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A theoretical study is made of the susceptibility of a spin system to a weak low-frequency field 
under conditions of dynamic cooling of the reservoir of spin-spin interactions (the "enhanced 
susceptibility"). An expression is obtained for the enhanced susceptibility under conditions of 
two-temperature quasi-equilibrium at arbitrary temperatures of the Zeeman subsystem and inter- 
action reservoir. In the nonlinear-spin-temperature-effects approximation, expressions are ob- 
tained for the frequency and temperature dependence of the enhanced susceptibility for a regular 
spin distribution (method of moments) and for a random spin distribution at a low concentration 
(statistical theory). The expressions obtained are valid for arbitrary temperatures of the Zeeman 
subsystem and high temperatures of the interaction reservoir. 

1. INTRODUCTION 

The method of enhanced susceptibility, which was pro- 
posed by Atsarkinl in 1973, has become very useful for 
studying relaxation processes and dynamics in paramagnet- 
ic spin systems. It has turned out that on dynamic cooling of 
the reservoir of spin-spin interactions by saturation of the 
wing of the magnetic resonance line, the susceptibility to a 
weak low-frequency field increases with respect to the static 
susceptibility ,yo by several orders of magnitude, approxi- 
mately by a factor ofw,/D, where w, is the center frequency 
of the magnetic resonance and D is the frequency of the local 
field created by the spin-spin interactions. 

In accordance with the existing experimental situation 
the theory of the enhanced susceptibility effect (reviewed in 
Ref. 2)  was limited to the high-temperature approximation 
(HTA):wdkTx 1 (we have set f i  = 1) .  However, interest 
has recently focused on the study of paramagnetic spin sys- 
tems in the low-temperature region, down to the ordering 
t empera t~re .~  In a recent study of the dynamics of magneti- 
cally dilute spins systems by the enhanced-susceptibility 
method4 the conditions corresponded to w,/kT=: 1, and so 
extending the theory of the enhanced-susceptibility effect to 
the low-temperature case is a timely problem. 

The difficulties in constructing a low-temperature the- 
ory of the enhanced susceptibility are aggravated by the fact 
that the Provotorov t h e ~ r y , ~ . ~  which is used in the theory of 
the enhanced susceptibility to describe the dynamic cooling 
of the spin-spin interaction reservoir, is itself a high-tem- 
perature theory. The extension of this theory to the low- 
temperature case7"' makes it possible to obtain reliable re- 
sults only at rather high temperatures of the interaction 
reservoir, much higher than those which would correspond 
to the possible spontaneous ordering in a zero effective field. 
In the present paper we shall also restrict discussion to the 
case of high temperatures of the interaction reservoir. This 
case can be realized at fairly high polarizations upon total 
saturation on the remote wing of the line or upon partial 
saturation over the entire line. In the latter case the spin 
system in a rotating coordinate system is found in a state of 

quasi-equilibrium, characterized by different temperatures 
of the Zeeman subsystem and the interaction subsystem. In 
this case the fluctuation dissipation theorem, which has so 
often been used for evaluating the enhanced susceptibil- 
ity,2,10*11 is difficult to use directly, and in this paper the 
enhanced susceptibility is evaluated using linear response 
theory. To the best of our knowedge, the enhanced suscepti- 
bility under conditions of two-temperature quasi-equilibri- 
um in a rotating coordinate system has never before been 
studied even in the high-temperature approximation. 

We shall consider a system of spins 1/2, coupled by 
dipole-dipole interactions, in the case of both magnetically 
regular and magnetically dilute systems. 

2. LONGITUDINAL SUSCEPTIBILITY IN A ROTATING 
COORDINATE SYSTEM 

Let us write the Hamiltonian of the spin system in the 
form 

%=%,+%d+%, ( t )  +%,, ( t ) ,  ( 1 )  

where SFo describes the interaction of the spin system with 
the static magnetic field: R',, = 0, S, , SFd is the Hamilton- 
ian of the dipole-dipole interactions, SFl ( t )  = w, cos RtS, 
is the interaction Hamiltonian of the spin system with the 
saturating transverse magnetic field, and 
Z2, ( t )  = w2 cos wtS, is the interaction Hamiltonian with 
the weak low-frequency longitudinal field. The z axis is in 
the direction of the static field. The conditions under which 
one can neglect the contribution of the lattice to the longitu- 
dinal susceptibility are discussed below. 

