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The structure of longitudinal electric and transverse electromagnetic fields in normal metals is 
analyzed. "Pulling" of the field into the metal due to a nonanalytic dielectric tensor is described. 
The roles played by the thermal motion of electrons, by quantum effects (the nonzero energy and 
momentum of the photon), and by Fermi-liquid interaction are studied. The field structure far 
from a plasma resonance is relatively insensitive to the nature of the electron scattering by the 
boundary of the metal. 

51. INTRODUCTION 

The reaction of a metal to an external perturbation (an 
electromagnetic wave incident on its surface) is customarily 
described by a surface impedance (Ref. 1, for example). 
Study of the behavior of metals in magnetic fields has shown, 
however, that the electromagnetic field distribution in the 
interior of a metal carries important information on the con- 
duction electrons,2s3 and it is the field distribution which is 
responsible for various high-frequency size effects. Al- 
though "nonhydrodynamic" behavior of the field was ob- 
served at large distances from the surface in the classic study 
by Reuter and Sondheimer4 when anomalous skin effect was 
present, the only discussion of a direct role of electrons car- 
rying the electromagnetic field over a distance on the order 
of the mean field path I, considerably larger than the skin 
depth, has been in connection with various effects in a mag- 
netic field.2v3 Apparently the first clear assertion that there is 
essentially always (either with or without a magnetic field) a 
part of the field which is due directly to conduction elec- 
trons, and which is not seen in a macroscopic (hydrodynam- 
ic) treatment, was made in Ref. 5 (this assertion applies to 
both electromagnetic fields and ion displacement fields). 

The role played by the nonhydrodynamic (kinetic) 
part of the electromagnetic field" varies with the situation: 
In the case of a normal skin effect, it determines the structure 
of the surface layer, while in the case of the anomalous skin 
effect it determines the asymptotic behavior of the field at 
large distances. For this reason, this part of the field is fre- 
quently called the "pulling field." We will adopt this term 
here, since we are interested primarily in the collisionless 
limit, where I is much larger than all the other parameters 
with the units of length. 

Pulling fields are formed by electrons which are moving 
normal to the surface of the metal, so there is no reason to 
believe that they are reflected in a specular manner by the 
~u r f ace .~  We have analyzed the role played by the boundary 
conditions for the electron distribution for the particular 
case of a longitudinal electric field ($5). It is found that the 
transition from specular reflection to diffuse reflection 
usually (away from any plasma resonance) does not change 
the structure of the pulling field, simply changing its ampli- 
tude, by a factor of about two. This makes is possible to 

restrict the analysis of several comparatively subtle effects 
[the role played by the temperature ($$2,3), the Fermi-liq- 
uid interaction, and the complex structure of the Fermi sur- 
face ($4) 1 to a specular reflection of electrons by the sur- 
face. The result is to dramatically simplify the calculations. 

The role played by the temperature Tin  many proper- 
ties of metals reduces to the dependence of the mean free 
path on T. The structure of the pulling field is a rare excep- 
tion: A rounding of the Fermi step at T # O  is manifested at 
large distances from the boundary of the sample ($$2,3). 

In this paper we analyze the structure of the longitudi- 
nal electric field Ell (x,t) = Ell (x)eci"' and of the trans- 
verse electromagnetic field E, (x,t) = E, (x)e-'"' in the 
metal half-space x > 0 for the case of normal incidence at the 
x = 0 boundary of the metal, i.e., the case of a wave vector 
kllx. For simplicity we assume that the x axis runs along a 
"good" (symmetric) direction of the crystal, so that the off- 
diagonal components of the electron dielectric tensor are 
zero. 

In the case of specular reflection of electrons by the 
boundary of the metal, the field distribution can be deter- 
mined by the Fourier method if the longitudinal field E, (x)  
(see the discussion below) is continued as an odd function, 
and the transverse field E, (x)  as an even function into the 
x < 0 half-space4*': 

kZcZ 
e,, (a, k )  ] -' otk.dk.  (2)  

where HI1 y is the magnetic field of the wave, Ho=H(x = O), 
Eo=E (x = 01, E, IIz, k r k ,  , E , ~  ( ~ , k )  arethecomponents 
of the dielectric tensor, and E~=E,, (w,O). 

