory of the corresponding processes, i.e., the problem 
of quantum recoil during radiation emission, to be a pressing 
one. In Ref. 1 it is noted that transition radiation can, in a 
certain approximation, be treated as a superposition of tran- 
sition scatterings at those harmonics (in the wave-number 
spectrum) that are spanned by the jump (or fairly smooth 
variation) of the permittivity at the boundary between the 
two media. Therefore, the problem of constructing micro- 
scopic quantum theories of transition scattering and transi- 
tion radiation is actually equivalent to the problem of finding 
the analog of the Klein-Nishina formula for charged-parti- 
cle scattering by permittivity waves with emission of electro- 
magnetic waves. The well-known difficulty encountered in 
the solution of this problem is that the process itself should, 
in contrast to ordinary Compton scattering, which is de- 
scribed by the diagram shown in Fig. 1, be described by the 
diagram in Fig. 2, which includes a nonlinear material vertex 
due to the nonlinear interaction of the waves. If this is so, and 

the quasiclassical limit indicates that it is, it is necessary to 
carry out the rather tedious nonlinear-response calculation 
in the general quantum case. Strictly speaking, the problem 
consists in the demonstration that, in the quantum ap- 
proach, transition scattering is described precisely by the 
diagram in Fig. 2, since thus far such diagrams have been 
drawn only to explain the nature of the process in the quasi- 
classical limit (see Ref. 1 ) .  

Thus, the formulation of the problem should include 
the question of the modification of the density matrix of the 
medium in which the charged particle moves, a modification 
which is caused by the field of the indicated charge, and the 
dielectric polarization of the medium in the inhomogeneity 
wave. 

If we do not consider the case of strong fields, we do not 
encounter any fundamental difficulties in the derivation of 
the general expressions for the amplitudes of particular pro- 
cesses, but do encounter appreciable difficulties in the com- 
putation of specific quantities. The main complication lies in 
the extremely unwieldy expression for the nonlinear re- 
sponse in the quantum case. The problem is eased by the fact 
that, in practice, the quantum corrections are important 
only in the region of very high radiation frequencies 
fiw -Ep . In the quasiclassical limit the highest frequencies 
emitted in transition scattering on a permittivity wave with 
wave vector q (with frequency qo4qc, or, in particular, with 
zero frequency, i.e., on a static permittivity wave) are of the 
order of 2qc(Ep /mc2) .' Setting, for the purpose of making 
estimates, fiw,,, - Ec,, we find that E,, = (mc2)'/2qcfi, 

FIG. 1. Diagram for the Compton scattering of alongitudinal quantum into 
a photon on a charged particle. A continuous line corresponds to a spinor 
particle; a wavy line, to a photon; and a dashed line, to the field of the 
medium. 
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FIG. 2. Diagram for transition scattering. The lines have the same mean- 
ings as in Fig. 1. 

i.e., when the particle itself has energy Ep 2 E,, , the emitted 
frequencies are of the order of the energy E, /fi, the particle 
motion is strongly perturbed in the course of the emission, 
and a quantum-mechanical computation is necessary. Fur- 
thermore, it can be assumed that the particle is ultrarelativis- 
tic, i.e., that Ep )mc2, since 2qcfi/mc2(1, and the character- 
istic permittivity modulation length a = 2r/q is usually 
much greater than the Compton wavelength of the particle 
(for the electron fi/mec- lo-" cm). Thus, the quantum 
effects show up when a particle with ultrarelativistic energy 
emits radiation in the frequency region where the permittivi- 
ty can be described by the plasma formula E (w ) = 1 - ope '/ 
02 .  Because the frequencies are high, the particles of the 
medium can be considered to be free, and therefore in the 
calculations we shall use the plasma approximation not only 
for the linear, but also for the nonlinear response of the medi- 
um. 

