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A supermatrix a-model describing a two-dimensional system of disordered metallic granules is 
considered. A perturbation theory is developed in the limit of long-range interaction between the 
granules or large hopping amplitude. In contrast to the perturbation theory applied in other work, 
the dimensional-regularization procedure that serves to cut off the integrals at large momenta is 
not used here, since all the integrals converge. It is shown that the coefficients of the logarithms 
that arise in the two dimensional case depend on the structure of the lattice. This dependence 
suggests the absence of a one-parameter renormalization group in the theory of localization. 

1, INTRODUCTION 

The hypothesis, advanced in Ref. 1, of the existence of a 
renormalization group has had an enormous influence on 
the development of the theory of disordered metals. Accord- 
ing to this hypothesis, the only quantity determining the 
properties of a disordered metal is the conductance of the 
system. Renormalization-group equations have been written 
down for this quantity. Using rather plausible assumptions 
about the form of the Gell-Mann-Low function, the authors 
of Ref. 1 predicted localization in an arbitrarily weak ran- 
dom potential in one and two dimensions. In a space with 
d > 2 dimensions a power-law behavior of the kinetic coeffi- 
cients near the mobility edge was predicted. The hypothesis 
of the existence of a renormalization group agreed with the 
results of direct summation of the lowest orders of perturba- 
tion theory2v3 and with the result of the analysis of a-mod- 
els4" describing the kinetics of disordered metals. The exis- 
tence of localization in wires in an arbitrarily weak random 
potential (first predicted by Thouless7 and following also 
from the results of Ref. 1) has been confirmed by an exact 
microscopic c a l c ~ l a t i o n . ~ ~ ~  

Essentially, the scheme of the renormalization-group 
method in the theory of localization coincided fully with the 
corresponding scheme in the theory of phase tran~itions. '~~' '  
This similarity has been confirmed by analysis of perturba- 
tion-theory ~ e r i e s ~ . ~  and by investigation of a - m o d e l ~ . ~ - ~  

However, it became clear rather quickly that there are 
certain points that distinguish localization theory from the 
theory of phase transitions. In the theory of phase transitions 
the main object is the order parameter, which is non zero 
below the transition point and vanishes above this point. The 
corresponding a-models in the theory of phase transitions 
describe slow variations of this order parameter. In the the- 
ory of localization the a-models describe variations of a cer- 
tain matrix Q, which is in no way an order parameter for the 
metal-insulator transition. The eigenvalues of the matrix Q 
determine the density of states (see, e.g., Ref. 9).  But the 
density of states is a smooth function of the concentration of 
impurities and does not vanish.'' Therefore, the matrix Q is 
not connected directly with the Anderson transition. 

It is not by chance that until now there have been de- 
bates as to what should be regarded as the upper critical 

dimensionality in localization theory. This dimensionality is 
easily determined in theories in which an order parameter 
exists. It is the absence of an order parameter in localization 
theory that causes the indicated difficulty. A recent investi- 
gation of the Anderson transition on a Cayley tree by the 
method of supersymmetry l3 led to the conclusion that there 
is a minimum metallic conductivity, as first predicted by 
Mott.14 This result is in sharp contradiction with the predic- 
tions of the renormalization group. This makes it timely to 
carry out a further check on the basic propositions of the 
renormalization-group method. 

At first glance, the a-models written down for disor- 
dered metals by means of the replica method differ little 
from the corresponding models in the theory of phase transi- 
tions. But the limit n + 0, where n is the number of replicas, 
is nontrivial. It was demonstrated recently15 that the appli- 
cation of replica a-models in a problem concerning the sta- 
tistics of levels, for which exact results are a~ai lable ,~ yields 
incorrect answers. Therefore, a proof of renormalizability 
carried out by the method of replicas cannot be regarded as 
reliable. The existence of the renormalization group for the 
supersymmetric a-modelg can also not be regarded as prov- 
en. This model differs fundamentally from the usual a-mod- 
els. The renormalizability of the usual u-models is a conse- 
quence of the invariance of the Hamiltonian under rotations 
in the spaces of the spins or matrices. Because of this invar- 
iance the terms quadratic in the gradients can be written in 
the same way, whence follows the reproducibility of the Ha- 
miltonian under renormalizations. 

In the supersymmetric a-model9 there exists a special 
direction A in the space of the supermatrices Q. This is con- 
nected with the noncompactness of this model. The exis- 
tence of a special direction is manifested most clearly in the 
calculation of the average value (Q ) determining the density 
of states. It turns out that this average is always proportional 
to the supermatrix A. 