In the linear-response approximation the absorption of 
energy from the longitudinal field1* is 

where the zz component of the relaxation tensor QaB ap- 
pears in the relation 
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H, being a static field turned on at time r = 0. 
Let us pass to a coordinate system rotating at frequency 

0 about the z axis. The Hamiltonian in the rotating coordi- 
nate system is of the form 

%RCS=ao+%:+%1X+a21 ( 7 )  , (4) 

where Po = hS,, with A = w, - 0, Xi is the secular part 
of the dipole-dipole interaction Hamiltonian, and 
PIX = (w ,/2) (S, + S, ). To evaluate the linear response, 
we replace XZ, (r) by a "step": 

The evolution of the system for r > 0 is found from the solu- 
tion of the Liouville equation 

p ( t > O )  =exp [ - i  (%O+%d'+i%lx) T ]  p (0) 

x exp [ i  (&O+%d'+%la) t ]  . (6)  
We assume that p (0)  corresponds to quasi-equilibrium in 
the rotating coordinate system: 

p ( 0 )  =exp  [-,a(%,+%,) -p%d'] / ~ p  e x p [ - a ( 3 0 + ~ , )  

-p%d' ] .  (7)  

Here a and p  are the inverse temperatures of the Zeeman 
subsystem and dipole-dipole reservoir, respectively. To first 
order in 2Y2 we have 

where 

p,=exp ( - & o - ~ % d f ) ~ ~ P  exp (-&,-p%,'), 
( A > , = S p  Ap,. 

(9 )  

Substituting (8)  into (6),  we find the desired component of 
the relaxation tensor: 

a,, ( t )  =ayZ [ ( S ,  ( t )  S , > , - ( S ,  ( 7 )  ) ,(S")41,  (10) 

where 

S ,  ( 7 )  = e x p  [ i  (i%O+&'df+%Ix) T ]  Si exp [ - i  (%o+%,f+i%l,) t ]  . 
We expand S, ( T )  in a series in PI, to second order, 

inclu~ive'~: 

where 

0 1 = - exp ( m d r t )  (e iAts++e-"'S-)  exp ( - m d ' t ) .  ( 12) 
2 

This approximation is valid for frequencies w k W, where W 
is the probability of a spin flip caused by the transverse mag- 
netic field. With the aid of ( 11) we get 

{ ( [ S t  ( t ) ,  S- IS ,> , -<  [ S +  ( t ) ,  S - ]  > , (S ,> , ) ,  ( 1 3 )  
where 

S+  ( t )  =exp  ( % d l ~ ) S +  exp ( - i % d f ~ ) .  

For our further use, and also for comparison with the 
known results in the HTA, we use the easily verified identity 

The correlation function ( [S+ (r),S- ] ), , as we know,3 de- 
termines the signal for the absorption of energy from a trans- 
verse rf field at arbitrary temperatures of the Zeeman subsys- 
tem and dipole-dipole reservoir. 

For calculations using the high-temperatrure expan- 
sion for the dipole subsystem, it is convenient to transform 
the correlator obtained above to the form 

( [ S ,  ( t ) ,  S - ]  >,= ( I - e a A )  ( S ,  (7)s->, 
+eaA( [ S +  ( t )  , epzd'] e-P,%drS->,. (15) 

To first order in the indicated expansion 

where (A, )  is the average over the density matrix 

po=exp ( - a A S , )  l S p  exp ( - a A S , )  , 

and (S, (7)s-),"' should be evaluated to first order in 
pX ; .  Thus, in this order everything can be expressed in 
terms of the correlation function (S, ( T ) S - ) ~ .  In particu- 
lar, the moments MI-M, have been calculated3 for the func- 
tion (S+(r)S-),. 

Combining the formulas given above and integrating 
the corresponding terms by parts, we obtain an expression 
for the part of the longitudinal susceptibility that is due to 
the spin-spin interactions: 

In the limiting case of the HTA (for both subsystems) Eq. 
( 17) gives 

which, in combination with (2 ) ,  leads to the result obtained 
in Ref. 10 (for a = P ) .  In the case when the polarization is 
rather large and the high-temperature approximation can be 
used for the dipole subsystem (we shall call this approxima- 
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tion HTAD ), Eq. ( 17) gives 

Finally, formula ( 17) itself can be used to calculate the first 
(nonlinear-spin-temperature-effect) correction to ( 19). 

