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A theoretical study is made of the pinch effect in a semiconductor plasma when the electron 
density no exceeds the hole density p, by N ionized donors. An exact solution is obtained for a 
plasma detached from the walls of the current channel in the case when the temperatures of the 
current carriers differ strongly on account of heating by the applied electric field (T, >T, ) .  The 
critical current for detachment of the plasma is given by the expression I ,  = I, p,/( p, + N ) ,  
where I, is the Bennett current [see Eq. ( 1 ) 1, and when a current I = I ,  ( p, + N)/p, is attained 
the spatial distribution of the carriers, as in the Bennett problem, degenerates into a S function. It 
is found that a plasma with an "excess" electron density creates a magnetic field which increases 
from the plasma pinch to the periphery of the current channel and causes additional constriction 
of the bipolar plasma. 

1. The main criterion for the appearance of the pinch 
effect-the constriction of a bipolar plasma in the self-mag- 
netic field of a flowing current-is the so-called Bennett con- 
dition,' which determines the critical current for the occur- 
rence of an appreciable redistribution of current carriers: 

where v,, , and T,,, , are the drift velocities and temperatures 
of the electrons and holes. The Bennett problem has a 
steady-state solution at currents below I , ,  and for I>I ,  the 
spatial distribution of the plasma is a 6 function. 

Condition ( 1 ) has turned out to be convenient for iden- 
tifying the pinch in both gaseous and electron-hole plasmas 
and is often used to determine the region of current values 
corresponding to the onset of the pinch.' Bennett's critical 
current ( 1 ), like the solution of the Bennett problem itself, 
was obtained under the assumption of an intrinsic bipolar 
plasma (n = p ) .  In the actual situation in a semiconductor, 
however, the electron and hole densities can differ substan- 
tially on account of a finite density of an uncompensated 
impurity. One therefore wonders whether it is correct to use 
relation ( 1 ) to identify the pinch in a solid. Furthermore, the 
Bennett problem does not provide for a nonisothermal plas- 
ma ( T,, /T, # 1 ), which is present in practically all the 
pinch-effect experiments on account of the heating of the 
current carriers by the electric field. 

In the present study we show for the example of the 
electron-hole plasma of a semiconductor that allowance for 
the extrinsic (impurity) component of the current substan- 
tially alters the character of the formation of the pinch and 
leads to a new criterion for the onset of the pinch. 

2. A detailed treatment of the pinch problem follows 
from the joint solution of Maxwell's equations and the con- 
tinuity equations for electrons and holes. As in the Bennett 
problem, we neglect generation and recombination in the 
interior and on the surface of the crystal. The scattering will 
be assumkd to be so insignificant that there is no temperature 
gradient over the cross section of the current channel. The 
remaining approximations are analogous to the familiar 

The only important difference between our treat- 
ment and the usual treatment (n = p )  is, first of all, that the 
extrinsic component of the current is taken into account. For 
definiteness, we consider an n-type semiconductor. The con- 
dition of neutrality in this case will be of the form n =p  + N, 
where N is the density of uncompensated donors, and the 
extrinsic character of the material will be rendered by the 
parameter f, = N /p,, which gives the ratio of the density of 
"excess" electrons to the equilibrium density of the bipolar 
plasma. Second, allowance for these excess electrons enables 
us to take into account not only the difference between the 
temperatures of the current carriers but also the ratio of 
these temperatures, in contrast to the Bennett problem, 
where the temperatures appear only additively [see ( 1 ) 1. 

Let us introduce the dimensionless quantities 

wherep, andp(r)  are the equilibrium and local densities of 
the plasma, r is the coordinate, R is the radius of the sample, 
h ( p )  cc H ,  is the self-magnetic field, I is the total current, 
and E is the dimensionless total current. 

The equations describing the steady-state distributions 
of the current carriers and the magnetic field over the cross 
section of a cylindrical crystal in our approximation can be 
written in the form 

System (2 ) ,  ( 3 )  must be supplemented by the condition that 
the number of particles in the interior of the crystal is con- 
served: 

Equations (2)-(4) cannot be solved exactly. Let us con- 
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struct an approximate solution for the case of very different 
carrier velocities (u, )up,  b, =. 1 ); this is a realistic condition 
which is easily satisfied in narrow-gap semiconductors, 
which are widely used in pinch-effect studies. 