In a situation when a rigorous proof of renormalizabi- 
lity is absent, summation of the perturbation-theory series 
can serve as a direct method of verifying the existence of the 
renormalization group. Such calculations have been per- 
formed in, e.g., Refs. 2 and 3. However, even direct summa- 
tion of diagrams requires care. The point is that, in two- 
dimensional space, the integrals describing the contribution 
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of the diffusion modes are formally logarithmically diver- 
gent at large and small momenta. The frequency can serve as 
a natural cutoff at small momenta. The cutoff at large mo- 
menta is more difficult. Naturally, in the one-loop approxi- 
mation the method of cutoff is unimportant and difficulties 
arise only in the next orders. Of course, one could take into 
account in explicit form the region of momenta of the order 
of the inverse mean free path. But this would greatly compli- 
cate the calculation. Therefore, for the cutoff one usually 
applies the less cumbersome procedure of dimensional regu- 
larization. According to this scheme all the calculations are 
performed in a space with d < 2 dimensions, in which there 
are no divergences at large momenta, after which one ana- 
lytically continues to dimensions d> 2. Dimensional regular- 
ization makes it possible to eliminate short distances entirely 
from the analysis. This procedure is widely used in field the- 
ory16 and the theory of phase transitions." The basis for the 
correctness of the application of dimensional regularization 
has been our confidence in the universality of the quantities 
that have been calculated. But the universality, in its turn, is 
a consequence of the existence of the renormalization group. 

If, however, it is not known in advance that the theory is 
renormalizable, it is impossible to assert that dimensional 
regularization will give a correct method of cutoff. There- 
fore, summation of diagrams by means of dimensional regu- 
larization can in no way prove the existence of the renormal- 
ization group. To verify renormalizability by summing the 
perturbation-theory series is possible only if we introduce 
short distances into the theory. For example, it is possible to 
consider models on a lattice, when the reciprocal lattice 
spacing serves as a natural cutoff. In this case, if the coeffi- 
cients of the logarithms turn out to be dependent only on 
quantities governing the behavior at small momenta (such 
as the diffusion coefficient), one could suppose that the the- 
ory is renormalizable. But if the coefficients of the loga- 
rithms depend on the structure of the lattice, i.e., the contri- 
bution from short distances turns out to be important, one 
cannot speak of the existence of a one-parameter renormal- 
ization group. 

Below we carry out a direct check on the renormalizabi- 
lity of a supersymmetric a-model on a lattice13 by means of 
summation of the perturbation-theory series. It is shown 
that the coefficients of the logarithms depend on the struc- 
ture of the lattice, indicating the absence of renormalizabi- 
lity of the theory. We conclude that the hypothesis of Ref. 1 
that a renormalization group exists is incorrect. 

2. CHOICE OF MODEL 

We shall investigate the model proposed in Refs. 9 and 
13 for a disordered metal. In this model we consider a system 
of metallic granules. Electrons can tunnel from one granule 
to another. In each of the granules there are randomly dis- 
tributed impurities. It is assumed that the mean free path in 
the granules is much greater than the interatomic distances. 

The study of the kinetics of the electrons in such a sys- 
tem is conveniently carried out using the method of super- 
~ y m m e t r y . ~ . ~  Performing the usual transformations, one can 
reduce the calculation of the density correlator K ( r ,  r') that 

completely determines the kinetics of the noninteracting 
particles to the form 

(1) 
where 

In formulas ( 1 ) and (2 )  the subscripts i, j, r, and r' label 
the granules. The constants Jij describe the interaction 
between the granules. These constants can be expressed in 
terms of amplitudes T, j  for hopping from the ith to the j th 
granule: 

In ( 1 )-( 3) the symbol v denotes the density of states at 
the Fermi surface, Vi is the volume of the ith granule, w is the 
external frequency, and Ai is the spacing between the levels 
in the ith granule (if it is isolated from the other granules). 

The symbol STr denotes the supertrace. The superma- 
trices Q and A have dimensions 8 X 8 and are equal to 

cos B i sine )U '=' (-i sin 6 -cos e 
U 1 0  

(4 )  
( 0 O), v A= (0 ) ' C70=1. 

The form of the matrices u, v, and 6 depends on the 
presence of time-reversal symmetry or central symmetry. 
The bar above the supermatrix U denotes "charge" conjuga- 
tion. The definition of this conjugation and the explicit form 
of the matrices u, v, and 6 can be found in the review in Ref. 
9. The superscripts on the matrices Q in ( 1 ) label the blocks 
distinguished explicitly in (4),  and the subscripts label the 
elements in these blocks. 

The model described by formulas ( 1) and ( 2 )  is a a- 
model on a lattice. Of course, if Q varies slowly from granule 
to granule this model goes over into the continuum super- 
symmetric a-model that was considered in Refs. 6 and 9. 

