
Phase diagram of layered quasi-one-dimensional conductors in a magnetic field 
A. G. Lebed' 

L. D. Landau Institute of Theoretical Physics, Academy of Sciences of the USSR 
(Submitted 1 April 1985) 
Zh. Eksp. Teor. Fiz. 89, 1034-1049 (September 1985) 

A study is made of the phase diagram of a two-dimensional anisotropic conductor in a magnetic 
field. It is shown that the problem of finding the free energy reduces to a certain effective Peierls 
problem, while the phase diagram consists of a series of excitonic subphases. The stability curve 
T(H) for a layered quasi-one-dimensional conductor is determined, and it is found that the 
transition temperature and other physical quantities can undergo "rapid" and "slow" oscillations 
with periods in the inverse field of 2.irefi/cS and .irefit,/cSt,, where t ,  and t, are the tunneling 
integrals and S is the effective area of the "orbits." The results are compared with the experimen- 
tally observed oscillations of (TMTSF),ClO,. 

1. INTRODUCTION 

A large body of experimental material has accumulated 
on the properties of the so-called Bechgaard salts-the com- 
pounds (TMTSF),X, where S = ClO,, PF,, AsF,, e t ~ .  (see 
reviews's2). These substances have been synthesized in the 
search for quasi-one-dimensional superconducting materi- 
als. In addition to superconductivity, Bechgaard salts exhib- 
it a number of other interesting properties, many of which do 
not have familiar analogs. The latter include, first of all, the 
unusual behavior of these compounds in a magnetic field at 
low temperatures. These properties are most conveniently 
summarized by means of the phase diagram in (T,P,H) 
space; such diagrams have been obtained experimentally for 
X = C10, and X = PF, (Fig. 1 ) . The cross-hatched part of 
the surface for H > H, is found3., to correspond to the phase 
boundary (in terms of the field) between the anisotropic 
metallic phase and field-induced magnetic semimetallic 
phases (MSPs) . 

The states on this diagram for H > H,  are manifested in 
unexpected physical phenomena. The existence of semime- 
tallic subphases was first detected on the basis of features in 
the magnetoresi~tance.~~~ They were originally interpreted 
in terms of Shubnikov-de Haas oscillations. The atypical 
properties of these oscillations and the subsequent observa- 
tion of jumps in the Hall voltage led to the that there 
was actually a whole series of phase transitions to a magnetic 
state with a spin-density wave (SDW). We emphasize again 
that for H <  H, there is an ordinary anisotropic metallic 
state with a high conductivity and that the observed transi- 
tions are undoubtedly induced by the field. 

The layered nature of the compounds (TMTSF),X will 
be essential to our understanding of the features of the phase 
diagram of these compounds. It has been shown7 that 
layered metals in a magnetic field are unstable against the 
formation of a spin-density wave. We shall link the features 
of the properties of Bechgaard salts to just this instability. 

Let us review the instability mechanism.' For quasiclas- 
sical electrons moving along open trajectories, the motion in 
real space is along the directions perpendicular to the open- 
ness. In a magnetic field their transverse motion is bounded. 
Moreover, they take on one-dimensional properties-the 

electrons and holes on opposite sides of the Fermi surface do 
not separate to infinity in the transverse direction. If there is 
an attraction between them (Coulomb interaction) they 
easily form pairs, giving rise to a spin or Peierls instability. 
Which of the two instabilities develops depends on the spe- 
cific circumstances. In the substances under discussion at 
P = 0 it is the spin instability that occurs. The metallic state 
in Fig. 1 is the result of the destruction of the SDW phase by 
pressure. Consequently, near the threshold the mechanism 
described above will result in the restoration of the SDW 
state even in a weak field. 

The goal of the present study is to carry out a more 
detailed analysis of the SDW or charge-density wave 
(CDW) instability in layered compounds and, in particular, 
to study the possible structure of the various subphases. The 
experimental material corresponds well to the model chosen 
below. With this in mind, let us begin with a brief discussion 
of certain features of the electronic spectrum of Bechgaard 
salts and the associated features of the phase diagram in the 
absence of a magnetic field. Next, in Sec. 3 the instability in a 
magnetic field will be demonstrated under quite general as- 
sumptions. Finally, in Secs. 4-6 the phase transition tem- 
perature and the phase diagram below the transition point 
will be studied in reference to the specific electronic spec- 
trum of the compounds (TMTSF),X. In the Conclusion our 
results are compared with the experimental situation. 

