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The physical nature of the order parameter of a toroidal current state is analyzed. The toroidal 
order parameter can be identified with the toroidal moment density only in the static case. In the 
dynamic case, the toroidal order parameter also contributes to the electric polarization. This 
contribution does not reduce to the pattern of the electric field radiated by a toroidal dipole. The 
distinctive features of the dynamic effects in the toroidal state stem from the asymmetry of the 
electron momentum spectrum. The case can be made that the toroidal state is a universal model of 
orbital antiferromagnetism. An alternating electric field can induce a magnetic moment in a 
toroidal state. Its pronounced anisotropy permits acoustic oscillations to be excited by applying 
alternating electric and magnetic fields to a toroidal subsystem. 

The model of an excitonic insulator1 opens up broad 
opportunities for describing various types of charge and 
magnetic (current or spin) ordering in a system of collecti- 
vized electrons. A phase transition occurs in this model be- 
cause of congruent regions in the electron spectrum, and the 
long-range order is described by the anomalous expectation 
value A - ($;,$,, ), where the operator $2 creates an elec- 
tron with a spin a, and the indices 1 and 2 specify different 
congruent regions of the spectrum. In general, the order pa- 
rameter A has the complex structure 

here the cr are the Pauli matrices, and the A::,, are real 
quantities. The singlet real component (A;, ) and the triplet 
imaginary component (A;, ) of the order parameter are in- 
variant under time reversal, while the singlet imaginary 
component (As, ) and the real triplet component (Ak, ) 
change sign upon time reversal. Consequently, the forma- 
tion of A&, or ASm in a system gives rise to a magnetic order. 
The transition to a state of a spin antiferromagnetic is de- 
scribed by the real triplet component of the order parameter, 
A&, . Chromium is a classical example of such an antiferro- 
magnet with collectivized  electron^.^ Ferromagnetic order 
can be achieved as a result of the coexistence of Ak, and A;, 
(Ref. 3 ) .  

The properties of the magnetic state which results from 
the formation of an imaginary singlet order parameter Asm 
are extremely intere~t ing.~ '~ A singlet spin structure of the 
orbit parameter implies that the magnetic ordering is of an 
orbital nature. A more detailed study of its properties re- 
quires incorporating the symmetry of the wave functions of 
the collectivized electrons in some way. This information is 
embodied in the interband momentum matrix element PI,, 
which can be nonzero if the coordinates of congruent parts of 
the spectrum coincide in momentum space. If P,,#O, the 
formation of As, leads to a loss of symmetry by the system 
not only with respect to time reversal but also with respect to 
space inversione6 The macroscopic density of the magnetic 
momentum is zero; i.e., such a state is an orbital antiferro- 

magnet according to the standard classification.' If, on the 
other hand, the order parameter is macroscopically inhomo- 
geneous, a macroscopically nonuniform current arises in the 
system8v5: 

where e is the electron charge, c is the velocity of light, and 
the coefficient y, is expressed in terms of the parameters of 
the microscopic model. Using the definition 

1 
M = - J  [ r j l d ~  

2c 
,of the magnetic moment, we can ehily verify that the total 
magnetic momentum of any sample of finite dimensions is 
again zero for an inhomogeneous As,, as it is in the case 
As, = const. 

In an external magnetic field, a Lorentz force acts on 
the currents in (2 ) ,  deforming the system and raising its 
energy.g.10 The response of a system with a spontaneous cur- 
rent as in (2)  is thus dynamic in nature. The actual macroso- 
pic currents in (2)  should be distinguished from the Ampkre 
currents j, = p, rot S(r) [S(r)  is the spin density, andp, is 
the Bohr magneton], on which the Lorentz force does not 
act. The interaction with the magnetic field H ( r )  is de- 
scribed by the paramagnetic term H(r )*S(R) .  This circum- 
stance determines the different behavior in a magnetic field 
of an orbital magnetic material with P,,Af, # O  and of spin 
magnetic materials with the same symmetry. 

The order parameter As, describes microscopic corre- 
lations of the wave functions and in this sense is a microscop- 
ic parameter. The order parameter in a state with P,,Afm # O  
was given a macroscopic physical meaning in Ref. 11, where 
it was shown that the density of the toroidal momentum T 
serves as a macroscopic order parameter in this state, and the 
state which results from the transition can naturally be 
called a "toroidal current state." Analogously, in a ferro- 
electric the role of a microscopic order parameter is played 
by microscopic displacements, which unambiguously deter- 
mine a macroscopic characteristic, the polarization. The to- 
roidal moment is a fundamental characteristic of a medium 
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in the same way that the electric dipole moment (polariza- 
tion) or magnetic moment is. The density of the toroidal 
dipole moment T is defined in terms of an integral over a unit 
ce11I2: 

1 .=-I 
IOc [ r ( r j  (r) ) -2r2j (r)  ]dJ7.  (3  

Electric, magnetic, and toroidal dipoles generate three inde- 
pendent families of electromagnetic multipole~.'~ The inter- 
action of an arbitrary distribution of charges and currents 
with electric and magnetic fields can be described complete- 
ly by simply specifying the multipole moments of all three 
types of the system. 