Below we study the case when the granules form a two- 
dimensional regular lattice. Here it is assumed that the inter- 
action can be an arbitrary function of the distance between 
the ith and jth granules (Jii = 0). The volumes yi of all the 
granules are assumed to be the same. For the continuum 
model, perturbation theory is well developed in the limit of 
large diffusion coefficients D. The terms of the correspond- 
ing perturbation-theory series are powers of logarithms of 
the frequency. The coefficients of the logarithms depend 
only on the bare diffusion coefficient. However, calculations 
carried out until now have used the dimensional-regulariza- 
tion procedure, which, generally speaking, does not follow 
from any physical properties of the system. On the other 
hand, the calculation of the perturbation-theory series for 
the model defined by formulas ( 1 ) and ( 2 )  requires no as- 
sumptions about the cutoff at large momenta, since the mo- 
menta are bounded by the reciprocal-lattice constants. 
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Therefore, the calculations for the proposed model on a lat- 
tice can serve as a check on the basic ideas of the renormal- 
ization group. If the coefficients of the logarithms are found 
to depend only on the diffusion coefficient, the hypothesis of 
the existence of a renormalization group will be confirmed. 
But if these coefficients turn out to depend on the structure 
of the lattice, this fact will disprove the existence of the re- 
normalization group. 

For spin models on a lattice there exists a regular meth- 
od'' of constructing an expansion applicable for large cou- 
pling constants or long ranges of the interaction. In this 
method one separates out the mean spin in the mean field 
approximation, after which one performs an expansion in 
the deviations from this mean spin. An analogous expansion 
can also be performed for the lattice a-model ( 1 ), (2).  The 
mean value of the supermatrix Qi in this model is exactly 
equal to the supermatrix A for all coupling constants Jij. 
Separating out this mean value, we reduce the functional (2) 
to the form 

where 

j 

As in Ref. 17, the subsequent calculation of the integral 
( 1 ) can be carried out by expanding in the interaction of the 
deviations from the mean spin (the first term in ( 5 ) ) .  It 
turns out to be somewhat more convenient to do the calcula- 
tion using decoupling of the second interaction by integra- 
tion over auxiliary fields. The details of the calculations are 
presented in the following Sections. 

3. REDUCTION TO AN INTEGRAL OVER AUXILIARY FIELDS 

We shall calculate the density correlator K(r,  r')  ( 1 ), 
(5)  in the limit 6f large J,, or long ranger, of the interaction 
between the granules. Decoupling the interaction between 
the granules in ( 1 ), ( 5) by integration over an auxiliary field 
Z, we reduce the density correlator to the form 

1 
K (r ,  r ' )  = - - 312V2 

8 
eXP[ -z i , j  ( I - ' )   ST^ Z~Z,] 

where 

M ( Z )  =In 1 exp [ 2  STr Z(Q-A) +a STr AQIdQ. ( 7 )  

In formula (6)  the integration is over the supermatrices 
Z, which have dimensions 8 x 8  and are self-adjoint 
( Z  = 2). The supermatrix Ai in (6)  is the transverse part of 
the supermatrix Zi: 

A='/2 (2 -UA)  . (8 

Correspondingly, the longitudinal part of the superma- 
trix Z is 

B='12 (Z+AZA). ( 9 )  

The subsequent calculations will be performed in the follow- 
ing order: We calculate the function M ( Z )  (7),  expanding 
the exponential in the integral in powers of 2; we substitute 
M(Z)  into (6) and integrate over B; we integrate in (6) over 
A .  All the calculations will be performed with the accuracy 
needed to obtain the two-loop approximation. 

The calculation of the integrals that appear in (7)  upon 
expansion of the exponential in powtrs of Z is performed by 
changing to the variables u, v ,  and 8 using the expressions 
(4 ) .  In the present case of broken time-reversal symmetry 
these variables have the form 

where, in turn, 

In ( 10) and ( 1 1 ) q ,  and x ,  are Grassmann variables, and 77: 
and x: are the elements conjugate to them. 

Performing the integration first over v, q*, x, x*, @, X ,  
and then over 8 and 8,, we can obtain the first terms of the 
expansion ofM(Z) in Z. The necessary integrals are given in 
the Appendix. In principle, the formulas (A.2)-(A. 10) do 
not contain all the integrals that arise when M ( Z )  is expand- 
ed in powers of Z to sixth order. This is connected with the 
fact that in all cases it will be necessary to integrate over B in 
order to obtain an effective free-energy functional depending 
only on A.  In the calculation of certain terms it is more con- 
venient to integrate first over B, and next over Q. According- 
ly, not all the possible integrals are needed. For example, the 
Appendix does not contain the integral 

< (STr A Q )  (STr B (Q-.I) ) 3 ) , .  