FIG. 1. 
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2. DEGENERATE ELECTRONIC SPECTRUM 

I t  is customarily assumed (see, e.g., Ref. 1) that the 
extremely simple electronic spectrum 

which corresponds to the tight binding model in an ortho- 
rhombic lattice, gives a good description of the properties of 
Bechgaard salts ( b  * and c* are the axes of the resistivity 
tensor). The experimental estimates of the overlap integrals, 
t,/t, z 10-30, reflect the layered nature of these com- 
pounds. Consequently, in a first approximation the elec- 
tronic spectrum can be assumed two-dimensional: 

Electronic spectra (1  ) and ( 1') have a number of fea- 
tures. For example, for the choice8 of wave vector 
Q, = (2k,,r/b *,r/c* ) there is perfect nesting, i.e., an exact 
superposition of the right and left parts of the Fermi surface. 
This mechanism in and of itself could lead to the formation 
of an insulating SDW (CDW) statee9 For some time this 
mechanism was assumed to be responsible for the formation 
of the SDW phase in the compounds under study. However, 
the first estimates1' of the size of the electron pockets on the 
basis of the Shubnikov-de Haas oscillations argued more in 
favor of a "direct" nesting vector Q = (2kF,0,0). Measure- 
ments5v60f the Hall constant in (TMTSF),ClO, now permit 
us to assume with considerable assurance that the super- 
structure vector is direct and that the spectrum is of the form 
( 1 ) , ( 1 ' ) . This assurance is due, in particular, to the nontri- 
vial experimental consequences which stem from the specific 
features of dispersion relation ( 1') and which we shall now 
discuss. 

To find the stability region of a metal with the disper- 
sion relation ( 1 ), ( I f ) ,  let us consider the generalized sus- 
ceptibility of the system in the presence of a SDW (CDW) 
perturbation 

(6 is a Pauli matrix), where the vector Q is chosen in the 
form 

Here and below we assume, as usual, that the pressure in- 
creases the tunneling integral t,, and so the metallic phase is 
realized for P >  P =P(t  ). We shall see that all the results 
apply in equal measure (in the weak-field region and for the 
specified dispersion relation) to both SDW and CDW pair- 
ing. The majority of the formulas do not depend on the 
choice of order parameter in (2 ) .  Therefore, to avoid com- 
plicating the exposition by allowance for the spin variables, 
we shall drop them everywhere. In general terms we shall 
sometimes refer to the transition to the new phase as an exci- 
tonic transition. 

The problem in the absence of magnetic field has been 
studied previously, '' and we shall briefly list the features of 

the phase diagram which are peculiar only to dispersion rela- 
tion (1)  or (1') .  For example, it turns out that in case ( 1') at 
T = 0 stability considerations do not determine the periodic- 
ity of the superstructure at all-the stability of the metallic 
phase is insensitive to the choice of structure vector ( 3 )  for 
lk 1<4tb/v. If, on the other hand, t, #O, the degeneracy is 
limited to the region Ik 1 <4( t, - t, )/v. The curve of the 
transition temperature T ( P )  also behaves in an unusual 
manner. In the neighborhood O(Po - P(P, this tempera- 
ture has a nontrivial dependence on the pressure: 

This kind of dependence is typical in the case of the forma- 
tion of soliton superstructures. Finally, in the insulating 
phase ( k  = 0 )  the solution of the self-consistency equation 
for the gap is a step function: 

For t, < A d 2  the energy bands 

do not overlap, and in this case, as usual, l2  A does not depend 
on t, . Thus, the two-dimensional dispersion relation ( 1') is 
characterized by the discontinuous vanishing of the gap a t  
t, = t = A,/2 (there is no hysteresis!). If t, # 0, "pockets" 
of carriers form with increasing t, (as long as 
t, + t, > A, > t, - t, ), while for A = 2(t, - t, ) the transi- 
tion to the metallic phase occurs as before with the discontin- 
uous vanishing of the gap A. 

This behavior of the order parameter A(t, ) should be 
manifested experimentally in a substantial difference 
between the value of the optical gap of (TMTSF),X com- 
pounds and the value of the activation energy 
A, = 2A - 4tb,  which determines the low-temperature be- 
havior of the static s~sceptibil i ty.~ 

3. INSTABILITY OF A LAYERED QUASI-ONE-DIMENSIONAL 
METAL IN A MAGNETIC FIELD 

Let us digress for a moment from the specific electronic 
spectrum of the Bechgaard salts to a more general type of 
spectrum: 

E ~ , ~ ( P I , ,  PL) = * ~ ( p l l T k ~ ) f  t (PI), ( 4 )  
where the "Fermi momentum" k, is determined by assign- 
ing the number of carriers: 

Let us study the features of the response of a system of nonin- 
teracting electrons, without specifying the type of perturba- 
tion (2 )  (diagram in Fig. 2 )  : 

Xo (k) =T J dx' exp[ik (XI-o) ]g++ (iw,, p,; i, z') 
On SL 

xg-- (ion,  P,; x', $1, ( 5 )  

where S, is the area of the transverse cross section of the 
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Zk,+q,+k 

2k,+ k 2kF+k c3- 4 

FIG. 2. 