In the microscopic model of Ref. 5 the density of the 
toroidal moment is introduced" in accordance with (2) :  

The minimum length scale over which we are justified in 
introducing the toroidal moment density is determined by 
the correlation length of the order parameter. Geometrical- 
ly, a toroidal dipole may be thought of as a current-carrying 
solenoid which has been bent into a torus; the current is 
flowing along the meridians of the torus. A microscopic ob- 
ject of this type was first studied by Zel'dovich.I3 A toroidal 
current configuration arose in Ref. 13 as a consequence of 
parity-breaking electroweak interactions. An important 
point is that the toroidal momentum in a toroidal current 
state5'" owes its existence to ordinary Coulomb interac- 
tions. 

Our basic purpose in the present study is to answer the 
following question: What are the similarities and differences 
between the properties of a toroidal current state and those 
of other magnetic systems having a toroidal moment? 

The toroidal order parameter introduced in Ref. 11 is a 
new type of order parameter, not only because of its symme- 
try properties but also because of its physical content. There 
have been previous studies of t-odd polar vectors in the the- 
ory of phase transitions and magnetism. An antiferromagne- 
tism vector, for example, may exhibit such transformation 
properties under certain conditions. In $1 below we show 
that an antiferromagnetic vector and the vector toroidal mo- 
ment may be coupled but they will never coincide. In a broad 
class of spin magnets the toroidal moment density is non- 
zero, but only in the static limit are the properties of these 
systems analogous to those of a toroidal current state. 

The use of an intuitive geometric model of a toroidal 
dipole leads to a simple qualitative explanation for essential- 
ly all the properties of a toroidal current state. However, 
according to the analysis in $2, it is correct to identify the 
singlet imaginary order parameter with the toroidal moment 
density T only in the static case. In the dynamic case, the 
toroidal order parameter defined as in (4) also contributes 
to the electric polarization; this contribution does not reduce 
to the pattern of the electric field radiated by a toroidal di- 
pole. Dynamic effects are determined by the shape of the 
electron spectrum and may be used to experimentally distin- 
guish a toroidal current state from spin magnets with a toroi- 
dal moment, since the latter make a relativistically small 
contribution to the dynamics. Here, in $2, we point out that 

there is a basis for regarding any antiferromagnetic ordering 
of an orbital nature as a toroidal current state. 

In the last two sections of this paper we discuss some 
specific problems of the macroscopic dynamics of a toroidal 
current state. In $3 we show that in addition to the direct and 
inverse Faraday effects and birefringence, which are allowed 
by the symmetry of a toroidal current state, linearly polar- 
ized light may induce a magnetic moment in a toroidal cur- 
rent state. In $4 we study the relationship between toroidal 
and acoustic oscillations. Because of the pronounced anisot- 
ropy of a toroidal current state, it is possible to excite acous- 
tic oscillations by applying electric and magnetic fields to the 
toroidal subsystem. 

51. SYMMETRY OF MAGNETIC MATERIALS; STATIC 
TOROIDAL POLARlZABlLlTY 

The toroidal moment T is introduced as a quantity 
which describes the interaction of a system with a nonuni- 
form vortical magnetic field. In the expression for the free 
energy density, the term 

69,=T rot B 

corresponds to the interaction of the toroidal moment with 
the electromagnetic field. Expression (5 )  arises in a multi- 
pole expansion of the interaction term jA, containing the 
total magnetic vector potential A, which determines the 
magnetic induction B (B = curl A). This is the structure of 
the term representing the interaction of the microscopic or- 
der parameter A s ,  with the magnetic field. A variation of 
interaction term (5)  over the vector potential gives rise to a 
dependence of the current on the order parameter like that in 
(2) .  To determine the equilibrium toroidal moment density 
in a magnetic field, we must add the term in ( 5 )  to the free 
energy density and vary the free-energy functional: 

6F{T)/6T=O, F {TI,= {F,(T)  +6FT)dV. ( 6 )  

Near the temperature of the toroidal transition, the free 
energy density has the usual form of a Landau expansion: 

here a, = a ( @  - 0, ), O, is the toroidal transition tem- 
perature, and a, p,, gij  > 0. The choice of the toroidal mo- 
ment density as the order parameter in (7)  is based on a 
calculation in a microscopic model. We obtain the func- 
tional (7 )  by replacing As, in the functional for the micro- 
scopic order parameter by T in accordance with (4) .  Here 
the coefficients in (7)  are determined unambigously by the 
parameters of the microscopic model. 

As was shown in Ref. 7, a magnetoelectric effect occurs 
in a toroidal current state by virtue of the following compo- 
nent of the energy: 

where E is the electric field, e i j ,  is the completely antisym- 
metric third-order tensor, R :, is an antisymmetric compo- 
nent of the magnetoelectric tensor, and the coefficient R is 
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expressed in terms of the parameters of the microscopic 
model. 