To write out the terms of the expansion of M(Z)  in 
powers ofZ to sixth order is fairly simple. For this it is neces- 
sary to make use of the formulas (A.2)-(A. lo),  which are in 
fact terms of the cumulant expansion. Because one obtains 
very cumbersome expressions and, in addition, it will still be 
necessary to integrate over B, we do not give these expres- 
sions here. In the next two Sections the density correlator 
will be calculated in the one-loop and two-loop approxima- 
tions. 

4. THE ONE-LOOP APPROXIMATION 

Before discussing the interaction of the fields A and B, 
we write the Lagrangian L,(Z) of these fields without the 
interaction (the terms quadratic in a and B )  : 
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L,[Z] = (I-') ,, STr &Z,- M ,  ( z J ,  (12) 
,) 

where M2(Z)  contains only terms quadratic in Z. Using for- 
mulas (A.2)-(A.4) and going over to the Fourier represen- 
tation in the coordinates, we obtain 

where the coefficient c is defined in (A. 1 ) .  
Using the definition ( 5 ) of a, we can convince ourselves 

that the coefficient ofA in ( 13) vanishes in the limit k + 0, 
w -+ 0. The fields A describe the diffusion modes. The fields 
b are not gapless in the limit k + 0, w -+ 0. The existence of 
the fields B leads to an additional effective interaction 
between the fields A. 

Substituting ( 13) into (6 )  and calculating the Gaussian 
integrals over the elements of the matrices A (the integral 
over B is equal to unity), we obtain an expression for the 
density correlator in the Fourier representation: 

K ( k )  ='I, (nv) ' ( J - J  ( k )  - i ~ )  -', 

K(k) =VZ ~ ( r ,  r t )  eik(r-rr) .  
T ' 

At small momenta it reduces to the usual diffusion pole: 

K ( k )  ='/, (nv)  ( D o k Z - i ~ )  -', Do=-'/2J"(0). ( 15)  

The coefficient Do in ( 15) plays the role of the effective diffu- 
sion coefficient. Formula ( 15 ) can be obtained easily from 
(2 )  if in ( 2 )  we expand the first term with respect to the 
gradients and choose a definite parametrization of the super- 
matrix Q. 

For example, this supermatrix can be presented in the 
f ~ r m ~ . ~  

Q=W+.\(I-W2) ", (16) 

where W is the "transverse" supermatrix ( WA + A W = 0).  
Substituting (16) into (1 )  and ( 2 )  and calculating the 
Gaussian integrals, we arrive at ( 15). 

The difference between this approach and those applied 
previously consists in the fact that now the diffusion modes 
are known even for large momenta (formula ( 14) ) .  This 
makes it possible to include short distances in the theory and 
to dispense with dimensional regularization. 

We now take into account the interaction of the field A, 
which describes the interaction of the diffusion modes. This 
interaction is made up of terms in M ( Z )  that are not qua- 
dratic in A, and interactions through the fields B. To find the 
total effective interaction it is necessary to integrate in (6 )  
over the fields B. This can be done by perturbation theory, by 

taking as the zeroth approximation the free B-field Lagran- 
gian in ( 13). The Gaussian integrals that arise are easily 
calculated if we make use of the following formulas, w h i ~ h  
can be verified by direct calculation: 

(BkMB-,>,=-2cJ2(k)M, (17) 

1 
(BkNB-k),= - J ( k )  (STr iV+A STr NV+T, STr T,N 

16 

(STr  BrN, .STr B-kN,>,='/2J(k) ST, T,.1', 
+cJ2 ( k )  (STr ,lP,.STr .V2-STr P,.STr P?). 

where 

( . . . . . . .  ).=J( . . . . .  ) e-La"[BldB, 

M is a transverse supermatrix (MA + AM = O), and N,, N2 
and N are longitudinal supermatrices (NA - AN = 0 ) .  In- 
tegrating over B, we arrive at an effective Lagrangian [A] 
that now contains only the fields A. Collecting all powers of 
A up to the sixth, we obtain 

E[A]=LO/[A]  +Li[Al+Lz[Al .  (18) 

where L ,  [A] and L,[A] contain the terms needed for the 
calculation of the one-loop and two-loop approximations, 
respectively. In this Section we consider the one-loop ap- 
proximation; here, therefore, we write out only L ,  [A], in the 
form 

L,  [A]=Lii  [ A ]  +Li z [A l ,  

where 

k 

The term L , ,  [A] in the limit of slow variations ofA in 
space can also be obtained directly from the continuum u- 
model of Refs. 6 and 9, which arises after expansion of the 
finite differences in (2 )  in powers of the gradients. By substi- 
tuting (16) into the expression for the free energy of the 
continuum model, expanding in powers of W, and making 
the replacement W = 2A /a ,  we obtain, in the lowest orders, 
the sum of L A [A ] and L , ,  [A] in the limit of long waves. 