Brillouin zone. As usual, the magnetic field ( H l a )  with vec- 
tor potential 

A= (0, Hx cos a, Hx sin a )  

is taken into account by the replacement p,+p, - ( e / c ) A .  
Then the slowly varying partsg, + andg- - of the right and 
left Green's functions 

G,, (io,, pl; s, x') =exp [f ik (x-x') I g** (ion, PA; x, x') 

satisfy the respective equations 

xg,. (io,,,  p,; x, x1)=6(x-x') (6) 

(for a CDW pairing, Eq. (6 )  really should include a term 
pBH, but in what follows this term will always be negligi- 
ble). 

We now integrate (6 )  with allowance for the boundary 
conditions at infinity. We then have 

sign on 
g++(ion,p,;x.xf)=------esp 

i L> 

i eHu cos a --J u , ,  t ( p b -  C 

for w ,  (X - x')/u > 0, and in the opposite case g+ + is zero 
[for the functiong- - the sign of the frequency in (7 )  should 
be changed]. Substituting (7 )  into ( 5 ) ,  we finally get for the 
response of a system of noninteracting electrons 

eIfu cos a 
, PC - -- 

C 
1, 

XCOS kx+ C.C. 1. (8 )  
where for small x the integral is cut off at atomic distances 
d -iiu/E,. 

We see that in the two-dimensional case the periodicity 
of the function in the exponential allows the vector k to be 
chosen commensurate with the period of this function, and 
integral ( 8) for T = 0 diverges logarithmically at  large dis- 
tances. Actually, for layered compounds t(p, )=t(pb ), and 
therefore with allowance for the definition of the Fermi mo- 
mentum (4') the inside integration over d u  gives a phase 
which depends periodically on the variable x. The integral 

(8 )  is cut off at large distances only by the temperature. In 
the general three-dimensional case this is of course not true, 
since the integration in ( 8 )  along an arbitrary straight line 
lying in the transverse cross section of the Brillouin zone 
does not necessarily lead to a periodic function in the expo- 
nential. 

I fxo  diverges logarithmically, then it is, as usual, neces- 
sary to take the interaction of the electrons into account. 
Summation of the series of ladder diagrams gives a criterion 
of the Stoner type for the stability of the metal: 

whereg > 0 is the effective electron-electron interaction con- 
stant. As in the Cooper effect, expression (9)  with the appro- 
priate sign of the interaction indicates the absolute instabil- 
ity of a two-dimensional metal with open Fermi surfaces in 
an arbitrarily weak magnetic field. 

4. PHASE TRANSITION TEMPERATURE 

Let us return, however, to the properties of the family of 
Bechgaard salts. The choice of a coupling constant in these 
compounds is determined by the type of transition in the 
absence of magnetic field at P = 0. In  view of the existing 
experiment, we shall henceforth discuss specifically SDW 
pairing. We choose the wave vector in form ( 3 )  and the 
electronic spectrum in form ( 11, ( 1 ' ) .  The magnetic field is 
assumed parallel to the c* axis. 

Substituting (1 )  into (81, we write the stability crite- 
rion for the metallic state [i.e., a positive denominator in 
( 9 ) ]  in the form 

in which we have separated out the magnetic-field depen- 
dence of the diagram in Fig. 2: 

X 
cos (2pp) nThdq 
tb sinh (nTkcp/tb) ' (10') 

ZnTdx 
~ c o s  (2kx) 

v sinh (2nTzlv) 
(10") 

(we assume that it is the metallic state that is realized in the 
absence of the field, i.e., that @, > 0) .  In ( 10') we have intro- 
duced the notation 

h=4t~/eHuD*, p=hku/4tb, (11) 

and J 0 ( x )  is the Bessel function of order zero. 
For Tb /t, % 1, expressions ( 10') and ( 10" ) simplify: 

m 

cos (2prp) nTLdrp 
@ (h, P, T) =- .i [J0(2h sin rp) -I0 (2hrp) I -  tb sinh(nThlplt,) 

11 
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1 
Oo(k,T)=-- 1. (+ x) oos (2kx) 

2nTdx 

g a u sinh (2nTx/u) 
(12') 

(the role of the "three-dimensionality" of the electronic 
spectrum, t ,  #O, will be discussed separately). 

The magnetic-field dependence T(A) of the tempera- 
ture of the phase transition from the metal to the SDW state 
is included in the dependence of @(A,p,T) on the dimen- 
sionless parameter A. Since several parameters appear in 
( l o ) ,  it is necessary to find the maximum value of T as a 
function (given implicitly for fixed A )  of the wave vector 
k ( p ) :  

Let us consider the weak-field case (H-tO), where the 
parameter A+w. In this limit the problem simplifies sub- 
stantially, since the transition temperature T(A ) is exponen- 
tially small. Therefore, one can evaluate ( 12) keeping only 
the leading terms in l/A, which give the required accuracy, 
and neglect all the corrections in powers of T. 