Expressions (5 ) and ( 8 ) and the condition for a mini- 
mum of the free energy, (6) ,  determine the static toroidal 
polarizability, which is understood not only as the induction 
of a toroidal moment in external fields but also as a general 
change in the energy of the system due to the terms in (5) 
and (8).  The physical picture which gives rise to the compo- 
nents in (5) and (8 )  of the energy of the interaction of the 
medium with the electromagnetic field may be either orbital 
(in a toroidal current state) or spin in nature. A toroidal 
moment has, in addition to an orbital component, a spin 
component Ts (Ref. 12) : 

the summation is over the spins of all the charges in the 
system. An entity having the meaning of a spin toroidal mo- 
ment also exists in a microscopic model.6 It can be shown 
that if P12#0 and A;, #O there is a term in the free energy 
density which is analogous to (5)  and which has a toroidal 
spin moment density 

The existence of a magnetoelectric effect in a state with 
Ake # O  was observed in Ref. 14. The symmetry of the mag- 
netoelectric tensor is given by the relative orientation of the 
vectors PI, and Ake, i.e., by relativistic interactions. The 
magnetoelectric tensor is symmetric ifP12 and Ak, are paral- 
lel, while it is antisymmetric if they are perpendicular. 

The classification of magnetic materials which is ordin- 
arily used is based on the classes of magnetic or Shubnikov 
(or black-white) symmetry. The symmetry of a structure is 
described by specifying the set of transformations which 
leave the given structure invariant. The transformations of 
magnetic symmetry incorporate all the crystallographic 
symmetry operations, which now also act on the axial vec- 
tors of the magnetic moments, supplemented by the oper- 
ation of time reversal, which reverses the directions of all the 
magnetic moments (and currents). In this sense, orbital and 
spin magnets are completely equivalent and are described by 
the same magnetic classes. In addition to the magnetic 
(black-white) symmetry, a so-called color symmetry has 
been developed for describing spin systems. Color symmetry 
is based on a separation of the operations which act on struc- 
tural (crystallographic) variables and which act on spin var- 
iables." Color symmetry makes it possible to describe in 
detail the spin configurations in magnetic materials. Sub- 
stantial progress was made in this direction after Andreev 
and Mar~henko '~ , ' ~  pointed out a way to construct all mag- 
netic structures of an exchange nature (when the exchange 
interactions responsible for the formation of the magnetic 
order are far stronger than relativistic interactions). Ac- 
cording to Ref. 16, for a given space group of crystal symme- 
try there is an isomorphism between possible types of ex- 
change structures and irreducible representations of the 
space group with an overall dimensionality no greater than 
three. In this manner, an analog of the Nigli-Indenbom 

theorem in magnetic symmetry is established for exchange 
classes. 

Let us examine the toroidal spin structures which are 
allowed by the exchange symmetry. This classification of 
exchange structures is based on an expansion of the spin 
density S ( r )  in the functions q, j:'(r), which implement an 
irreducible representation of the given symmetry space 
group of the crystal: 

where a is the index of the irreducible representation, i speci- 
fies the row of the representation, and the index n = 1, 2, ... 
ensures the completeness of the set of functions q, jr,"'(r) for 
describing an arbitrary distribution of the unlocalized spin 
density.I8 Using ( 11 1, we find the following expression for 
the density of the spin toroidal moment in (9):  

Here dj"' is the polar vector of the expectation value of the 
coordinate operator over the function q, ::' ( r ) ,  which falls 
off quite rapidly at infinity: 

d l a )  =(rcplr' ( r )  >. 
It is easy to see that the only structures which can make a 
nonvanishing contribution to the toroidal moment density 
are those which correspond to irreducible representations 
which are part of the vector representation of the given 
group. The direction of dla' is determined by the symmetry 
of the crystal without consideration of the magnetic struc- 
ture, but the density of the toroidal moment will be nonzero 
provided that the magnetic vectors Sjt '  describing the given 
structure contain components perpendicular to dju'. If dlu' 
and S::) are parallel, the system is characterized by a mag- 
netic quadrupole moment 

I Po 
b i k ( r )  = - ( r iSk(r )  +rkSi ( r ) )  , 

0 
(13) 

We can illustrate these arguments with the simple ex- 
ample of crystallographic class C,. The class Cs contains 
two one-dimensional irreducible representations, A ' and A " 
(A ' is a unit representation), and it allows the existence of 
nine exchange  structure^.'^ The toroidal moment can be 
nonzero only in six of the structures, corresponding to the 
representation A ": 

( C ,  [ A " )  [Ra, ,  RU,,  U , " ] ,  (Cs lAU,  A") [Ro, ,  R U , ] ,  

( C s l A U ,  A", A") [ R o z l ,  (CsIA', A") [ Uzfoz, RU21, 

( C s l A f ,  A', A ' )  [ R U , " o z ] ,  (CSIA1,  A", A") [ U , ' o z ] .  

The magnetic structure is given in parentheses; the exchange 
class (the set of elements which leave the exchange structure 
invariant) is given in square brackets; U' is a rotation around 
the axis specified by the direction of the ferrimagnetism vec- 
tors S;, which transform in accordance with the unitary rep- 
resentationA '; U " is a rotation around the vectors S:, which 
correspond to representation A "; and U, is a ( 180") rotation 
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around the axis perpendicular to S; and S;. In all the struc- 
tures the vector toroidal moment density lies in the symme- 
try plane. The last three structures, which contain compo- 
nents ofthe spin density which transform in accordance with 
the unit representation, are ferrimagnetic. To determine the 
toroidal moment in these structures unambiguously, we 
need to subtract the constant component from the magneti- 
zation, since the magnitude of the toroidal moment depends 
on the choice of coordinate system if there is a nonzero resul- 
tant magnetic moment. 