The term L,,[A] in the limit of long waves is small, 
since it is proportional to the fourth power of the gradients 
(as ij -+ 0 ) .  This term has an anomalous structure, since it is 
a product of traces. Such a term cannot be obtained from the 
expansion in (2 )  in powers of the gradients and powers of W. 
If we had wished to write a continuum model in which the 
second term in (19) would appear, we should have had to 
add to the ordinary continuum a term of the type 

(STr AV2Q) '. (20) 
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Of course, this term contains higher-than-usual powers 
of the gradients. But it explicitly contains the matrix A, 
which breaks the symmetry. Therefore, in the model under 
consideration it is not possible to discard the contribution of 
short distances by means of dimensional regularization, 
since short distances break the symmetry. It is in this aspect 
that the supersymmetric a-model describing localization 
differs fundamentally from the usual compact u-models in 
which the contribution of short distances could not break 
the global symmetry. 

To corroborate this qualitative argument we shall per- 
form the calculation of the density correlator in explicit 
form. Allowance for the interaction between the A-fields 
leads to the result that in place of ( 14) one should write 

K ( k )  = ' / , ( n ~ ) ~  [@ ( k ) / 2 - j ( k ) ]  - I  

2 / ~  (k) =2/a+Z ( k )  , 

where Z(k)  is the self-energy part. 
The Gaussian integrals arising in the perturbation the- 

ory are easily calculated if one makes use of the formulas 

(AkMA-,)A=O, 

D (k) ( A L N A - ~ ) ,  = - (STr N - A  STr AiP 
16 

+ - c 3  STr t 3 N - A r 3  STr A t , N ) ,  

<STrAkM,.STr A-kM2>A= - STr M,M2, 
2 

where 

<......>,=I ( . . . . . .  ) e-Lorr*ldA, 

M, M , ,  and M2 are transverse supermatrices, N is a longitu- 
dinal supermatrix, and 

D ( k )  = [J-' ( k )  - 2 / a ]  -'. (23) 

The first term in ( 19) in the present model with broken time- 
reversal symmetry makes no contribution in the first ap- 
proximation (cooperons are absent). However, the second 
and third terms in ( 19) make a nonzero contribution in first 
order. After straightforward calculations we write the corre- 
sponding contribution Z, ( k )  to the self-energy part in the 
form 

It can be seen from the expression (24) that 8, (0)  = 0. 
The last term in ( 19) just serves to cancel the terms arising 
from the preceding term in ( 19) at zero momenta. Diagram- 
matically, the contribution of the one-loop approximation is 
depicted by the sum of diagrams in Fig. 1. In this Figure a 

solid line corresponds to the propagator D(k)  (231, and a 
dashed line depicts the propagator corresponding to the La- 
grangian LA' (13). 

Expanding the integrand in (24) in powers of k, we 
obtain in the region of small momenta 

The coefficient of k2 in (25) determines the correction 
to the diffusion coefficient Do and, as we should expect, is not 
logarithmic at small w. Therefore, in this order the breaking 
of the global symmetry at short distances discussed above 
does not lead to violation of the predictions of the renormal- 
ization group. In the next, two-loop approximation, how- 
ever, the anomalous terms do lead to the appearance of addi- 
tional logarithms, the coefficients of which depend on the 
properties of the model at short distances. 

The diffusion-coefficient correction determined by the 
expression (25) is small if the inequality 

D,B I (26) 

is fulfilled. 
Here, if the ranger,, of the interaction is large, the quan- 

tity Jcan be much smaller than or of the order of unity, since 
Do- Jr;. The quantity 1/D, serves as the parameter in the 
expansion performed. 

5. THE TWO-LOOP APPROXIMATION 

In the preceding Section we calculated the contribution 
of the first approximation. We now consider the next ap- 
proximation. To calculate the contribution of this approxi- 
mation it is necessary first of all to obtain the corresponding 
term L2 [A] in the effective Lagrangian 2 [A] ( 18). By rath- 
er cumbersome computations, we find 

L ~ [ A I = L ~ I [ A I + L ~ ~ [ A I + L ~ ~ [ A I ,  

1 
+STr AizAJ,'A JiJjk ] - - [(I,,) ' 4a6 i , j  

(27) 

FIG. 1. 
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In the formulas (27) the coefficients a, 6, and c are 
defined by the expressions (A.  1 ) . The term L,, [ A ]  contains 
terms ofthe type STrA 'A and STrA 4. In the present case ofa 
system with broken time-reversal symmetry these terms do 
not give a contribution to the two-loop approximation. 
Therefore, the explicit form of LZ3 [ A ]  is not given here. 