In this region function ( 12') depends only weakly on 
the temperature (see Appendix 1 )  and is given by 

( k ,  T) =In (th/tbo). 

As to integral ( 12), let us first evaluate it to logarithmic 
accuracy by averaging the integrand in ( 12) over the rapidly 
oscillating Bessel function: 

In deriving ( 13 ) we have used the formula 

J0(2h sin y )  =lo2 ( h )  + 2 z  I,,,' (A) eos (2mq1) 

Formula ( 13) thus determines T(A ) for "commensurate" 
[see ( 1 1 ) 1 vectors 

Choosing from ( 13 ) the maximum value of J 2, (A) for 
In 1 =A, we obtain the following magnetic-field dependence 
for the stability curve: 

(here we have used the asymptotic form of J ,  ( A )  for 
A - n-A ' I 3 ) .  

Relation (13) explicitly contains the result of the pre- 
vious section regarding the instability of a layered quasi-one- 
dimensional metal even in an arbitrarily weak magnetic 
field. In addition, it shows how that result is related to the 
degeneracy of the stability curve T(k)  for spectrum ( 1') at 
H = 0: the same degeneracy is also present in ( 13) at small 
n ( k ) ,  since for n - 1 the asymptotic behavior of the Bessel 
function for A )  1 does not depend strongly on the index n. 
The magnetic field, however, lifts the degeneracy in favor of 
larger / k  I =4t,/u, since, as we have said, the function J i  ( A )  
attains its maximum for In 1 -A. Consequently, the instabil- 
ity corresponds to the superposition of the parts of the Fermi 

surface with a wave vector Q from (3 ) :  

Such a superposition can be interpreted as the formation of 
rather large "pockets" of carriers (see Fig. 3 )  with an effec- 
tive area of the "orbits" 

We emphasize again that this result stems from the choice of 
spectrum ( 1') and vector Q from ( 3 )  and, consequently, the 
experimental results, which indicate large pockets, appar- 
ently argue in favor of just such a 

Let us study ( 13) in more detail. In the neighborhood 
1A - n 1 -A 'I3 the function J ( A )  changes little as a func- 
tion of n. Equation ( 15) gives only the monotonic part of 
T(A ). In deriving ( 13) we also used a discrete set of possible 
instability wave vectors ( 14). When H changes the index n 
changes, but we shall show presently that T(A) corresponds 
to integer p .  Small nonmonotonic oscillations thus arise 
against the background of the function T(A ) from ( 13). 

We have already seen that the important region is 
A - p -A 'I3. In the integral ( 12),  by excluding for the time 
being the immediate neighborhood of p = 0, we can neglect 
the term J , ( U p ) .  The remaining product of rapidly oscil- 
lating Bessel functions and cos(2pp) gives the main contri- 
bution to the integral near the points p = n-m. By neglecting 
the slow dependence of the temperature factor, we can easily 
express the contribution in the neighborhoods of these 
points in terms of the square of the Bessel function [or, more 
precisely, its asymptotic behavior for A - n -A 'I3 (see Ap- 
pendix 2)  1. We denote this contribution by o2(A,p) .  After 
this, and with allowance for the neighborhood o f p  = 0 [the 
contribution from which we denote @, (A y ) 1, integral ( 12) 
can be rewritten in the form of a series 

naTh cos (2pnrn) 
Q(h, P . T ) = @ , ( ~ ,  P ) - @ z ( ~ ,  C) 

t, sinh (x2Thmltb)' (18) 
,n= I 

We recall that @(A,p,T) is the contribution to the suscepti- 
bility which appears in the denominator of the Stoner crite- 

- 
R=Y**/o 

FIG. 3.  
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rion (9).  Here @,(A,p) > 0, and we see that the minimum 
values of the sum in ( 18) actually are reached at integral 
values ofp [otherwise there is no logarithmic divergence for 
T 4  in ( 18) 1. We are now interested in the function 
@,(A,p) itself in the region of the maximum 
(Ip -p*(A)l& 'I3), where it is ofthe form 

(Dl (A,  p) =0.4G>.-'3-0.i451-"3[p-p' (k) I?, 
p* ( A )  =A-0.81h'" (19) 

(see Appendix 2).  Thusp must be an integer, the one closest 
top*(A). AsA changes, according to ( 19) and the definition 
ofp*(A), there are jumps in the vector k (i.e., p)  with a 
period 

In this derivation we have used for the oscillations only the 
second term in ( 18), which we can do when the tempera- 
tures are exponentially small [the sum in ( 18) is replaced by 
a logarithmic integral]. We assume that the system is found 
at the stability threshold: tb - t i  (t :. Then, in fields 

0 A '13(t,/(tb - t b )  the properties of @,(A,p) become im- 
portant. As we show below, oscillations (20) still remain in 
this case. 