For a well-developed pinch, when f ( p z 0)  sf,, b,, 
FN,  u, , FN, the problem is solved by the well-known Bennet 
solution: 

8 C 
f (p=O)= ---- 4~ 

E ( P ~ + C ) ~  
, h ( p ~ O ) =  - 

pZ+C ' ( 5  

where C is an integration constant. Substituting these rela- 
tions into (2)  and (3) ,  we find an expression for the spatial 
distributions of the magnetic field and plasma density: 

h (p) ~ 4 p l  (p2+C) +eb,fxp/2, (6)  
8 C 

fbT(f+f.v) '-"'- exp (-&b,fXp2/4). ( 7 )  

The applicability condition for (6) and (7)  is 

C(E) <8/&fh., 8/eb,f,. (8 

Let us now discuss some concrete cases. 
a )  Isothermal plasma (T, = T, = T, b, = 1/2). In 

this case solution (7)  becomes 

8C 
A (P) = & ( p 2 + ~ )  2 exp (-&b,f,pZ/4). 

Using the particle conservation condition (4)  we find that C 
has a positive definite value for E < 8. This means that crite- 
rion ( 1 ) now becomes 

I>I,(l+bl;fX). (10) 

It follows from ( 10) that the condition for "separation" of 
the steady-state solution is weakened and that Bennett's 
critical current increases by an amount related to the residu- 
al monopolar conductivity of the crystal, i.e., to the conduc- 
tivity of the excess electrons, which are not subject to pinch- 
ing. 

b)  Nonisothermal plasma ( T, ) Tp , b, ( 1 ). Such a sit- 
uation is possible in semiconductors with highly different 
carrier mobilities (u, s u p  ) on heating by an electric field. In 
solving equation (2)  we can neglect b, f,, considering it to 
be small compared tof. In this case the problem admits an 
exact solution, since b, =: 1 (v, )up ): 

One is easily satisfied that for the values of E under consider- 
ation, the approximate solution (7)  leads to this same result. 

We see from ( 11 ) that at the point 

pk2= (8C/ef~)"-C 

the plasma density is zero [ f (  p k  ) = 01. Thus, solution 
( 11 ) describes a plasma which is "detached" from the boun- 
daries of the crystal, and coordinate pk  gives the radius of 
the plasma pinch. We note that in a purely bipolar plasma 
(the Bennett problem) the steady-state solution does not 
entail the concepts of "detachment" of the plasma and radi- 
us of the plasma pinch. 

We can determine the critical current at which detach- 

ment of the plasma occurs. Using the balance equations (4)  
and ( 11 ), we find that detachment sets in at E, = 8/ 
(1 +fN ) *  or 

I ,=IB~o/  (pa+N). (12) 

We see that 1, < I B ,  and the higher the density of excess elec- 
trons, the smaller the critical current for pinching. It is easily 
seen from ( 12) that in a purely bipolar plasma ( N  = 0)  de- 
tachment occurs only when the Bennett current (1) is 
reached. For O < E < E ~  the plasma density at the center of the 
crystal is 

f (0) =(l+fN)/ [1-'/8e (l+fN)] - f ~  (13) 
At E = E~ we have f (0)  = 2 + l/fN. 

In the case E > E~ (I > Ik ), expressions (4)  and ( 1 1 ) 
can be used to determine the radius of the pinch ( pk = rk / 
R )  and the plasma density at the center of the crystal: 

pkZ=fN-' [(8/&)"'-I], (14) 

j(O)=f,{[i-(~/8)'~]-~-1). ( 1 5 )  
Using expressions ( 10) and ( 12 ) , we can give the end points 
of the current region in which there exists a plasma detached 
from the boundaries: 

I~po/(po+N) 141~ (pa+ N) /pa. "( 16) 

Thus, in a significant range of currents the bipolar compo- 
nent of the plasma is not in contact with the walls of the 
crystal; the radius of the pinch is smaller for larger N, and 
only at I = I, ( 1 + N /p , )  does the spatial distribution of the 
bipolar plasma degenerate into a S function, as in the Ben- 
nett problem. 

Let us use (7 )  to estimate how small the plasma density 
is beyond the boundaries of the pinch for a finite value of 6,. 
For f < fN we find from (7)  that 

i.e., for very different temperatures (b,( 1) we can to good 
accuracy regard the plasma as completely detached (a  quan- 
tity much smaller than unity is raised to the power b ; '). 