We draw attention to the different structures of L,, [ A ]  
and L, , [A] .  The term L , , [ A ] ,  like L l l [ A ] ,  in the long- 
wavelength limit can be obtained directly from the contin- 
uum a-model if we make use of the parametrization (16) 
and make the replacement W = 24 /a. Therefore, we may 
expect in advance that the contribution arising from L l l  [ A ]  
and L,, [ A ]  should coincide with the results obtained for the 
continuum model by means of dimensional regulariza- 
tion.3,4,6.9 The term L,, [ A ]  has an anomalous structure. If 

the contribution arising from the anomalous terms L l , [ A ]  
and L,, [ A ]  contains logarithms, there are no grounds at all 
to suppose that the coefficients of these new logarithms will 
depend only on Do. 

We now perform a direct calculation of the correction 
to the diffusion coefficient. As in the preceding Section, we 
calculate the self-energy part B ( k ) .  The terms of the two- 
loop approximation arise from the terms of first order in 
L, [ A ]  and second order in L ,  [ A ] .  The integrals obtained 
can be depicted by the graphs in Fig. 2. In this Figure, as in 

u (,-'I /-\ 

/- \ 
J ' I '  \ /  \ I 

\ / L L v  * 

FIG. 2. 

Fig. 1, the solid lines correspond to the propagator of the 
Lagrangian L  6 [A 1 in ( 1 3 ) ,  and the dashed lines corre- 
spond to the propagator of the Lagrangian L  [B 1 .  Such 
graphs also arise in the analysis of spin models." We note 
that the normal terms L , ,  [ A ]  and L,, [ A ]  and anomalous 
terms L I Z  [ A ]  and L,, [ A ]  give all possible graphs. It is not 
possible to assign each of these two types of terms to particu- 
lar distinct types of graphs. The first ten graphs correspond 
to terms of second order in L ,  [ A ] ,  and the others correspond 
to terms of first order in L,  [A 1 .  

We consider first the contribution of the normal terms 
to Z,,(k).  Calculating the Gaussian integrals by means of 
the formulas (22) ,  we obtain after fairly simple computa- 
tions 
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In (28) the propagatorD(k) is determined by formula (23). 
By direct calculation we can convince ourselves that 

X2, (0) = 0. Expanding X,, ( k )  ink and calculating the coef- 
ficient of k2, we can also see that only first powers of loga- 
rithms appear in this coefficient. These logarithms are gath- 
ered from the regions k,(l, k,- 1 and k2- 1, k,(l .  
Relabeling the integration variables and separating out the 
logarithmic terms, we reduce X,, (k )  (28 ) at small k to the 
form 

In (29) k, and ks are components of the vector k. In 
the integral over k, the integration extends over the region S, 
which is the exterior of a circle with center at the coordinate 
origin and with radius tending to zero. It is not possible to 
integrate from the origin itself over the entire plane, since D 
has a pole at k = 0. To calculate the integral over k, we use 
the identity 

dD (kl) J2 (kl) . Lr(ki)D2(ki)=dk,. 

Using the identity (30), we integrate the first term in 
(29) by parts. Then the volume integral that arises cancels 
the contribution of the remaining terms in the square brack- 
ets. As a result the integral over k, in (29) is reduced to an 
integral over a small circle with center at the coodinate ori- 
gin. Evaluating this remaining integral (which effectively 
reduces to taking the limit k, + 0)  and carrying out the 
integral over k,, we obtain 

In (31) Do is the diffusion coefficient, defined by the 
expressions ( 15 ), and Go is of the order of Jand serves as the 
cutoff (the corresponding characteristic momentum is of the 
order of r; I ) .  We draw attention to the fact that in the cal- 
culation of the coefficient of the logarithm in (3 l ) the con- 
tribution of the short distances turned out to be unimpor- 
tant. Therefore, the integral considered could be calculated 
by the procedure of analytic continuation in the dimension- 
ality of space from a dimensionality less than two, while re- 
jecting the contribution of short distances at the outset. 