Let us first restrict discussion to frequencies w which 
are much greater than the spin-lattice relaxation rates 7,' 
and r , ~ ;  of the Zeeman subsystem and dipole reservoir. 
From a theory1 based on Provotorov's equations under con- 
ditions of strong saturation ( Wr, % 1 ) we have 

Ix;/x; / =rs/7T, where X; is due to the spin-lattice relaxa- 
tion, 73 is the spin-lattice relaxation time in the rotating co- 
ordinate system, and rps is the time required for the mixing 
of the subsystems in the rotating coordinate system. For 
strong saturation we have r:%rs for any relationship of A 
and D. Under conditions of intermediate saturation 
( WrSL - 1)  on the remote wing of the line (A2/D '%I) ,  a 
similar analysis shows that the quantities rs and r: appear- 
ing in the ratio of the susceptibilities are replaced by D 2/ 

WA2 and T,, respectively. For a Lorentzian line shape, 
which is characteristic for low temperatures and/or magnet- 
ic dilution, we have Ix;'/x; / = ( D  /a, ) ' (ST sL ) - ', where S 
is the half-width of the line. Although we must require w,/ 
D g l  for the Provotorov theory to apply, the product 67, is 
usually very large, and the condition Ix; 14 Ix; I can in fact 
hold. Although the estimates given above correspond to the 
HTA, it seems that they are not affected very much by the 
value of the temperature. For this reason we shall confine 
our analysis in this paper to x;I the spin-spin part of the 
longitudinal susceptibility. The question of the spin-lattice 
relaxation and the related longitudinal susceptibility under 
conditions of low-temperature quasi-equilibrium is rather 
complicated and should be the subject of a separate study. 

Let us consider the cases of regular and random distri- 
butions of spins in the lattice. For regular systems a decrease 
in the temperature (an increase in the polarization) causes 
the line shape to change from approximately Gaussian to 
approximately Lorentzian, to narrow rapidly, to become 
asymmetric, and, generally speaking, to shift3; for a - ' 4  
(i.e., for complete polarization) the linewidth goes to zero 
(if the lattice does not contain nonequivalent positions, 
which would lead to a set of narrow lines). For magnetically 
dilute systems, on the other hand, the linewidth depends 
only weakly on the temperature.I3 Qualitatively, this behav- 
ior is due to the strong difference between the local dipole 
fields at different centers, and this scatter in the local fields 
persists even when the spins are completely polarized. 

3. REGULAR SYSTEMS 

Let us discuss just the simple case of a spherical sample 
with a simple cubic lattice of spins. In this case the first mo- 
ment (the line shift) in HTA, is equal to zero and, neglect- 
ing the small a ~ y m m e t r y , ~  we can approximate the shape 
function of the line at sufficiently high polarization by a Lor- 
entzian: 

Cutting off the line at a frequency vOsS, we express S in 
terms of the second moment of function (20) : S = 77M2/2vO. 
This moment is known3 for function (20):  

M2=MZ0 ( 1-p2), 

where M ;  is the second moment in the HTA, and 
p = - tanh(aA/2) is the polarization. We note that the 
general definition of the polarization is P = (S, ), /SN; in 
HTA, one has P = p = ( S ,  ) ,,/SN, and for S = 1/2 

The frequency vo in this case is of the order of the nearest- 
neighbor interaction energy ( M ;  ) 'I2; thus 

S z J X m 1  - p 2 ) ,  

and for Ipl S 1 we have v0s6.  In  principle one does not have 
to introduce the frequency yo but can use the second and 
fourth moments to estimate S; this, however, without lead- 
ing to qualitative changes in the results given below, makes 
the formulas much more unwieldy. Using ( 18) and perform- 
ing straightforward manipulations, we obtain, in accordance 
with (2 ) ,  

JI dl2 GHTAD(d) = - -- y2 - N Y ~ ~ ~ I ~ ~  (I - p2) arc tanh p 
2 1  o 

~ ( ( 1 -  p2) Ll / f+(hL4 + l / f t (A-  
t 2p2 [f-(A i- w)'ft2 (A a )  + f- (A - w)if+2 (A - u)J}, (21 

where 

f* (v) =n2MZo2 (1-p2) 2*4vOZv2. 