3. Let us discuss the physical interpretation of these 
results. The numerical solution of problem (2)-(4) is plot- 
ted in Figs. 1 and 2, which demonstrate the spatial distribu- 
tion of the self-magnetic field and the density of electron- 
hole pairs in dimensionless units. Let us first consider the 
case of an isothermal plasma (Fig. 1 ). Curves 1 and 1' in Fig. 
la, calculated for light doping ( fN = 0.2), are analogous to 
the familiar solution of the problem for a bipolar plasma: the 
radial magnetic field falls off practically in inverse propor- 
tion to the distance from the boundary of the plasma pinch. 
In the case of a highly extrinsic semiconductor ( f, 2 1 ) the 
magnetic-field distribution takes on a qualitatively different 
shape. The magnetic field has a minimum beyond the bound- 
ary of the pinch and then increases monotonically toward 
the periphery (curve 3'). With increasing density of excess 
electrons ( 1'-3') the coordinates which determine the posi- 
tion of the minimum and maximum of h ( p )  move toward 
the center, and their ratio decreases. The solution of the 
problem also includes (for certain values of the currents) a 
magnetic field which is strictly increasing toward the bound- 
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FIG. 1. Spatial distribution of the self-magnetic field h 
(dashed curves) and density f (solid curves) of an iso- 
thermal (T, = T,) bipolar plasma for the cases: a )  
Z = i Z R ( l  +f,); b )  Z = i Z R ( l  + f,) and forvarious 

0 
valuesoff,: 1,l ') 0.2; 2,2') 1; 3,3') 5. 

0.5 1.0 0 

ary of the crystal. Interestingly, such a magnetic-field con- 
figuration satisfies the well-known "min B " principle5 (Fig. 
l b ) .  The nature of such an unusual h distribution can be 
explained as follows. The self-magnetic field in the crystal is 
produced by two plasma components: the bipolar electron- 
hole component, which is subject to constriction (and 
creates a magnetic field that decays toward the periphery), 
and a monopolar component, due to excess electrons ionized 
from donor levels. The electronic component does not suffer 
any appreciable constriction and thus creates a magnetic 
field which increases linearly toward the boundary of the 
crystal. It is the sum of these two components that creates 
the behavior of H,  described above. In a bipolar plasma the 
magnetic-field configuration always remains unchanged 
( H ,  c c r - I ) .  

As we have said, in the case of a nonisothermal plasma 
(T, STp )-the situation which actually obtains in experi- 
ment because of the heating of the electrons by the electric 
field-the plasma is detached from the boundaries of the 
current channel (Fig. 2).  As we see, with increasing ratio 
T,, /Tp the density of the plasma on the axis of the crystal 
and the degree of its localization both increase. In fact, at the 
center of the crystal ( p = 0) the density of the bipolar plas- 
ma corresponds to more than 90% of its limiting value ( T, / 

T, = ), while outside the plasma pinch (the boundaries of 
the pinch are indicated by arrows in Fig. 2)  it is close to zero. 

Another important result is that the degree of constric- 
tion of a plasma with "excess" electrons is much stronger 
than in a bipolar plasma (curves 1 and 6 in Fig. 2a). In 
contrast to the Bennett problem, here the bipolar plasma is 
constricted by a combined magnetic field (the field of the 
plasma and the field of the extrinsic electrons). Therefore, as 
the number of excess electrons increases, the constriction of 
the plasma is enhanced, i.e., the degree of localization of the 
pinch remains appreciable at larger densities of excess elec- 
trons, under otherwise equal conditions. Interestingly, at a 
constant density of excess electrons (f, = const) the de- 
gree of localization of the plasma depends importantly on 
the ratio of the carrier temperature, and for TN/Tp > 5 the 
degree of nonisothermicity has practically no effect on the 
final result (Fig. 2a). 