The situation with the contribution of the anomalous 
terms LI2[A] and L2,[A] is different. Here short distances 
have a substantial influence on the magnitude of the coeffi- 
cients of the logarithm that arises. Taking into account 
terms of first order in L,,[A] and second order in L12[A] 
and calculating the Gaussian integrals by means of formulas 
(22), we can obtain the corresponding self-energy part: 

Using the relation (23), we can convince ourselves that 
8c2 1 a. X2,(0) = 0. The fact that all the self-energy parts at k = 0 Z2,(k) =k2-- 1-.I (J/(P))zJ(P)( J(P)-$)=. d2p 

are equal to zero is a consequence of the law of conservation xa' Do 63 

of particles. Expanding X2,(k) (32) and calculating the co- 
efficients of k2 we obtain, with logarithmic accuracy, (33) 
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Formula (33) shows that, in contrast to the case of 
2;; (O), the coefficient of the logarithm in 2;; (0)  is formed 
by the region of large (of the order of r; I )  momenta (the 
prime denotes differentiation with respect to one of the mo- 
mentum components). 

For large a )  1 the quantity 8;; (0) contains higher 
powers of a-'. However, allowance for this term for r o )  1 
does not represent an excess of accuracy, since the contribu- 
tions of the next approximations will contain higher powers 
of r; I. But if we consider the case a 5 1, while preserving the 
inequality D o )  1, then 8;; (0) and 8;; (0) become equal in 
order of magnitude. 

6. CONTRADICTION WITH THE RESULTS OF THE 
RENORMALIZATION-GROUP METHOD 

In the preceding Sections we have developed a pertur- 
bation theory in the long range of the interaction for a system 
of disordered metallic granules. The chief merit of the calcu- 
lation offered is that there is no necessity to cut off the inte- 
grals artificially at large momenta, since the region of inte- 
gration is a cell of the reciprocal lattice. The formulas (25), 
(31), and (33) make it possible to write in explicit form the 
correction acquired by the diffusion coefficient D as a result 
of the interaction of the diffusion modes. Substituting (25), 
(31),and (33) into (21) andcomparingwith (15), we find 

1 Go 
D=Do(l-6) - -(I-y)lnr, (34) 

4 0 0  o 
where 

D 
fj=- D -  Do 

16n' 
o-- 

16n ' 

In (34) we have taken the limit G -+ 0 in the expres- 
sions for S and y. If we neglect the quantities S and y, for- 
mula (34) gives the well known result obtained by means of 
dimensional In this situation all the coef- 
ficients of the logarithms should depend only on Bo, as 
should be expected from the existence of the renormalization 
group that was investigated in Refs. 1,4,6, and 9. The quan- 
tities S and y are small for J )  1. However, to take them into 
account does not constitute an excess of accuracy, since the 
higher terms of the perturbation-theory series contain high- 
er powers of r; '. For J S  1 the parameter y is of order unity. 

The appearance of finite coefficients S and y that de- 
pend on the structure of the lattice contradicts the existence 
of the renormalization group. In the present limit of a long 
range ro of the interaction between the granules the expres- 
sion (34) obtained is sufficient to display this contradiction. 
Indeed, replacing the model (2)  by the continuum a-model 
and performing the usual transformations in the scheme of 
the renormalization-group method we arrive at the well 
known formula. 

where go is the effective charge, proportional to the resistiv- 
ity, and SZo is the cutoff parameter. The dependence of the 
coefficient of the logarithm in (34) on the structure of the 
lattice would not contradict the existence of the renormal- 
ization group only if it were possible to force the quantities y 
and S into go and SZo in (35). We shall attempt to do this by 
expanding the denominator in (35) in powers of the loga- 
rithm and comparing the coefficients of the logarithms in 
(34) and (35). In practice, only the parameter y is impor- 
tant, since Sgy always holds. A simple calculation makes it 
possible to establish the following correspondence: 

A 

I- (I-y)'I3 
Q0=ao exp x, x=2D02 

1-Y 

In order of magnitude the parameter x is equal to 

In the limit ro$ 1, D o )  1 the parameter ?c is always large. 
This means that the cutoff should occur at frequencies much 
higher than 23,- J. But this cannot happen, since the contin- 
uum limit of the lattice model exists only for G<Go. This 
indicates that the assumption of the existence of the renor- 
malization group contradicts the formula (34) obtained. 
Since the expression (34) was obtained by a rigorous micro- 
scopic calculation, while the existence of the renormaliza- 
tion group was justified by application of the procedure of 
dimensional regularization, the correctness of which has not 
been proven, the conclusion that there is no renormalization 
group becomes unavoidable. 

In the above investigation the assumption of a long 
range ro of the interaction was essential. Intuitively, it seems 
clear that the question of the existence of the renormaliza- 
tion group is not connected with the magnitude of the range 
of the interaction. Apparently, the renormalization group 
does not exist for ro- 1 as well. To verify this assertion, how- 
ever, would require calculations of higher orders of the per- 
turbation theory, and this does not seem possible. 