The quantum theory will be constructed for spin-4 par- 
ticles with the aid of the Dirac equation, an approach which 
is dictated by the necessity to take the relativistic effects into 
consideration, since, as has been noted above, the quantum 
corrections are important only for ultrarelativistic particles. 
At the same time, as shown in Ref. 3, the Compton scattering 
of plasma waves (an example of permittivity waves) is 
usually much more intense than transition scattering. The 
latter predominates when Ep /mc2<m/m,, where m is the 
particle mass and me is the mass of the electrons of the medi- 
um. In the present paper we shall consider transition scatter- 
ing without allowance for the Compton scattering. This 
makes sense for heavy particles or quasineutral permittivity 
waves (of the type of acoustic, etc., waves), in which there is 
no appreciable electric-field component resulting from 
charge separation in the wave. An example of such waves is 
the low-frequency ion-sound wave. It is clear that many 
inhomogeneities of a medium are quasineutral. The estimate 
Ep /mc2<m/m, holds true only for those waves in which the 
energy is divided equally between the field and the particles 
of the medium (such are, for example, the Langmuir waves 
in a plasma). 

In the calculations we use the following procedure. In 
the high-frequency limit the permittivity depends only on 
the electron density of the medium, and its modulation is 
determined by Sn, , the Fourier transform of the concentra- 
tion variation. It is sufficient to compute the amplitude of the 
process for a quasineutral perturbation, in which an, is 
uniquely connected with the field E,; and express the final 
result in terms of Sn, . The result thus obtained will not de- 
pend on the specific relation between the quantities E, and 

Sn, , since this result is valid, in particular, for a true neutral 
density perturbation: the effect, in final analysis, is deter- 
mined by an,. This simplifies the calculations in the sense 
that the vertex depicted in Fig. 2 should be computed for 
current induced by two fields: E, and E' (the latter has the 
meaning of the self-field of the charge); we go through a 
similar procedure in both the classical and quantum cases, 
using the method of kinetic equation for the distribution 
function (density matrix) of the electrons of the medium. 

82. ANALYSIS OF THE CONSERVATION LAWS 

Let us analyze the conservation laws that obtain in the 
scattering of a particle of mass m, energy Ep 
= (p2c2 + m2c4)1'2, and momentum p by a permittivity 

wave of frequency go and wave vector q. With no smallness 
limitation imposed on the recoil, the energy conservation 
law has the form (the kinematic scheme is depicted in Fig. 3 ) 

If, first, the frequency of the emitted photon is high, so 
that w, )ope (where w,, = (4.rre2no/me ) ' I2  is the plasma 
frequency, no is the unperturbed electron density in the me- 
dium, and w, =kc), second, the charged particle is ultrare- 
lativistic and, as is normal in this case, 0 5 mc2/Ep < 1, i.e., 
the radiation is concentrated in a narrow angle cone along 
the direction of motion of the particle, and third, the scat- 
tered wave is quasistatic (i.e., qo<qc), the relation between 
the emitted frequency a, and the angle 0 of emission of the 
photon will be the following: 

where the vectors p and q were, for simplicity, assumed to be 
oppositely directed; the conservation law cannot be obeyed 
under the indicated assumptions in the case when the vectors 
are oriented in the same direction. In the formula ( 1 ) q is the 
magnitude of the vector q. Thus, for an ultrarelativistic par- 
ticle, emission is possible only in the case of scattering by a 
wave whose wave vector is opposite to that of the particle 
momentum. 

The expression ( 1 ) differs from the corresponding clas- 
sical analog by the factor ( 1 - h, /Ep ). At a given emis- 
sion angle 8, two frequencies are radiated: 

rnc2 2qch - 1 .. (0, =... {". [ (E) ' -  (-) - - - e~]"') . 
O p e  a p e  EP E P 

The radiation itself is possible only when the particle energy 

FIG. 3. Kinematic scheme of the scattering process. 
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is higher than some threshold value 

It can be seen that the quantum effects almost do not alter 
this expression, since for media with a solid-state electron 
density the electron rest energy is lo5 times greater than the 
energy of the plasma photon. In order for the threshold par- 
ticle energy to be also ultrarelativistic, we must have up,/ 
qc) 1; for a medium with the same parameters this condition 
is satisfied by permittivity modulation lengths of the order 
of, or greater than, the optical wavelength. 