The constriction of the plasma can also be treated for- 
mally from a different point of view. By neglecting the bipo- 
lar plasma density f in (2 ) ,  one can see that the constriction 
of the plasma occurs solely on account of the magnetic pres- 
sure of the current of extrinsic electrons. However, even for 
f- f, the problem becomes a self-consistent one, and here 
we must allow for the self-magnetic field of the plasma. Thus 

FIG. 2. Spatial distribution of the self-magnetic field h 
(dashed curves) and density f (solid curves) of a noni- 
sothermal (T, # Tp ) bipolar plasma for the cases Z 
= 1, ( 1 +l,) atf, = 1 ( a )  and f, = 5 ( b )  for var- 

iousvaluesof T,/Tp: 1 , l ' )  1; 2 )  5; 3 )  10;4,4') 50; 5 )  CU. 
The arrows indicate the boundary of the plasma pinch 
for curves 1 and 5; 6 )  f, = 0 (bipolar plasma). 
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we have a sort of combination of two effects-the pinch ef- 
fect and the magnetoconcentration effect, which is due to the 
extrinsic current. We note that the constriction of the plas- 
ma with allowance for the "extrinsic" magnetoconcentra- 
tion effect is stronger than the pinch effect [see Eqs. (5)  and 
(7) 1;  this apparently explains the detachment of the plasma 
from the boundaries of the crystal. 

4. Let us now estimate the plasma pinching current and 
compare it with the experimental results. The plasma pinch- 
ing current for InSb that was determined in Ref. 2 and has 
since been regarded as established is around 4 A. However, it 
has turned out that I, ( 1 ) has a somewhat overstated value 
in comparison with many experimental results. For exam- 
ple, measurements with a microwave probe697 have revealed 
that the spatial distribution of the current carriers is substan- 
tially inhomogeneous at a current of only ~ 0 . 8  A. These 
measurements were made at the very beginning of impact 
ionization, when the plasma density was still small ( p 5 N). 
Estimates show that the magnetic field produced by the ex- 
trinsic electrons played the leading role in the constriction of 
the plasma that was formed. 

This hypothesis is also supported by the majority of the 
experimental observations of the helical instability in the 
pinch effect.'s9 Those studies revealed a splitting of the cur- 
rent-voltage characteristics in a longitudinal magnetic field 
due to the anomalous diffusion of the plasma out of the pinch 
channel. Here it is important to emphasize that the splitting 
of the current-voltage characteristics in a magnetic field, like 
the observation of the pinch in Refs. 7 and 10, occurred prac- 
tically right at the impact ionization threshold, when the 
density of the bipolar plasma was still small ( p 5 N ) .  This 
behavior of the current-voltage characteristics indicated a 
strong manifestation of the pinch effect, since otherwise the 
helical instability would not have appeared because a density 
gradient is necessary for the existence of the instability. 

Another important circumstance which is not taken 
into account in the study of the pinch effect is the heating of 
the electron gas prior to impact ionization. In narrow-gap 
semiconductors the heating of the current carriers occurs 
even in rather weak electric fields ( ~ 5 0  V/cm), while in 
fields corresponding to impact ionization the rise in the tem- 
perature above the equilibrium temperature has increased to 
a factor of several times. For example, in n-InSb crystals at 
77 K the electron temperature increases to 250 K when the 
electric field reaches the impact ionization threshold, and is 

subsequently limited by the temperature of the optical phon- 
ons." At the same time, because of the large difference in 
mobility ( ,un ),up ), the hole temperature undergoes practi- 
cally no change, but remains equal to the lattice temperature 
( ~ 8 0  K) .  

Let us now estimate the departure from thermal equi- 
librium. For the electron and hole temperature indicated 
above we obtain a temperature ratio T n / T P z 3  
(6, = 0.25), and we can therefore treat the plasma as essen- 
tially nonisothermal. For the actual carrier densities at the 
impact ionization threshold, we find from ( 12) that the de- 
tachment of the plasma from the boundaries (i.e., the forma- 
tion of a strong spatial inhomogeneity) occurs at currents 
~ 0 . 5  A, in good agreement with the experimental data. We 
can thus state with confidence that the constriction of the 
plasma occurs in the initial stage of its formation and that the 
constriction conditions are determined by the conductivity 
of the extrinsic current carriers. 

In conclusion we note that allowance for the nonlinear 
recombination of current carriers does not alter the qualita- 
tive picture of the formation of the pinch-all the features of 
the problem remain as before, and in the limit of high densi- 
ties of "excess" electrons (f, > 1)  the solutions agree with 
the analogous solution for a nonrecombining plasma. 

We wish to thank V. V. Vladimirov for valuable com- 
ments and interest in this study. 
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