All the temperature dependence in ( 2  1 ) has been reduced to 
a dependence on the polarization, which is considerably 
more convenient for using this formula. At large values ofp, 
it follows from (21) that the dependence o n p  is carried by 
the function ( 1 - P ) ~  arctanhp, which goes to zero asp-1. 
This result can be interpreted in the following way: when the 
spins are completely "frozen" in a strong field, the spin sys- 
tem cannot respond to the field H z ( ? )  by a change in magne- 
tization. However, our reasoning that p is close to unity at  
the same time the dipole-dipole reservoir remains high-tem- 
perature can be justified only for such large values of A that 
the enhanced-susceptibility effect loses meaning; therefore, 
expression (21) in actuality only describes the tendency of 
the susceptibility to fall off with increasing polarization at  
sufficiently high values of p. 

The question of just what the value of p actually is 
should be solved with the aid of a low-temperature theory of 
saturation. Such a theory in HTA, shows9 that for strong 
saturation on the remote wing of the line, the Zeeman sub- 
system remains almost in equilibrium with the lattice, and 
after completion of the mixing process one h a s p ~ p ,  w d A ,  
wherep, is the inverse lattice temperature. Here the quanti- 
ty which determines the applicability of HTA,, 
p D  = DL w,,D /A, can be much smaller than unity even for 
0, w, k 1. In such a casep = - tanh (pL w d 2 ) ,  and the con- 
clusions reached above regarding thep dependence ofx;(o) 
is easily carried over to the dependence on pL . 
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The frequency dependence of X; as given by formula 
(21) is qualitatively the same as in HTAD (Ref. 10): it in- 
creases with increasing w, has "resonance" peaks at frequen- 
cies w = f A, and falls off rapidly with further increase in w. 

Let us track the trends of x;(w) as the dipole-dipole 
reservoir cools. For this purpose we evaluate the moments MI  
and M, of function (20) to first order in the nonlinear-spin- 
temperature-effects appr~ximation,~ which has been used 
previously to describe the thermodynamic properties of spin 
systems on dynamic cooling. In the first order of this approxi- 
mation the averages over the quasi-equilibrium density ma- 
trix ( 10) assume the form 

where ( A  ), is evaluated with the density matrix 

In the case of a spherical sample with a simple cubic spin 
lattice we have (Z ; ) ,  = 0, and the formulas for M, and M2 
(obtained in the usual wayI2) reduce to 

M . = ( ( [ 3 d f ,  [ a d ' ,  S + ] s - ] ) o  

- B ( [ % d ' ,  [ a d ' ,  S+] IS-%df)o)/(S+S-)O. (24) 

The first terms in (23) and (24) are familiar3: 
M1(p=O)=O,  M , ( P = O ) = M ; ( l - p 2 ) .  After some 
rather awkward manipulations we get 

where M: and ci can be expressed in terms of the lattice 
sums 

where 

For fields parallel to the axis of the lattice we have 
a, = 1.33D2, u, = - 0.350D3, a, = 0.737D3 (Ref. 3),  
where D = 1. 58y2/a3. The above expressions imply, in parti- 
cular, that the shift of the resonance frequency on cooling of 
the dipole-dipole reservoir appears even for spherical sam- 
ples and is opposite in sign top. Since this shift appears in the 
same order as the additional contribution to M,, it must be 
taken into account in approximating the line shape function. 
For qualitative estimates we use the asymmetric normalized 
Lorentzian 

g(v) =6 ( I f  bv) / [ n ( v 2 + 6 ' )  1, 
with parameters expressed in terms of the moments as 

b=MIIMz,  6=nM2/2vo.  

We use this function to evaluate the correction to (21 ) due to 
deep cooling beyond the limits of HTAD [corresponding to 
formula ( 17) 1 .  Let us give only the result for w( 1 A1 : 

xS" (4 = ibHTAD(~q.  (21)) C b y a  2 vo ( 1  - p2) arc tanhp 

where p ; = dp,( p)/dp. At large values of p the factor in 
thep  term in (26) takes on negative values, i.e., going out- 
side of HTAD leads to a decrease in x;. 
4. MAGNETICALLY DILUTE SYSTEMS 

For magnetically dilute systems with an uncorrelated 
random distribution of spins over lattice sites we use the 
statistical theory of the line shape, l4  after first extending it to 
the low-temperature case, to evaluate the correlator 
( [S, (t),S- ] ), to second order in the expansion for the di- 
pole subsystem [under certain circumstances the contribu- 
tion to ,y$(w) from the first order terms is equal to zero, 
while the complexity of the calculations increases rapidly 
with increasing order of the expansion] : 

< K ( t )  > , = < K ( t )  > o - p ( < K ( t ) % d ' ) o - ( K ( t )  ) O ( % d 1 ) 0 )  