The dependence of the frequency on the angle of emis- 
sion of the photon is a function with two branches: o+ and 
w -. At the zero value of t9 these functions correspond to the 
frequencies 

m i n  

which give the limits of the range in which the emitted fre- 
quencies lie. 

When the particle energy is much higher than the 
threshold energy, the lowest emitted frequency almost does 
not depend on the particle energy, specifically, 

while the highest frequency depends on the energy in the 
following manner: 

where E,, is a critical energy value separates arbitrarily 
those regions in the particle-energy range where a classical 
and a quantum description of the process are essential. For 
energies Ep (E,, the value of a,,, coincides with the value 
obtained in the classical limit, where the frequency is a qua- 
dratic function of the energy. In the opposite (ultraquan- 
tum) limiting case, as expected, the highest frequency is ap- 
proximately equal to Ep/fi. This difference between the 
classical and quantum situations alters the transition-scat- 
tering spectrum in the region of high frequencies of the order 
of Ep /fi. 

53. QUANTUM THEORY OF TRANSITION SCATTERING 

We shall assume that the density variation in the per- 
mittivity wave (the variation an, gn,, so that the computa- 
tion is carried out with the aid of perturbation theory) is 
uniquely connected with the wave field E,". The total field 
then consists of two terms: 

A,,,' (x) =A," (x) + A ,  (x) , 

where A, (x )  is the operator field describing the radiation 
field and the self-field of the particle and the potential 
A ," (x)  can be considered to be a c-number function. The 
charged particle itself is described by a spinor field $(x) 
obeying the Dirac equation. Finally, the medium is de- 
scribed by a density matrix that takes account of both the 
linear and quadratic polarization of the medium by the field 

A (x)  . The linear part of the polarization current gives rise 
to the effects connected with the photon propagation in the 
medium (the modification of the dispersion law and the 
form of the field propagators), so that there remains on the 
right-hand side of the Maxwell equations only the quadratic 
polarization current 

JUN' (x) =2 I suVp (x, XI, i) AVm'(x') A,, (z") dxf dx", ( 7 )  

SUVP(5, x', zJ1) =S;~~(X, 5'') 2'). 

Here S is the nonlinear vertex (response) of the medium in 
the coordinate representation. For a medium that is homo- 
geneous in the absence of perturbation, the response pos- 
sesses the natural symmetry property 

SMvp (x, x', x'/) =s,,~ (x-x', I-xfJ) . (8 )  

The response S is found by solving the kinetic equation for 
the density matrix of the medium with the aid of perturba- 
tion theory (see Ref. 4) .  

The occurrence of a polarization current in the Max- 
well equations can be described in the field-theoretic lan- 
guage with the aid of an additional (to the usual quantum- 
electrodynamic) interaction Lagrangian 

Lf  = fdx A; (x) jiv' (x) . 

In terms of the action functional, the additional term in the 
action is 

In this expression we have omitted the part proportional to 
J F A  ," as being unessential to a scattering process accompa- 
nied by radiation: it describes particle scattering in the field 
of the medium without radiation. 

The form in which the formula (9) is written implies 
that S possesses another symmetry property, besides those 
noted above: 

SPYP (x, x', xfl) =Spyu (5 " , x', 2). (10) 

Setting 

I = S ~ X L  ( x )  + I / ,  L (x) =e$ (x) yu$ (x) AM (x) , 

into which enters the ordinary Lagrangian density for the 
interaction in QED (in L ( x )  we do not take account of the 
term j,A ,", which describes the emission by the particle dur- 
ing scattering on the fields produced by the inhomogeneities 
of the medium, i.e., as it undergoes "Compton" scattering), 
we write the scattering matrix in the form 

S=T exp (il) . (11) 

The initial and final states in the problem are \ in )  = I?,,+ 10) 
(one particle) and I f )  = ii&. , 2, + 10) ( a  particle and a 
photon), i.e., there exists in the initial state a particle with 
momentum p and polarization a; while in the final state we 
have a particle with p' and a' and an emitted photon with 
wave vector k and polarizaiton s (in this section we use the 
un i twi th f i=c=  1). 