Expressions ( 1 and (2)  essentially describe the field 
structure in a boundary layer, but the thickness of this layer 
is macroscopic because of the long electron mean free path I. 
In the interior of the metal ( x + a  the longitudinal and 
transverse fields satisfy 
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The pulling field is determined by the particular fea- 
tures of the components E , ~  as functions of k. In the semi- 
classical approximation,*) 31 k I q,, .fiw(&, (p, and &, are 
the Fermi momentum and energy), we have the following 
expression for the components of the degenerate Fermi 
gas of electrons in the T approximation (r = I /v, is the elec- 
tron relaxation time, and I is the mean free path) : 

where n = n(e) is the Fermi distribution function, and R ,  
= (ku, - w - i /r)  -' is the Green's function of the kinetic 

equation in the T approximation. 
At T = 0, expression (3)  can be rewritten as 

The components E$) in (4)  have ~ i n ~ u l a r i t i e s ~ * ~  in the 
collisionless limit (7-+a ). These singularities stem from 
the multiple zeros of the expression kv, - w. The equations 

where g and 7 are local coordinates on the Fermi surface, 
determine the point pc (6 = gc ,7 = 7, ) on the Fermi sur- 
face and also that value (k = kc ) at which the singularities 
of are observed. In the case of complex Fermi surfaces, 
Eqs. (5) may, for a single kc, determine several points p, or 
even a line on the Fermi surface and also several values of 
kc-a spectrum of singularities. The singularity of E$) coin- 
cides with that of (R, ) if the expression v, vs is nonzero at 
P =PC. 

At a nonzero temperature the nature of the singularities 
in the components E:$ changes qualitatively. The only sin- 
gularity is an essential singularity at k = 0. If the Fermi sur- 
face is a sphere, then for E::) (w,k) the point k = 0 is an 
accumulation point of branch points. This nature of the sin- 
gularities also determines the particular asymptotic beha- 
viors of the fields at extremely large distances x) ( E ~ / T )  
(u,/w). At T ~ E , ,  at distances 

the intermediate asymptotic behavior of the fields remains 
the same as in the case T = 0. 

In concluding this section we wish to emphasize that 
the diffuse scattering of electrons by the surface of a metal is 
examined only in $5; in the other sections of this paper we are 
assuming a specular reflection law. 

02. LONGITUDINAL PULLING FIELDS IN METALS WITH A 
SPHERICAL FERMl SURFACE (SPECULAR REFLECTION) 

We begin with a study of the structure of a longitudinal 
electric field, assuming that the dispersion relation for the 
conduction electrons is quadratic and isotropic. This subsec- 

tion generalizes Landau's study7 to the case of a degenerate 
plasma. 

1. T = 0. In the case of a spherical Fermi surface we see 
from (5 )  that we have kc = korw/vF, and the singularities 
are produced by a single point p, on the Fermi surface, at 
which we havep, =p,, p, = O,p, = 0. From (4) we have 

where o=kv,/(w + i/.r), f l  0-2( 1 + i/@r)-l, and 
0, = (4ne2N /m* 1 'I2 is the plasma frequency (m* is the ef- 
fective mass, and N is the electron density). Under these 
conditions we have E, = 1 - fl. 

To evaluate the integral in ( 1') by means of the theory 
of the residues, we must analytically continue the integrand 
into the complex plane k = k ' + ik ". We choose the integra- 
tion contour, in accordance with the sign ofx (x > O), in the 
upper half-plane, k " > 0 (Fig. 1).  The branch point of the 
integrand, k = k,, coincides with the singularity of E::): 

k, = k, + i/l. To single out the single-valued branch of the 
function ( ~ , k ) ,  we make a cut in the k plane parallel to 
the imaginary axis. The field in a metal is partitioned into the 
sum of fields of different types: a normal, hydrodynamic 
field, determined by the residues [the zeros of &gSI' (w,k) ] in 
the upper half-plane, and an anomalous field, which is writ- 
ten as an integral along the cut: 

where Cis the integration contour along the banks of the cut 
(the contour Cis  shown by the heavy line in Fig. 1); this is 
the pulling field. 