More complex symmetry classes can be treated in a sim- 
ilar way. The spin structure of Cr203, for example, a stan- 
dard collinear antiferromagnet of crystal class D,, , trans- 
forms in accordance with the representation A 2u (Ref. 17). 
The Z component of a polar vector transforms in accordance 
with the same representation. The vector d2" in ( 12) is di- 
rected parallel to the Z symmetry axis. The vector SZu has 
the same direction in Cr203. Consequently, Cr,O, is a mag- 
netoelectric material, with a nonzero quadrupole moment in 
(13). In the antiferromagnet Fe,O,, the crystal class is the 
same, D,, , but the magnetic structure is given by the repre- 
sentationA ,, (Ref. 17). The vector d is zero in this represen- 
tation, and there is no magnetoelectric effect in Fe203. The 
toroidal moment, on the other hand, and the corresponding 
antisymmetric component of the magnetoelectric tensor (8 )  
are nonzero in many magnetic ferroelectrics, e.g., bora- 
cites. lg.10 

According to ( 12), the antiferromagnetic vector L is 
always coupled with the toroidal moment T in a spin mag- 
netic. Furthermore, in certain cases (e.g., if the symmetry 
transformations which send structurally equivalent atoms of 
different sublattices into each other do not contain inversion 
or reflections) an antiferromagnetic vector may transform 
in a given group as a polar t-odd vector, i.e., as the vector T. 
However, the magnitudes, directions, and physical mean- 
ings of these vectors are different, and there is no polar t-odd 
vector which can be identified with the toroidal moment. In 
addition, the transformation properties of the toroidal mo- 
ment vector and of the antiferromagnetic vector are general- 
ly different. The difference can be illustrated by the invar- 
iants M-curl L and M-curl T, which have similar structures. 
The first of these invariants stems from the relativistic spin- 
spin interaction, .and its contribution to the free energy is 
small. The second invariant stems from the definition of the 
toroidal moment in ( 5 ) ,  and it corresponds to any ordering 
with a nonzero toroidal moment. This invariant is thus of 

d exchange nature and can be written in the form M-I, as 
axi 

can be verified easily by expressing the toroidal moment in 
terms of the antiferromagnetic vectors in (12). If there is a 
polar direction in a magnetic system, one always finds rela- 
tivistic interactions which shape the toroidal moment in this 
direction. This circumstance means that it is possible to sin- 
gle out magnetoelectrics with an antisymmetric magnetoe- 
lectric tensor as an independent class. Magnetoelectrics 
have been classifiedZ0 on the basis of the magnitude of the 
spin-orbit interaction with respect to the crystal field and 
with respect to the nature of the concomitant effects: magne- 

toelectrics, ferroelectrics, ferromagnets,and antiferromag- 
nets. If, on the other hand, we take into account the symmet- 
ric component of the magnetoelectric tensor, which 
transforms under symmetry operations in the same way as 
the tensor magnetic quadrupole moment (13) , while the 
toroidal and magnetic quadrupole moments given an ex- 
haustive description of the magnetic characteristics of any 
system in second order of a multipole expansion, we find a 
new classification of magnetoelectrics: 

1) Quadrupole magnetoelectrics. This category in- 
cludes substances with a symmetric magnetoelectric tensor 
which belong to the following 27 magnetic symmetry 
classes: 

2) Toroidal magnetoelectrics. These materials have an 
antisymmetric magnetoelectric tensor and belong to the 11 
magnetic classes 

3 )  Mixed quadrupole-toroidal magnetoelectrics. These 
materials have a magnetoelectric tensor of general form and 
belong to the 20 magnetic classes 

Cl, c,, cs, c,,, c, ( C l ) ,  Cs ( C i ) ,  Czu(Cs), c3, c:, ce, 
ci (C,)  C z h  (CZ) C 2 h  (CS) r Clh (C:) S4 (CZ) 7 C 3 h  (C3) r 

c3i (CS) ,  C e h  (Ce) , D2 (Cz),  D 2 h  ( C 2 u )  

It was shown above that the toroidal moment density is 
nonzero in a broad class of spin magnets." The antiferro- 
magnetic vectors Sj:' in ( 1 1 ) , which carry information on 
not only the toroidal moment but also other multipole mo- 
ments, serve as order parameters in these systems. The re- 
sponse of such systems to the static fields described by the 
interaction terms in ( 5  and (a) ,  i.e., their static toroidal 
polarizability, is indistinguishable from the static polariza- 
bility of a toroidal current state (it should be recalled that a 
description of diamagnetism goes beyond the scope of the 
multipole expansions which we are considering in the pres- 
ent paper). The situation is different with regard to the dy- 
namic polarizability. 

52. DYNAMIC TOROIDAL POLARlZABlLlTY 

The low-frequency dynamics of an ordered system near 
a phase transition, where the characteristic frequencies are 
low, is conveniently described by a Lagrangian formalism. 
As the generalized coordinate and velocity here we should 
choose the order parameter and its time derivative. In this 
approach, the relationship between the coefficients of the 
Lagrangian and the characteristics of the microscopic model 
is established from the equation of motion, whose role is 
played by the self-consistency equation for the time-depen- 
dent order parameter. At low characteristic frequencies, one 
can expand the self-consistency equation in a series in the 
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frequency and thereby reconstruct the form of the kinetic 
part of the Lagrangian. The potential part, Y ,  on the other 
hand, of the Lagrangian density 9 has exactly the same 
form as the free energy density in (7).  