In the first nonvanishing approximation the scattering 
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matrix has the form 

S(')=-2eTA J d x  dx,  dx, dx. 5 ( x )  r., 
X $ ( X ) A ~ ( X ) S ~ ~ ~ ( X ~ . X ~ , X ~ ) A ~ ~ ' ( X ~ ) A A ( X ~ ) A ~ ( ~ ~ )  (12) 

(it is sufficient to retain the ordering with respect to only the 
photon operators). Using the standard notation (see Ref. 
5) ,  we obtain the following expression for the required ma- 
trix element: 

~ l f '  =-2eli,oy,up~,~D,,(k-q)SAvp(q-kr q,  - k )  

x Aym' ( q )  ( 4 ~ )  IhepS ; ( 13 ) 

here up, is a bispinor and DPv ( k )  is the photon propagator 
in the medium. The field due to the medium inhomogeneity 
has been written in the form of a plane wave, e i  is the polar- 
ization vector of the emitted photon, and 
S,, (q - k, q, - k )  is the nonlinear response of the medi- 
um for the relations between the fields and the current in the 
k representation: 

JVN' ( k ) =  J d k ,  dk26(k- i i -k2)S . . , (k ,  k , ,  k 2 ) A . . ( k i ) l p ( i 2 ) .  

(14) 

The result of the computation of the vacuum averages 
contains, besides the indicated terms, another term that re- 
sults from the contraction of the photon operators contained 
in the additional Lagrangian L '; to this term corresponds the 
diagram in Fig. 4. 

It is easy to describe a new modified diagrammatic tech- 
nique that takes account ofthe interaction of the electromag- 
netic field not only with the charged particles, but also with 
itself as a result of the nonlinearity of the medium (and not 
only the interaction terms quadratic in the field, but the 
terms of all orders-cubic, etc.-in the field). There is no 
need to dwell at length on the rules of this technique: they 
will not be needed in the present paper. The diagram shown 
in Fig. 4 is the first in the perturbation theory series of new 
diagrams of the unconnected type (as usual, the unconnect- 
ed diagrams diverge, but they do not make any contribution 
to the scattering matrix). Let us further note that Melrose6.' 
has developed similar ideas in quantum electrodynamics. 

We shall, for the sake of simplicity, describe the field 
A ," by a scalar potential pq . In the case of high-frequency 
radiation emission the photon propagator reduces in the 
Coulomb gauge to the following transverse propagator: 

4n 
Di, ( k )  =Dilt  = 

k'-u2e' ( o ,  k )  

where E' ( a ,  k )  is the transverse permittivity of the medium. 
The expression for the matrix element (13) assumes the 
form 

~ ~ ~ ~ ' = - 2 e ~ ~ ~ ~ ~ u ~ ~ ~ ~ ~ ~ ~  ( k - q ) S i O l  ( q - k ,  q ,  - k )  ( 4 ~ ) ' ~ ~ ~ ' e ~ ' .  

(17)  

The expression for S,, is quite unwieldly (see the Ap- 
pendix). But if the emitted-wave frequency w>wpe, then we 
can use the following simple expres~ion,~ which is valid in a 
broad range of frequencies: 

(for its derivation, see the Appendix). 
Let us further take account of the fact that the potential 

pq is connected with the Fourier transform of the density 
variation by the Poisson equation: 

here q = (go, q ) ,  qo#O, and E' (q )  is the longitudinal per- 
mittivity. Let us assume that qo(wp,, and that 

(we neglect the spatial dispersion in E' ). 
Collecting all the results, we obtain the following 

expression for the probability, averaged over the initial and 
summed over the final polarization states, for scattering of a 
particle by an inhomogeneity wave during which an electro- 
magnetic wave of frequency w and wave vector k is emitted: 

e2upeh  
dw = - ( %) { (.p.p,-ppf-m2) q2 

8x p2k2 ( k - q )  

2 ( k ( k - q )  l 2  [ p k I Z  f -- --- 
k - q )  1 (2qh)' 

6 (Ep+q,-E,r-a)----- (Ik (19) 
E p E p f o  ' 

where 

pf=p+q-k ,  qk=qk-q ,o ,  o k =  ( o , , Z + k 2 ) ' " ,  u r ~ o ,  

the vectors p and q being now considered to be antiparallel to 
each other (the case of arbitrary orientation is, of course, in 
no way more complicated; it is just more tedious). Since 
w)w,, )go, we can assume qo = 0 in ( 19). 