It follows from ( 13) and (20) that the oscillations are 
small: 

AT ( A )  /T  ( A )  ~ 0 . 8 8  In (ti,/tfjO) 1. (21 

The fact thatp is close top* ( A )  also gives a smooth change 
in the vector k with field: 

k= (4tb/u) (I-0.81h- ) .  (22) 

As to oscillatims (20) and (21), the periodicity in the in- 
verse field in (20) can be written 

where S is given by ( 17). Figure 4 shows the results of a 
numerical solution of equation ( 12" ) for 0 <A < 5, where 
the law (20) can be clearly discerned. 

Finally, let us give the form of the function @, (A,p) for 
pzp* (A) :  

7; arb. units 

FIG. 4. 

@, (A,, p) ~0.20A-"z+0.25h-"~p-p* ( h ) ]  . (23) 

The first term is important for determining the monotonic 
dependence of the instability temperature, while the func- 
tional dependence of @, (A,p) on p must be taken into ac- 
count at higher temperatures T-tb/A. 

Let us consider the series ( 18) in this temperature re- 
gion [as will become clear, this region is possible near the 
threshold, i.e., (tb - t : )/t 4 1 1. Then expression ( 18) as 
before has local minima at integer p ,  but the global mini- 
mum of ( 18 ) is now determined by (A,p ). After taking 
the asymptotic form of the formulas of Appendix 2, we can 
write series ( 18) in the neighborhood of the minimum of 
@,(A,p) in the form [not to be confused with expansion 
(2311: 

0.22 1.00[p-p ( A )  I Z  
@ ( A ,  P , T ) = - - ~ ~  +. 

A 

0.44 n2Th cos (2pxm) -- 
h' ' ,"=l tb sinh(n2TArn/tb)' 

where p (A ) z A  - 0.93A 'I3. We see from (24) that oscilla- 
tions (20) remain, but their detailed analysis requires nu- 
merical calculations. 

Thus, the stability curve in the purely two-dimensional 
case is characterized by rapid oscillations [ (20), (2 1 ) 1 su- 
perposed on a rapid increase of T(A) with increasing field. 
Having expansion ( 18), we can obtain, in place of ( 15), an 
expression for T(A) accurate to within corrections to the 
coefficient of the exponential: 

where y is the Euler constant. 

5. STABILITY CURVE OF A QUASI-ONE-DIMENSIONAL 
CONDUCTOR 

In this brief section we discuss how t, ( 1 )-the "three- 
dimensionality" of the electronic spectrum-affects the sta- 
bility curve of a quasi-one-dimensional conductor in a field. 
The fact that a threshold field arises for finite tc follows from 
( 10'). If t, is small, or, more precisely, if t, - T in the ap- 
proximation of Sec. 4, an estimate for the threshold field is 
obtained from ( 15 ) by the replacement T-t, . However, we 
see from ( 10') that the cutoff due to the second Bessel func- 
tion occurs at cp - tb/Atc. For realistic values of the param- 
eter this cutoff causes the logarithmic contribution to the 
integral to vanish. In the general case T-t, one can study 
( 10) only by numerical methods. For B t ,  the results of the 
previous section are approximately correct. Therefore, let us 
now consider the opposite case, T(t,, and let l(Atc/tb 
(A 'I3. Westudy (10') and (10") in theregionA - p - A  'I3, 
which is the only important region in what follows. From a 
mathematical standpoint the difference from Sec. 4 lies only 
in a change in the form of the terms in sum (18) which 
correspond to the integration in ( 10') in each of the small 
neighborhoods of the integer values q, /n- = m. The corre- 
sponding sum assumes the form [cf. ( 18) ] : 
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and it is necessary to keep the temperature dependence of the 
function @, (R,p,T) : 

n2TZh d2ml (h ,  p) 
@ I  (A, P. T) -01 (h,  . 

a pZ 

In deriving (25) we have made use of the fact that in integral 
(10') near zero (p-A - ' I 3 )  one can set 

while for p z ~ r m  it is sufficient to use the asymptotic expres- 
sion 

The series in (25) is a small correction to @, (R,p,T). Analy- 
sis of this series shows that @(R,p,T) on the whole has local 
minima at integer values p 5 Rtc/tb. We assume, for exam- 
ple, that p + Rt,/t, = N, where N is an integer. In contrast 
to the situation in Sec. 4, we can now neglect the change by 
unity of the integer parameter p + At, /tb . Therefore, in the 
neighborhood of the minimum of the function @, ( R y ) ,  we 
rewrite (25) in the form (see Appendix 2) 