P2 + - ((K(t)%d'2)o-2<K(t)%d')~(%d')~-(%d'2)~(K(t) ) O  
2 

+2<,%d'>02<K ( t )  > , ) ,  (27) 

where K (  t )  = [S, ( t )  ,S- I .  Here, as above, we restrict dis- 
cussion to the case of a spherical sample with a simple cubic 
lattice of spins S = 1/2. As usual in the statistical theoryI4 
we keep in Z; only the anisotropic part of the secular di- 
pole-dipole interaction 

1 
%'= -c A,S:S;, Ajk= -- " ( 1 - ~ c o s ' ~ , ~ ) .  (28) 

,,k 2 rIk3 
The details of the calculations in the statistical method 

will be reported elsewhere. All the correlators of interest, 
(K(t)),, ( K ( t ) P ) , ,  (K( t )P2) ,a re found tobeexponen- 
tially damped for yllt I/r;,)l, i.e., under conditions of 
strong magnetic dilution the central part of the line and that 
part of the wings which is of practical interest are Lorent- 
zian. The damping rates turn out to be the same for all these 
correlators and do not depend on the temperature of the 
Zeeman system [this latter fact was noted previously13 for a 
function close to (K(t)),]. We have 

( K  ( t )  > , = p N e ( t ) ,  (K(t)%'>,=i6 sign t e ( t ) ,  
A (29) 

( K  (t)2'1?'~>~= - L p ~ 6 ' e  ( t )  , 
4 
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where S is the half-width of the line and Cis the concentra- 
tion. 

Using (29) ,  we reduce a, (o ) from ( 13) to the form 
[with allowance for ( 14) ] : 

cm 

P x- p - i  - 6 sign t - exp (-6 1 t 1 ) .  (30) 
da 7 2 8 

Using ( 2 ) ,  we find 

From this expression we can clearly see how cooling both 
subsystems affects the behavior ofx; ( o ) ,  which grows and 
then decays a ( 1  -p2)arctanhp with increasingp, and de- 
cays cr (1 - p 262/8) as the "cooling factor" JP 18 of the di- 
pole-dipole reservoir, increases. 

We note that in the case under discussion the high-tem- 
perature expansion for a system of interactions is simulta- 
neously a concentration expansion (the expansion param- 
eter is pS, and 6 is proportional to C ) .  This circumstance is 
nontrivial and even somewhat unexpected, since the most 
important characteristic of a dipole-dipole reservoir is the 
local-field frequency D, which is proportional to C 'I2. At 
low concentrations one has D>6. In particular,15 at a tem- 
perature of the dipole-dipole reservoir of order D /k the dy- 
namic cooling of the spin system gives rise to a nonzero order 
parameter (of the Edwards-Anderson type), while at a tem- 
perature of order 6/k the "freezing" of the spins in the local 
fields is already complete. Thus, in spite of the use of the 
high-temperature expansion, formula (3 1 ) encompasses a 
rather wide interval ofp. It must be kept in mind, however, 
that outside of the HTA the quantities a andp  are no longer 
related in a simple way to the observable quantities, i.e., the 
polarization P and the average dipole energy (Xi ), , and if 
we transform fromp and 0 to P and (Xi ), ,the high-tem- 
perature expansion will no longer be an expansion in integral 
powers of the concentration, but will assume a more compli- 
cated structure. 

5. CONCLUSION 

The results given above permit the assertion that the 
enhanced-susceptibility effect also exists at low spin tem- 

peratures and that measurements of the frequency depen- 
dence of the enhanced susceptibility and the dependence on 
the initial polarization and average energy of the dipole-di- 
pole reservoir yield important information on the dynamics 
of both regular and magnetically dilute spin systems. The 
theory set forth above, however, will remain incomplete un- 
til the development of a theory of saturation capable of de- 
scribing the evolution of spin subsystems at a low tempera- 
ture of the dipole-dipole reservoir. Such a theory should 
enable one to evaluate the temperatures of the subsystems 
(or their average energies) on completion of a certain pro- 
cess (e.g., demagnetization in a rotating coordinate system) 
for given initial temperature. Nevertheless, the relations giv- 
en above permit estimation of the temperature dependence 
of the longitudinal susceptibility, or, on the other hand, if 
one has the experimental data, these relations can be used to 
estimate the subsystem temperatures. 

We are grateful to V. A. Atsarkin for the interest he has 
shown and for a number of useful comments in the course of 
this study. 
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