In the case of ultrarelativistic particles, the radiation is 
concentrated in a narrow angle cone along p, with aperture 
angle 8 5 m / E ,  , and, using the results obtained in 92, we can 
write the S function responsible for the energy conservation 
law in the form 

o m i n  omax  
FIG. 4. Unconnected diagram, which makes no contribution to the scatter- 
ing matrix. FIG. 5. Shape of the transition-scattering spectrum ( E ,  >E, ,  ) 
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The total radiation intensity can be written in the following 
form: 

rn rn 

(the last formula has been written in the usual units j. 
The spectral distribution is depicted in Fig. 5. It can be 

seen from formula (22) that the spectrum undergoes appre- 
ciable modifications, caused by the recoil, only in the region 
of energies of the order of Ep ,  where the energy attains the 
critical value E,, . In the region of initial and center frequen- 
cies (i.e., in the frequency region where the emission is most 
intense) the radiation intensity is only slightly lower than 
the intensity that follows from the formulas of the classical 
theory (see Ref. 1 ). At the highest frequencies in the region 
of energies E, >Ecr the spectrum extends up to o -- E, / f i ,  
instead of 2qc(Ep /mc2)', the limit predicted by the classical 
theory. According to the expression (22) for the emission 
probability, the most intensely emitted photons are the ones 
with frequency 3w;,/2qc; the average frequency emitted is 
equal to 3wje/qc. All this is an indication of the weakness of 
the influence of the quantum-mechanical recoil effects on 
transitions scattering in the case of media the frequencies of 
whose proper motions are low compared to E, / f i  no matter 
how high the energy E, of the scattered charged particle is. 
In the plasma approximation used in the present paper the 
role of the proper motions is played by the collective plasma 
waves. 

At particle energies much higher than the threshold en- 
ergy (the discussions carried out above pertain precisely to 
this case) the total radiated power comes, on the basis of the 
formula (23), to 

(E,,, we have 

in the ultraquantum limit, where Ep )Ecr, 

i.e., the total radiation intensity at Ep )E,, depends weakly on 
the particle energy, and we can assume that 

the quantum corrections to this formula being at most a quan- 
tity of the order of ( f i w , , / m ~ ~ ) ~ l n  (mc2/fio,, ), which, for 
solid-state densities no = loz3 ~ m - ~  and m = me, yields a rel- 
ative value of lob9 for the quantum corrections; the correc- 
tions will have their maximum value at a particle energy of 
Ep = 2Ecr. 

If, on the other hand, the particle energy is not much 
higher than the threshold energy, then the total intensity de- 
pends on the energy in a root manner: 

typical of threshold processes; this same singularity (the pow- 
er 3/2) occurs in the classical limit.' The quantum effects do 
not alter the form of the singularity, as might have been ex- 
pected in the case of a quantum excess of SE = &up, over the 
threshold energy. 

Further, let us consider what fraction of the energy is 
radiated in the cutoff-frequency region w,,, - Sw (w <w,,, 
(where Sw(w,,, ) in the spectrum. This question has a bear- 
ing on the problem of high-energy-photon detection in transi- 
tion scattering in a counter with o: sin q x permittivity mo- 
dulation (such a modulation can be produced by a laser in a 
nonlinear medium). A simple computation carried out on the 
basis of the formula (22) yields 

In the two limiting cases we obtain: 

for E, (E,, , and 

for Ep )Ecr . 
For the emission distance for a single photon with energy 

lying in the interval (a,,, - Sw, a,,, ), the formulas (29) 
and (30) yield respectively 

where E :; = mc2(wpe/qc). In the classical limit, where Ep (31) 
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and 

f ic  1 2qc 
&=8-- ez 2q ( G ) 2 ( ~ ) z ( ~ ) ' ( ~ ) ' ( ~ ) 2 .  (32) 