Kopaev and Tugushev2' have studied the behavior of a 
toroidal current state in an alternating electric field. They 
showed that a term 

in the kinetic part of the Lagrangian [the toroidal order pa- 
rameter T here is defined in accordance with (4)  ] gives rise 
to structural features in the absorption of an electromagnetic 
field near the toroidal transition. A term analogous to that in 
( 14) arises if we use Maxwell's equation 

1 a D  
rot H=- - - 

c a t  

in (5) .  The electromagnetic interaction of the toroidal mo- 
ment with the electromagnetic field which is described by 
this substitution contains a relativistically small factor ac- 
cording to (15). This interaction corresponds to the pattern 
of electromagnetic waves radiated by a toroidal dipole with a 
time-varying ~ur ren t . '~  The coefficient 7 found from the 
self-consistency equation for the microscopic model, in con- 
trast, is not relativistically small; it is determined by micro- 
scopic parameters of a Coulomb nature. What is the physical 
meaning of the interaction ( 14)? 

We write an expression for the energy of the interaction 
of an arbitrary system with electric and magnetic fields: 

- l d D A  - 
B,,,=-dE - -- T-MH; 

c d t  

here the operator iA= ei rep;ese?ts the electric dipole mo- 
ment, the operator M = p o ( L  + S)  represents the magnetic 
dipole moment, and the operator 

represents the toroidal dipole moment.'' When we trans- 
form to the interaction energy in the multipole approxima- 
tion ( 16), a term which is a total time derivative drops out of 
the Lagrangian, and we lose information about the diamag- 
netic moment. It follows from a comparison of (14) and 
(16) that the term in (14) describes not the interaction of 
the toroidal moment with the electric field but a specific 
dynamic electric polarization. This conclusion can also be 
derived from the microscopic model. In the microscopic 
model, the static polarization is determined by the real sing- 
let order parameter435 

A direct microscopic calculation by the method of Ref. 5 
shows that in the dynamic case the expression for the polar- 
ization in ( 17) can be redefined as 

The quantity in (4) may thus be identified with the 

toroidal moment density only in the static case. The second 
term in ( 18) describes the electron contribution to the polar- 
ization; in the static case, the electrons create microscopic 
currents which form the toroidal moment density of the sys- 
tem. It can thus be said that the toroidal order parameter 
defined by (4)  contributes to the electric polarization. The 
toroidal polarization is caused not by a change in the current 
density in a cell [according to ( 16), this component is relati- 
vistically small] but by a shift of the electron density partici- 
pating in the formation of the toroidal moment. 

Analogously, using the microscopic definition of the 
current density,5 we can show that the toroidal moment den- 
sity should also be redefined, and in the dynamic case it has 
the structure 

Relations (18), (19), and (14) (at v)l/c) were de- 
rived from a completely definite microscopic model of a to- 
roidal current ~ t a t e . ~ . ~  Certain general questions, however, 
e.g., regarding the change in the toroidal moment density in 
an alternating electromagnetic field, can be studied without 
resorting to a model. 

We consider an arbitrary system describable by a Ha- 
miltonian k = j), + kin, ,  here @,, is the Hamiltonian of 
the interaction with the external field in ( 16). In first-order 
perturbation theory in the external field, we find the follow- 
ing expression for the expectation value of the operator (4 )  
representing some arbitrary physical quantity in the absence 
of attenuation, in the long-wave limit: 

here the index n specifies the set of quantum numbers which 
describe the stationary excited states of the system (we are 
assuming that the expectation value of the operator q over 
the ground state is zero); k specifies the one-electron wave 
functions of the ground state, IO,k ); f i  on,. = En - En. ; En 
is an eigenvalue of the unperturbed Hamiltonian 
(H 6 $, = En $, ; and f Lo' is the equilibrium distribution 
function. Expression (20) makes it possible to introduce, 
along with the electric dipole polarizability a,, ( w )  and the 
magnetoelectric polarizability Bij (w),  which are ordinarily 
used (Ref. 24, for example), as in 

a toroidal polarizability ti, ( W  ) , as in 

where E, is thejth component of the electric field. The polar- 
izability a,, ( w )  is directly related to the dielectric constant 
(in the nonrelativistic limit) by E = 1 + 4ra ,  pi, (a) de- 
scribes the dynamic magnetoelectric effect, and t i ,  ( w )  de- 
scribes the relativistic component of E due to oscillations of 
the toroidal moment. 