7. CONCLUSION 

It has been shown above that a two-dimensional super- 
symmetric a-model with broken time-reversal symmetry, 
describing a system of metallic granules with impurities, is 
not renormalizable. Despite the formal similarity, the model 
under consideration differs strongly in its properties from 
spin models on a lattice. This difference is a consequence of 
the noncompactness of the group of supermatrices and the 
presence of anticommuting Grassman elements as the ele- 
ments of the matrices. Although for this model in the contin- 
uum limit (just as for spin models) it is possible to carry out 
a renormalization procedure using dimensional regulariza- 
tion, the renormalization-group method is not applicable 
here. The whole point is that global rotational symmetry is 
broken in this model. However this symmetry-breaking is 
manifested only when short distances are considered. The 
use of dimensional regularization causes information about 
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short distances to be discarded, and as a result, until now, the 
symmetry breaking has not been noticed in the treatment of 
two-dimensional models of localization. There are no 
grounds to suppose that the situation will change if we con- 
sider models that are invariant under time reversal. 

Of course, the investigation performed serves as a refu- 
tation only of the renormalization group that was proposed 
in Refs. 1 and 3. I t  may be conjectured that there exists some 
more complicated renormalization group, not yet known to 
US. 

According to the scaling hypothesis that was used in 
Ref. 1, the change of the conductivity of a finite sample with 
change of the size depends only on the conductance and the 
magnitude of the change of the size. The established absence 
of a renormalization group implies that the conductance is 
not the only quantity determining the properties of a finite 
sample. Large deviations from the average value are also 
important. 

The hypothesis of the existence of a renormalization 
group made it possible to conclude that the kinetic coeffi- 
cients have a power-law behavior near the mobility edge in a 
space with dimensionality d > 2. This result is contradicted 
by an exact analysis in a model on a Cayley tree,14 in which 
the minimum metallic conductivity first predicted by Mott 
(see, e.g., Ref. 15) was obtained. In view of the fact that the 
renormalization-group hypothesis turns out to be incorrect, 
there are no grounds to believe in scaling near the mobility 
edge. The existence of a minimum metallic conductivity and 
a maximum dielectric permittivity in the region of localiza- 
tion seems to the author to be more natural. 

Very strong statements followed from the existence of 
the renormalization group for d = 2. According to Refs. 1 
and 2, in two-dimensional space all states are localized for an 
arbitrarily weak random potential. An even more surprising 
statement was made in Ref. 18, in which it was predicted that 
the conductivity becomes infinite in two-dimensional sys- 
tems that are invariant under time reversal but have broken 
central symmetry. The absence of the renormalization group 
means that we cannot regard these results as justified either. 
I t  seems more natural that there exist in all cases a mobility 
edge and a minimum metallic conductivity. 

Localization in wires with arbitrary weak disorder is 
not in doubt. Renormalization-group ideas, however, are 
not necessary to establish this fact. 

In conclusion, the author thanks P. B. Vigman, A. I. 
Larkin, and D. E. Khmel'nitskiy for discussion of the results 
of the work. 

APPENDIX 

We shall give formulas for the values of the integrals 
arising in the calculation of M ( Z )  (7) .  Introducing for bre- 
vity the notation 

/ rp (2, Q )  ea AQ d Q- (V (2,  Q )  )Q 

for arbitrary functions p ( Z ,  Q ) ,  and 

we write the necessary integrals in the form 

(STr B(Q-A) >,=O, (A.2 1 

< (STr B (Q-A) ) 9 Q = c  ( (STr BA) '- (STr B ) 2 ) ,  (A.4) 

1 
= - (-STr AA2B+ca STr A2.STr .lB), 

a2' 

3 (-4.5) 
< (STr B (Q-A) ) 9, = - [a (STr AB.STr B2 

2a2 

-STr AB2.STr B) +2b ( (STr AB) '- (STr B) ') STr AB], 

(A.6) 
< (STr AQ) '),-3< (STr AQ) 2>Q2  

< (STr AQ) (STr B (Q-A) )2>Q 

1 
= - [  ST^ A'BZ-ST~ (AB) ' 
a3 

+ b STr A2 (3  (STr AB)'- (STr B) ') 

3 
X STr B (Q-A) = 7 [3  STr ABA4+3b (STr STr AB 

a 
4 (a-4b) (STr A4.STr AB+2 STr A2+S Tr M A 2 )  3, 

(A.9) 

< (STr AQ)@>,-15< (STr AQ)'>,< (STr AQ)'), 

+3< (STr AQ) 2>Qs 

45 
= - [STr Ae+b (STr A')'+ (a-4b) STr A2.STr A']. 
as 

(A.lO) 

In formulas (A.2)-(A. 10) the supermatrices A and B 
are determined by the expressions ( 8 )  and (9 ) .  Integrals 
containing an odd number of supermatrices A are equal to 
zero. 
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