Taking in (26) the leading term (for T = 0),  we obtain for 
the critical field H, 

400tbc --( eub' I.$-\.)' , 

while the temperature dependence of the critical field is 

where A, and H, are related by ( 1 1 ) . 
Allowance for the terms in series (26) which are peri- 

odic [with period A(R) = tb/2tc ] in the parameter A gives 
rise to slow [in comparison with (20) 1, small-amplitude os- 
cillations of the critical field and transition temperature, 
with a period in the inverse field of 

[recall that S is given by ( 17) 1. 
The physical meaning of the oscillations (27) is as fol- 

lows. For t, #O the main contribution to the nonmonotonic 
part of the generalized susceptibility is from those electrons 
on the Fermi surface for which the velocity along the c* axis 
is zero (they do not separate to infinity). These electrons, 
withp, = 0 andp, = n-/c*, give two sets of optimum vectors 
[cf. (14)l :  

For integer values of the combination U t ,  t,, expressions 
(28) become the same, which causes the susceptibility con- 
tributions from electrons with p, = 0 and p, = ?r/c* to be 
summed and, consequently, enhances the insulator pairing. 

6. EXClTONlC SUBPHASES 

It was shown above that the phase transition tempera- 
ture of a layered quasi-one-dimensional metal in a SDW 
state oscillates rapidly in a magnetic field and that its depen- 
dence on H consists essentially of two separate pieces, corre- 
sponding to different wave vectors k(n) .  Therefore, at tem- 
peratures below the stability curve the system undergoes 
transitions to successive excitonic subphases as the magnetic 
field increases. 

Let us consider the general term of the free-energy ex- 
pansion of a conductor with dispersion relation ( 1') in pow- 
ers of the order parameter ~ ( x )  = exp(i2kFx)A(x). Obvi- 
ously, an arbitrary term of the variation of the free energy is 
of the form 

where A ( x )  = A exp(ikx). After substitution of (7)  into 
(29) it is convenient to introduce the new variables 

and to shift the integration over p, : 

pb+pb-'l, ( e l c )  H (x,+x) . 
As a result we obtain 

rn m 

where 

xexp { -2i~ [sin (%) cos (pbb.)+ . . . 
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while the integration over the variables P is limited to the "' 

[ g2+AnYA) Jn2(h)  ] l2 
region - dg[g2+A.'(A) J n 2 ( A )  1 - ~ t a n h  

o 2T 
-0. 

With allowance for (33 ) we have 

J' (h ,  n )  

[here k(n)  is one of the wave vectors (14), and "= 

Ak = k - k ( n ) ] .  Jn2 (A.)  An2 ( A )  [ t 2+JnZ(h )An2  (A) ] I 2  

= j d i [  - tanh -- 
In a weak magnetic field (A-cc ) the excitonic sub- [EZ+Jn2(A.)An2(h) ]" 2 T 

phases in the two-dimensional case exist in a region of ex- 
ponentially low temperatures T< T(2  ). Therefore, for -4T ln cash ( [E"jn2 ((h An2 ( h )  ] 'I1/2T) 
Ak<vA /t, the integrand in (30') can be averaged over the cosh (g /2T)  -4 (34) 

rapid oscillations, since the integral in (30) converges with 
respect to all variables at large distances of the order of 
min(v/T,v/Ak). As a result we obtain 

[here the overbar denotes an average, and the index n of the 
Bessel function is, as before, related to the wave vector by 
( 14) 1. After ( 3 1 ) has been obtained, the sum and the inte- 
grals appearing in (30) are transformed to the correspond- 
ing expansions of the variation of the free energy for an effec- 
tive Peierls-transition problem. 

In other words, an arbitrary term of the free-energy ex- 
pansion of a layered quasi-one-dimensional conductor with 
spectrum ( 1') in the presence of a magnetic field can be ob- 
tained from the expression for the Peierls free energy by the 
replacement A2+h2J (A). The terms of second order in A 
are an exception. They, however, have already been evaluat- 
ed in Sec. 4 and correspond to an "effective coupling con- 
stant" 

l lg-  [1n(ti,lti,') + 0.2h-"1 /in2 (A), 
and a magnetic-field dependent cutoff constant 
E * = 2ytb/77'A. 

In this form the free energy in a magnetic field has local 
minima at Ak = Ap = 0, and for a subphase with wave vec- 
tor k(n ) from ( 14) the entire sum of diagrams (30) is trans- 
formed into the functional 

[in the convergent integral (34) the upper limit has been set 
to infinity]. Since energy (34) of each subphase now de- 
pends explicitly only on A: = J i ( A )  A: (A ), it follows from 
(33) that the optimum values of A, and wave vector k(n ) 
are reached at the maximum of J 2, (A). 