For the purpose of making the crudest estimate, we can set 
So-a,,,; then the characteristic distance over which one 
photon is emitted by a bunch of particles with mean energy 
Ep )Ec, (the emission distance) will, in order of magnitude, 
be given by the following expression 

Of course, in the case of individual particles the emission dis- 
tance for one photon is excessively large, so that the detection 
of particles with energy Ep >Ec, is not possible; in fact for an 
electron density of no = lo2' cm-3 in the medium and a mo- 
dulation length a = 5000 A in a "sinusoidal" counter, the 
distance L, is equal to 1012 (Ep /E,, )2N - ' cm (for the esti- 
mate we set Sn, - 1/3 no and m = me ) .  However, the effect 
may turn out to be appreciable in the case of emission by a 
large bunch of particles, i.e., in the case of bunches with 
N- 1014 and higher. 

But on the whole the quantum effects are small, and the 
particle counters can be designed on the basis of the classical 
formulas. It is shown above that, even at energies E, BE,,, the 
emitted radiation consists largely of low-energy photons with 
frequency wi,/qc; for such frequencies h < E p ,  this being due 
to the smallness of the quantity ( h p , / m c 2 )  (w,,/qc) for 
ordinary media in comparison with Ep/mc2. Indeed, h,,/ 
mc2- while Ep/mc2>1, i.e., wpe/qc should be of the 
order of lo6 and the frequencies wi, /qc lie in the x-ray region. 
The distance over which one photon is emitted is large irre- 
spective of the frequency: 

For Sn, - f  no and q-wp,/lOc- lo4 cm-', we find L, - 10 
cm, i.e., the counter can be fairly simple and suitable for the 
detection of fast charged particles (cosmic rays). 

Let us note that, in the case of counters that are suffi- 
ciently thick (so that we can neglect the radiation connected 
with the boundary), from 10W4 to bremsstrahlung pho- 
tons are emitted, depending on the nuclear charge of the ma- 
terial used in the counter, for each emitted transition photon. 
This estimate was obtained without allowance for multiple 
scattering, which should be taken into account at high parti- 
cle energies; but allowance for the multiple scattering (see 
Ref. 9)  only reduces the bremsstrahlung power. Thus, the 
bremsstrahlung can be entirely ignored at frequencies of the 
order of oi,/pc. 

Finally, let us state again that, according to the classical 
formulas, the emission distance for a photon with frequency 
om,, (at Ep (E,,  ) is, for a particle energy Ep = lOE,,, equal 
to about 400 m, and therefore the counter will be ineffective in 
the detection of the high-frequency classical photons as well. 

§4. CONCLUSION 

Thus, the quantum corrections to the intensity of transi- 
tion scattering are negligible in ordinary media even at very 

high particle energies. By ordinary media we mean those me- 
dia whose internal-motion energies (the energies of the quan- 
ta of the collective oscillations, for example) are small com- 
pared with the energy of the scattered extraneous particles. 
This is physically quite explicable: the medium exerts a strong 
influence on the particle motion when the transmitted agent 
carries energy comparable to the particle energy (the condi- 
tion for a strong recoil in the course of the emission) and to 
the energy associated with the proper motions of the medium 
(condition for resonance excitation of the medium). 

For the considered case of an electron plasma the relative 
corrections do not, in order of magnitude, exceed the quantity 
( h , , / m ~ ~ ) ~  1n(mc2/&,, ) , or, for densities no = cmP3 
and m = me, the value lop9. 

But for dense media the quantum effects can be apprecia- 
ble. The densities at which the plasma photon has an energy 
comparable in magnitude to the electron rest energy are 
roughly equal to cm-'. A material of this density is 
usually not described by electrodynamics alone. 

In the case of scattering of fast charged particles by heavy 
many-electron atoms, ions, or molecules, transition brems- 
strahlung can be emitted as a result of the polarization of the 
electron shell of the scatterer by the field of the particle pass- 
ing through the material; the role of the internal motions is 
played here by the reconstruction of the electron configura- 
tions. For example, the ionization potential for the K-shell 
electrons can be as high as tenths and higher fractions of the 
electron rest energy. 