In accordance with the structure of interaction opera- 
tor (16), we can distinguish in ti, ( w )  in (22) an intrinsic 
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toroid-toroid polarizability t (o), 

and a toroid-dipole cross polarizability t ( w  ), 

It follows from (23) and (24) that the toroid-toroid polariz- 
ability t is relativistically small with repect to the toroid- 
toroid dipole polarizability t $. The reason is the form of the 
operator representing the interaction of the toroidal moment 
with the electric field in ( 16). The contribution of an alter- 
nating electric field to the toroidal moment density due to 
the toroid-dipole polarizability (24) and (22) is of the same 
order of magnitude as the contribution of interaction ( 14) to 
the toroidal order parameter in (4) .  However, these contri- 
butions are of different origin, and in the Lagrangian density 
the toroid-dipole polarizability corresponds to the indepen- 
dent term 

A nonrelativistic component of the toroidal moment 
density arises in an alternating field only in systems in which 
the toroidal moment is of an orbital nature. For spin magnets 
we can first calculate the expectation value of S ( r )  in (9)  
with the help of (20); after this calculation, we carry out the 
spatial integration in the definition of the toroidal moment 
density. The magnetic elements of the operator = S ( r )  
which act only on the spin variables in (20) vanish by virtue 
of the orthogonality of the coordinate (orbital) components 
of the wave functions. They can differ from zero only to the 
extent that there is a spin-orbit interaction. In the effective 
Lagrangian, this circumstance is reflected by the relativisti- 
cally small value of the coefficient J i n  (25) for spin magnets. 

The term in ( 14) gives rise to an unusual dependence of 
the polarizability current on the toroidal order parameter: 

a 2  
j=yE-;.T. 

at  
(26) 

More detailed information on the time evolution ofthe toroi- 
dal polarization current in (26) can be found by substituting 
into (26) an expression for the toroidal order parameter in- 
duced by the external field, Tin, . At low frequencies, Tin, is 
determined from a variation of the Lagrangian. The contri- 
bution of first order in the field, T::; -E, describes struc- 
tural features in the dielectric con~tant , '~  but it carries no 
information about the breaking of t-invariance in a toroidal 
current state and in this sense is deficient in content. The 
term of lowest order in the electric field which incorporates 
the breaking of t-invariance in a toroidal current state has 
the structure T:;td - T,(E)'. Terms which are even in the 
frequency of the external field thus appear in expression 
(26) for the polarization current. The condition for such 
contributions to the polarization current to arise can be stud- 
ied in its general form, without resorting to a multipole ex- 
pansion, by using a term Ap (A is the vector potential) as a 
perturbation. Analysis of the expression for the nonlinear 

conductivity of second order in the fieldz5 shows that terms 
which are even in the frequency can appear in the polariza- 
tion current only as the result of an asymmetry of the spec- 
trum of one-electron excitations with respect to the momen- 
tum: 

E", (k) +En, 

A breaking of t-invariance, i.e., the establishment of magnet- 
ic order in the system, has an asymmetry of this type. How- 
ever, not all arbitrary magnetic orders can give rise to an 
asymmetry of the spectrum. 

In a toroidal current state, an asymmetry of the spec- 
trum arises from the Coulomb interaction. ' In spin magnets, 
on the other hand, such an asymmetry is possible only to the 
extent that there are spin-orbit interactions. In the latter 
case, we can speak in terms of an induced (or extrinsic) 
toroidal order parameter in describing the physical picture 
of the interaction of the system with an alternating electric 
field, and, as before, we can use a phenomenological descrip- 
tion based on relations ( 14), (26), and (27). The relativistic 
nature of the dynamic polarizability of spin magnets allows 
us to make use of dynamic effects for a reliable identification 
of toroidal current states where these effects are large. A 
question which arises in this connection is how a toroidal 
current state is related to other possible models of orbital 
antiferromagnetism which lead to an asymmetry of the spec- 
trum; in other words,there is the question of how general the 
model of a toroidal current state is. In spin magnets the de- 
finition of an antiferromagnet includes the requirement that 
the magnetic atoms of the different sublattices be structural- 
ly equivalent (otherwise, the system would be ferrimagne- 
tic). In orbital magnets this requirement is naturally re- 
placed by the requirement of a topological equivalence of the 
contours with a current which make contributions of oppo- 
site signs to the magnetization. The simplest configuration 
on which the vector field of a current is specified and which 
satisfies this requirement is a torus. (The presence or ab- 
sence of a center of inversion in such a system is determined 
by the relative arrangement of the toroidal configurations.) 
A torus is a "flux guide"23: a system which channels the 
magnetic induction flux (in the absence of an external field) 
and which allows arbitrary deformations without a disrup- 
tion of screening. Configurations in which deformations do 
disrupt the screening correspond to an orbital ferrimagne- 
tism. There is thus a basis for regarding the toroidal current 
state as a universal model of orbital antiferromagnetism. 

As was shown above, the order parameter of a toroidal 
current state, (4 ) ,  can be identified in the static case with the 
density of the toroidal moment of the system. It is pertinent 
to note that in the microscopic which has already 
been studied the order parameter is a single-component pa- 
rameter, (4) .  The microscopic model of Refs. 4 and 5 is thus 
not applicable to transitions accompanied by the formation 
of an orbital toroidal moment in all magnetic classes which 
allow the existence of a polar t-odd vector (there are a total 
of 31 such classes; see $1 ); it is applicable only in those 
classes where this vector and the corresponding antisymme- 
tric component of the magnetoelectric tensor have one inde- 
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pendent component. There are 26 such classes. For five 
classes, 

ci, cs, C2 (C,) , Ci (Ci), CZh (Cs), 

with a two-component and a three-component antisymme- 
tric magnetoelectric tensor, a microscopic theory for a toroi- 
dal current state has yet to be constructed. 