Thus, the phase diagram of a layered quasi-one-dimen- 
sional conductor at a temperature TG T(A ) consists of sub- 
phases determined by the wave vectors k from (14) for 
which J i  (A) is maximum. According to Sec. 4, the vector of 
the SDW structure in this case is given approximately by 
k -4t,/v. A change in field produces small but sharp jumps 
in this vector, with a period in the inverse field given by (20). 
Simultaneously, oscillations develop in the insulator gap and 
other physical quantities in the two-dimensional model. In 
approximation (33)-(34) the phase transition from the 
metal to the SDW state and the transitions between sub- 
phases (the jumps of the wave vector) correspond to second 
order transitions. This last statement, however, is only ap- 
proximate-allowance for correction (23) leads to small 
jumps in the order parameter at the transition from subphase 
n to subphase n + 1 : 

IA, ,+l  ( A )  -A, , (k)  j/A7,(iL) -?"- ln(t ,>lt~?).  (35) 

The phase diagram of a layered conductor with dispersion 
relation (1') is shown schematically in Fig. 5 (the broken 
vertical lines show the boundaries between excitonic sub- 
phases ). 

The phase diagram of a quasi-one-dimensional conduc- 
tor with finite t, cannot be found. In the region of parameters 
At,/tb - 1, after averaging the rapidly oscillating terms in 
the free-energy expansion in A one is left with sums over 
discrete variables in place of the corresponding integrals 

where F is measured from the energy of the metallic state. TA 
From here we must determine the phase diagram of the 

layered conductor. The free energy (32), of course, cannot Metal 

be written in closed form, but several conclusions can be 
drawn on the basis of its form. The condition that the vari- I 
ation of (32) with respect to A vanish determines the equi- I I 

librium value on the gap A, (A) for the n - th subphase: 
I 

.In2 ( E , )  FIG. 5 .  
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(see Sec. 5) ,  which cannot be represented in analytical form. 
Therefore, for t, # 0 we must confine ourselves to a study of 
the stability curve. 

7. CONCLUSION 

Let us compare our results with what can be inferred 
from experiment. It is known13 that, at least in the weak-field 
region HzH,, the transition from the metallic to the exci- 
tonic phase is second order. Thus it is sensible to calculate 
the stability curve. In addition, at low temperatures the tran- 
sitions from one subphase to another have been found to 
exhibit a small hysteresis, the size of which at the position of 
the "Shubnikov-de Haas oscillations" increases with the 
field but falls off with temperature.14 The possibility of a 
small hysteresis at low temperatures is indicated by the re- 
sult (35) .  It is clear that three-dimensional effects will alter 
this result, apparently with the effect of increasing the hys- 
teresis and lengthening the period [see (27) 1, but we have 
no way to give a rigorous quantitative description of this. 
However, accepting as an experimental fact that the hystere- 
sis falls off with increasing temperature, we attribute the rap- 
id oscillations observed6 in the region of large H and T to 
oscillations (20') (here T- t, ). Introducing v = t,afifi 
(where t, is the tunneling integral along the chain), we find 
from (20') that t,/t, ~ 2 4 ,  in fair correspondence with Ref. 
1. Substituting this value into the definition ofA ( 11 ), we get 

Passing now to the low-temperature region, where signifi- 
cantly, t, > T, and taking the data536 from the corresponding 
"Shubnikov-de Haas oscillations," we find from (27) that 
t,/t, ~ 2 2 .  Estimates based on the conductivity1 usually give 
t,/t, z 10-30 (i.e., t, z 10 K) .  

Expression (26') for the critical field Ho for the appear- 
ance of the magnetic phase requires special discussion here. 
The experimenta15v6 values H0z4-5 T can be obtained by 
assuming that all the effects develop at the (pressure) 
threshold for the existence of the metallic phase, 
(t, - t t ) / t  t ~ 0 . 0 6 .  Taking Ho(T)  from Ref. 5 and using 
(26" ) in the case X = ClO,, we have t, z 150 K, which is 
close to the experimental data.' As long as we see that the 
situation appears reasonable, it makes sense to give the 
asymptotic expression for T(A) in the region where 
1 (TA /t, d I", which can easily be obtained from ( 12) by 
expanding in e, about zero: 

(p  =A). This temperature region has not been attained ex- 
perimentally. l4 

Hall-effect experiments indicate that at low tempera- 
tures the subphases formed have a semimetallic character 
with rather large carrier pockets. Although the transitions 
between subphases and the band structure in the subphases 
remain outside our treatment (since here t, > T),  the order 
of magnitude of the pockets in the first subphases is estimat- 
ed according to ( 17) and Fig. 3 as n - lo2' ~ m - ~ ,  which 
again agrees with experiment and stands, I believe, as the 
main argument in favor of the choice of a direct nesting vec- 
tor ( 3 ) .  