APPENDIX 

A method that allows us to find the responses of a quan- 
tum-mechanical system of charged particles (an electron 
plasma in a background of stationary ions) to an electromag- 
netic field is presented in Ref. 4. Formally, the problem re- 
duces to solution; by the perturbation theory method, of a 
chain of recurrence equations for the medium's density ma- 
trix, knowing which, we can compute the current induced by 
the field. 

The complete expression for the quadratic response is 
extremely unwieldly; therefore, we present here only the re- 
sult of the computations without derivation; the computa- 
tional scheme is expounded in Ref. 4. The essential compo- 
nents of the response have the following form ( they andB are 
the Pauli matrices) : 
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+ symmetrization ( b e y , ,  q* k-q) . 
where we have, for convenience, temporarily introduced the 
notation: 

and Sp denotes the trace over the matrix indices. In the classi- 
cal limit Ik/, Iq/ qthe,, where p,,,, is the mean thermal 
momentum of the electrons of the medium; this expression 
coincides with the one that is obtained from the classical ki- 
netic equation (see, for example, Ref. 8) .  The latter has a 
rather unwieldy form, but it is significantly simpler in the 
limit o )up, : 

it being assumed that q,)qpthe,/m, (the case of a cold plas- 
ma). 

In the ultraquantum limit jkl, @me, the projection op- 
erators in the expression for S,, assume the form 

and the sum of the first, second, fifth, and seventh terms in 
(A. 1) yields in the limit q4pth,,, (the plasma is considered to 
be nonrelativistic and nondegenerate) the expression 

(we have made the appropriate change of integration varia- 
bles). In the ultraquantum case the indicated terms yield 
26,, (q2/qi)m, 2; as to the contribution of the remaining 
twelve terms in (A. 1 ), it is small on account of the fact that 

Here the electron density 

Thus, the form of the nonlinear response is the same as 
the form found in the classical high-frequency limit. This is 
entirely similar to the situation in which the permittivity al- 
ways has the plasma form in the region of high frequencies, 
including the ultraquantum limit o ,  k s m ,  (Ref. 10). Since 
S,, has the same asymptotic form in the two limiting cases, 
we can use a single expression for S, in the entire frequency 
interval provided o%op,. 

The authors thank V. L. Ginzburg for the useful com- 
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'V. L. Ginzburg and V. N. Tsytovich, Perekhodnoe izluchenie i perekhod- 
noe rasseyanie (Transition Radiation and Transition Scattering), Nauka, 
Moscow, 1984. 

2G. M. Garibyan, Zh. Eksp. Teor. Fiz. 39, 1630 ( 1960) [Sov. Phys. JETP 
12, 1138 (1961)]. 

3 ~ .  K. Gdi t i s  and V. N. Tsytovich, Zh. Eksp. Teor. Fiz. 46, 1726 ( 1964) 
[Sov. Phys. JETP 19, 1165 ( 1964) 1. 

4E. B. Kleiman and V. N. Tsytovich, Zh. Eksp. Teor. Fiz. 72, 151 (1977) 
[Sov. Phys. JETP 45, 80 ( 1977) 1. 

5E. M. Lifshitz, V. B. Berestetskii, and L. P. Pitaevskii, Kvantovaya Clek- 
trodinamika (Quantum Electrodynamics), Nauka, Moscow, 1980, 
Chaps. 7 and 8. 

6D. B. Melrose, Plasma Phys. 16, 845 (1974). 
'D. B. Melrose, Aust. J. Phys. 36, 775 (1983). 
'V. N. Tsytovich, Teoriya turbulentnoiplasmy (Theory ofTurbulent Plas- 
ma), Atomizdat, Moscow. 1971 (Eng. Trans]., Plenum, New York, 
1977), Chap. 2. 

- 
9A. B. Miedal. Dokl. Akad. Nauk SSSR 46.49 ( 1954). 
1°V. N. ~s i tovich ,  Zh. Eksp. Teor. Fiz. 40, 1'775 (1961 j [Sov. Phys. JETP 

13, 1249 (1961)l. 

Translated by A. K. Agyei 

659 Sov. Phys. JETP 62 (4), October 1985 A. B. Khorev and V. A. Tsytovich 659 