93. OPTICAL ACTIVITY AND PHOTOMAGNETISM OF A 
TOROIDAL CURRENT STATE 

The interaction discussed in the preceding section, 
(14), gives rise to an induced component of the toroidal 
order parameter which varies as a function of time at the 
frequency of the external field. In addition to the variable 
component, the electromagnetic field may induce a static 
component, bilinear in the vectors E and E*, in the toroidal 
order parameter. Such an interaction is responsible for the 
optical activity of a toroidal current state. To find its struc- 
ture, we use the Onsager relation for the dielectric constant: 

here {r,) is the set of parameters which change sign upon 
time reversal. In the absence of dissipation, the following 
relations should also hold7: 

&,j(a, { ~ a ) ,  k)=~ji*(O,  {a,), k). (28) 

It follows from (27) and (28) that the imaginary anti- 
symmetric component of the dielectric constant, which de- 
scribes the Faraday effect, is proportional to odd powers of 
the toroidal order parameter. The corresponding term in the 
Lagrangian is 

Since the vector product in (29) transforms as a t-odd axial 
vector, the tensor il p, is nonzero in those magnetic classes of 
toroidal current states which also allow the existence of a 
magnetic moment. Among the 3 1 toroidal magnetic symme- 
try classes, there are 13 classes which meet this condition: 

The gyration vector g in these classes in defined, according 
to (29), by 

gi=hi,"Tj. 

The real component of the dielectric constant, which is 
responsible for birefringence, is a symmetric tensor, bilinear 
in the parameters ra or in the wave vector k and one of the 
parameters 7,. The contribution to the dielectric constant 
which is bilinear in the magnetic field and in the toroidal 
order parameter describes the induction of a magnetic mo- 
ment by an electromagnetic field in a toroidal current state, 

A pseudotensor which is symmetric with respect to the first 
pair of indices may be nonzero in all toroidal classes. In con- 
trast with the inverse Faraday effect, the magnetic moment 
in (30) may be induced not only by circularly polarized light 

but also by linearly polarized light. Expression (30) also 
holds in the case of dissipation. Interband absorption may 
promote the occurrence of a toroidal current state both by 
introducing excess charge carriers and by suppressing pro- 
cesses which fix the phase of the order parameter. [The to- 
roidal order parameter in (30) is proportional to the intensi- 
ty of the electromagnetic field here. ] Accordingly, a toroidal 
photomagnetism may be observed in materials which in 
equilibrium are stable with respect to a transition to a toroi- 
dal current state but in which there is a large Coulomb con- 
stant corresponding to a transition to a toroidal current 
state. Foremost among such materials are band antiferro- 
magnets and ferroelectrics of the electron type (the vibron 
model as a particular case). The appearance of a magnetic 
moment in an electromagnetic field has been observed in 
GeTe at a temperature below the ferroelectric tran~ition.,~ 
The light in the experiment of Ref. 26 was unpolarized, how- 
ever, and nothing was said about a dependence of the mag- 
netic moment on the light intensity; further study is thus 
required to evaluate the possibility of interpreting the exper- 
iment of Ref. 26 on the basis of a toroidal photomagnetism. 

94. ELASTIC OSCILLATIONS IN A TOROIDAL CURRENT 
STATE 

In the effects discussed above, the distinctive features of 
a toroidal current state are manifested in the magnitude of 
the interaction of the toroidal order parameter with an exter- 
nal field. The interaction of the toroidal subsystem with the 
crystal lattice also has some important distinctive features. 

The invariance of the Hamiltonian of an ordinary spin 
ferromagnet or antiferromagnet under spin rotations is 
known to give rise to a precession Landau-Lifshitz equation 
in a description of the magnetization oscillations: 

( g is the gyromagneic ratio, and 2Y is the effective Hamil- 
tonian of the magnetic material) and to the existence in the 
magnon spectrum of modes which soften in the long-wave 
limit ( q-+O). The crystal anisotropy and the interaction 
with the acoustic subsystem (Ref. 27, for example) give rise 
to a gap in the magnon spectrum. The magnetization preces- 
sion in (3  1 ) results from the appearance of a mechanical 
moment in an external field (the term - MH in the Hamil- 
tonian) . In a toroidal current state in an external field, the 
mechanical moment associated with the terms in (8)  and 
( 14) also acts on the vector T. The polar vector T in a toroi- 
dal current state, however, is rigidly tied to the lattice, since 
its direction is specified by the direction of the vector matrix 
element of the momentum, P,,; i.e., it is determined by the 
crystal potential. As a result, the dynamics of the toroidal 
order parameter T is described by the nonprecession equa- 
tion of motion. 

The components of T in (32) which are transverse with 
respect to the initial anisotropy axis of P,, arise only when 
the interaction of the toroidal and acoustic subsystems is 
taken into account. Deformations of the lattice in an acous- 
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tic wave cause local changes in the direction of the given 
initial symmetry of the vector PI,. 

Let us consider a medium which is isotropic in terms of 
its elastic properties in a toroidal current state with a uniax- 
ial symmetry of the toroidal subsystem (e.g., C,, ). We di- 
rect the intensity of the spontaneous toroidal moment along 
the sixfold axis (the Z axis). 