Attempts have been to construct the excitonic 
phases in a magnetic field under the assumption that the 
stability of the insulating phase is increased on account of the 
overall lowering of the energy in the band gap because of the 
quantization of the levels. The oscillation effect was attribut- 
ed to the filling of the successive Landau levels with increas- 
ing field. l6 It seems to me that the change of the energy of the 
excitonic phase in a field requires a more correct calculation 
of the electronic density of states in the presence of a field 
than was given in Ref. 15. Furthermore, this picture recog- 
nizes the vital importance, even in weak magnetic fields, of 
the change in the superstructure vector (3)  in comparison 
with the nesting vector in the absence of field. 

I am deeply grateful to L. P. Gor'kov for directing this 
study and to L. N. Shchur for much help in the numerical 
calculations. 

APPENDIX 1 

In function ( 10") we separate out the contribution to 
the integral for k = t, = t, = 0: 

T 
01. (1, T )  = ~ n  - + J [ i - c ~ s ( ~ ?  sin ( p i )  

To 0 

X cos ( * sin a) cos (2kx )  ] 2nT dx 
v  I , Z  v sinh (2nTxlv)  ' 

Here we have used the representation of the Bessel function 

II 

1, ( z )  = $1 cos (z sin (p) dp 
0 

and denoted by subscripts 1 and 2 the averaging over e,, and 
p2, respectively. Integral (A 1.1 ) is conveniently rewritten in 
the form of a series": 

T 1 4i kv - I  4i 
@.(k, T ) = h  - + z{--[ 4n+2+ -( tb cos rp,+t, cos rpl+ -)] -[ 4n+2 + -( tb cos rp,+t. cos ( p z  - - 

' 0  n-o 2n+ l nT 4 nT kv  4 V )  I -' I,,, 
and this series is replaced, in turn, by a contour integral in the complex plane: 

T  z  2  kv k v ) z ] - l }  . (A1.2) 
m0(k ,  T )  =lo - + j th-{- -[ 2-4( tb cos rp,+t, cos r p ,  + -) ' ] - I  - [ zz-4 ( tb cos rp.+t, cos ( p ~  - 

To - m  2T z 4 1 , 2  
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Integrating by parts, we get 

t c 
- ( 2 cos p ,+2 - cos p, + - 

t b  k " ) 2  2 I 
t c 

+In 1 ( :) 2 - (  2 cos q,+2-cos p, - - 
t b  " 2 ") I I],, 

where t = rrTo/2y. 
It is a property of (A1.3) that the integral over the vari- 

able p, is nonzero only for z > 2 (t, - t, ) - kv/2. Therefore, 
in the parameter region A - p -A 'I3, Rt,/tb (/Z 'I3 the func- 
tion @,(k ,T)  does not depend on the variables k and T to 
exponential accuracy in the parameter t,/TA ,I3. 

APPENDIX 2 

We write the contribution from the integration of ( 12) 
in the neighborhood of p = 0 as 

rn 

In going from ( 12) to (A2.1) we have used asymptotic 
expression (25') and kept the leading terms. Integrating 
(A2.1) by parts, we obtain the differential equation 

where the primes denote differentiation with respect top .  It 
is convenient to differentiate (A2.2) with respect t o p  and 
consider the equation for the derivative y = @; : 

which, as we know,18 has a general solution of the form 

where u(x) and v(x) are linearly independent solutions of 
the Euler equation 

The values of the function @, (/Z,p) and its derivatives @', 
@", and @'" at the point p - A = - 0 can be found immedi- 
ately": 

and it is therefore easy to choose from (A2.4) the necessary 
particular solution 

With allowance for (A2.2) and (A2.5) we find 

where u (x)  and u(x) are determined by the standard bound- 
ary conditions: 

Let us now consider the function @,(A,p ), the contri- 
bution from the integration of ( 12) in the neighborhood of 
the points p = rrm (m is a natural number): 

rn 

Integrating (A2.6) by parts, we get for @,(A,p) the same 
differential equation (A2.3 but with a different boundary 
condition: 

0, (-0) = n / 2 " W r 2  (2/,) h", 0,' (-0) =2'13n/3"~rZ(2/,)hzi~. 

As a result, we have 

0, (h, 1-1) =uZ (x) /2ihh"3. 

Let us also find the temperature dependence of @, (R,p,T). 
For this we expand sinh(rrTAp /t, ) in ( 12) in powers of the 
small parameter A Tp /t, up to and including the cubic term. 
The resulting integrals as before converge in a small neigh- 
borhood p-A -'I3; therefore, we easily convince ourselves 
that 

The mathematical tables of Ref. 19 are useful for finding the 
values of the functions @, (A,p) and @,(A,p) and their de- 
rivatives. 
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