The free energy functional of the system is 

where the contribution of the toroidal subsystem to the free 
energy, F,, is found in accordance with (7)  with the addi- 
tional term ( 1/2)a> ( T; + T: ). We write the elastic ener- 
gy as 

1 
el (34) 

(p  is the shear modulus, K is the bulk modulus, and uij is the 
strain tensor). The energy of the interaction of the toroidal 
and elastic subsystems can in general be written as 

The first term here is responsible for the appearance of trans- 
verse components of the interband momentum matrix ele- 
ment P,, (and thus of the vector T)  in the static case. The 
second term is analogous to the term TP, where P is the 
polarization [cf. (25) 1 .  The number of independent compo- 
nents of the tensors 2 and 2' in the C,, class is six. F,,, can 
be written in terms of its components as follows: 

Equating the variational derivatives of the functional to 
zero, we find the following system of equations to describe 
the ground state: 

from which we determine Tol(z and the spontaneous strains 

Linearizing the system of equations of motion in (32) 
and 

d 6% 1+6,j  - p k . = ~ 6 u ,  2 

we find the spectrum of homogeneous oscillations (with 
q=O):  

1 ) o = 0; this is a quasiphonon branch. 

2) 0' = A (  - CZT + 3PTT$, + ? t , ~ : ~  + 41t,M:, ); thisis 
a gap corresponding to a branch of coupled longitudinal to- 
roidal oscillations (longitudinal with respect to the anisotro- 
py axis) and longitudinal acoustic oscillations. 

3) o2 = A ( a >  + 81t2u;, + 2?t4u:, ); this is a gap corre- 
sponding to the branches of coupled transverse acoustic and 
toroidal oscillations. 

An interesting effect is the excitation of transverse inho- 
mogeneous elastic oscillations in an alternating electric field 
crossed with an alternating magnetic field, e.g., in the field of 
an electromagnetic wave. This effect stems from the pres- 
ence of the T, Tx ux, term in the free energy, which contrib- 
utes to the equation of motion of the acoustic subsystem: 

1 d d %  i pi i  z ------q,T - T 
2 d x d u , ,  2 '" 

( p is the density of the medium). 
Since T, - [EH], , an external electromagnetic wave 

incident parallel to the x axis excites transverse acoustic os- 
cillations with a wave vector qllx (the displacements of the 
medium occur along the z axis). In general, one of the fields 
E or H may be constant, and the effect should disappear 
when it is turned off. The magnitude of the effect is deter- 
mined by the coefficient ?t, in (35a), which is of a Coulomb 
nature. An alternating electromagnetic field can also excite 
elastic oscillations in spin magnets, but there the effect will 
be determined by the small parameter of the spin-lattice in- 
teraction. 

An important point is the actual crystal anisotropy of 
the system. If we replace the crystal class C,, by a class with 
a more symmetric basis plane (e.g., C,,, ), the invariants 
similar to T, Tx u,, drop out of the functional. In this case we 
are left with only the excitation of longitudinal acoustic os- 
cillations, which is associated with invariants of the type 

Ttu,. 
In several materials, e.g., magnetic ferroelectrics, we 

would expect a toroidal current state to coexist with a ferro- 
magnetic order." In this case the free energy functional has 
terms describing the interaction of the toroidal and magnetic 
subsystems: 

9,,,=n,,kiu,,~l.I,T,-.rT rot M-vTZ2~Mz2. (37) 

The first term in (37) corresponds to a piezomagnetic effect 
in the toroidal current state. In terms of its transformation 
properties the tensor aij ,, is analogous to the toroidal pho- 
tomagnetism tensor il sj kl in (30). Because of the invariant 
Tscurl M, a minimum arises in the spectrum of one of the 
quasimagnon branches at finite values of q; as a result, an 
incommensurate magnetic structure may form. 

In addition to interacting directly with the toroidal or- 
der parameter in (37), the magnetic moment M contributes 
to the magnetic induction. It follows from the results of §§ 1 
and 2 that the total interaction of the toroidal order param- 
eter with the field is of the form 

9,,,=-T rot B'-qTE; (38) 

here 7 is a coefficient of Coulomb nature [see ( 14) 1, B' is the 
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magnetic induction which is external with respect to the to- 
roidal subsystem, 

4n 
rot  B1=rot (H+4nM) = - j,,,+4n rot M, 

C 

and j,,, is the external current. 
The contribution to the induction from the self-field of 

the toroidal currents in (2 )  is of the form T-curl curl T. The 
contributions of this structure, however, are already em- 
bodied in the last term in (7) .  Their order of magnitude with 
respect to the terms of the electromagnetic self-effect is ( c /  
v )  ( v  is a scale velocity of the material), and it would exceed 
the accuracy of this treatment to incorporate the electro- 
magnetic self-effect. Analogously, if a magnetic order M is 
orbital, and the coefficient T in (37) does not contain a relati- 
vistically small term, the contribution of M to the induction 
B' in (38) can be ignored. In the opposite case, it should be 
taken into account. 

In (38), we should understand B' as the static compo- 
nent of the electromagnetic field. The interaction of the to- 
roidal order parameter with the alternating component is 
taken into account in the second term in (38), which does 
not contain a relativistically small factor, in contrast with 
the corresponding term found by means of Maxwell's equa- 
tion from the first term in (38). 
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