At x ) k  ; ', the integral in (7) is determined primarily 
by theregionofvalues I Ak " 1  (k,, where Ak " = k " - k :,so 
it can be rewritten as follows with an accuracy sufficient for 
these calculations: 

k"-1/1 
+ *I,-'[ 2 ~ n ( ~ )  - ;]-I} e i p  (- k"r) dk". (71) 

We then find the asymptotic value of the longitudinal pull- 
ing field (at x ~ k  ; ' ) : 

FIG. 1. 
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The inhomogeneous part of the longitudinal field is 
pulled into the metal by electrons over a mean free path. The 
wave of the pulling field propagates at the Fermi velocity, 
and in the collisionless limit is it damped exponentially in 
accordance with (k, x )  -' ln-2(k, x ) ,  like a longitudinal 
ultrasonic wave (cf. Ref. 9) .  

We now consider the exponentially decaying normal 
part of the field. To determine the zeros of the function & ( a ) ,  
we find its asymptotic behavior. For /a/ ( 1 we find 

for / a / ) l  we find 

It can be seen from (9)  and (9') that a distinction 
should be made between two cases: the case far from a reso- 
nance, with w(w, and ID I ) 1, and the case near a resonance, 
w i t h w ~ w ~ a n d  11 -p  I(1.At 10 I)l,thepoleisatthepoint 
k = k, =: k,al ( 1 + i/wr), and the ordinary wave is 

E !,d (5) =Eo exp (-3'"aox/vp). (10) 

As expected, this wave is damped over a distance on the 
order of the Debye-Hiickel radius for a degenerate plasma. 

Near a resonance, with I1 - 0 141, the pole is 
k, =; k,u, ( 1 + i / o ~ ) ,  and the ordinary wave is 

At o > w, in the collisionless limit (07-+ ar ), there is an un- 
damped wave3' with 

in the medium. 
It should be recalled, however, that in most real metals 

the energy of the plasma waves (h,) is numerically close to 
EF. Accordingly [so that we do not go beyond the scope of 
the semiclassical approximation, ( 3 ) 1, we can apply results 
( 1 1 ) and ( 12) under the condition fiw,(&, . For metals, this 
condition is the same as the condition of a high density": 
(e2/fivF ) ' I2(  1. For degenerate semiconductors, the condi- 
tion that the resonance be semiclassical is conveniently re- 
written as e2m*/(~if i2N ' I3)  (1, from which we see that this 
condition can be satisfied as a result of a large ion dielectric 
constant E~ and/or a small effective carrier mass m*. 

The direct application of ( 11 ) to the case of the exact 
resonance, w = w,, leads to the result 

E o 6  (x) = i o o ~ E o  exp [ (518001uFL) (i-1) x] , (13) 

which obviously excludes the limit T+ w . In this connection 
we recall that we are seeking the field ( 1) in the linear ap- 
proximation in the form of steady oscillations, but for an 
exact resonance this case would be meaningless for a dissipa- 
tionless system. Result (13) holds for a large (but finite) 
value WOT) 1 if the condition for the applicability of the lin- 

ear approximation still holds for the kinetic equation (Ref. 
10, for example). 

2. T fO, 1 = W .  Mathematically, the existence of 
branch points of the function E$) (w,k) calculated from ( 6 )  
is a consequence of the existence of a limiting electron veloc- 
ity at T = 0. In this connection it is interesting to determine 
what changes would be caused by incorporating the thermal 
motion of the electrons at a nonzero temperature T ( E ~ .  
From (3 ) ,  integrating over v, and v, in the collisionless lim- 
it, we find 

m 

where f. ( u ) { e x p [ y ,  (u2 - I ) ]  + I)-', y T ~ [ / T ,  and 
[ is the chemical potential of the electrons, which is essen- 
tially the same as E, at T4 tF .  We have introduced the vari- 
able u = v,/v,, where vF = (2[/m*) 'I2. Expression (14) 
determines two different functions upon an analytic con- 
tinuation of ~ 2 )  (w,k) into the complex k plane: &,(w,k) 
and c2(w,k), depending on the sign of k. The two functions 
correspond to the possibilities of integrating around the pole 
u = ( W  + iO)/kvF in ( 14) from below ( k  > 0 )  or from above 
( k  < 0 )  for real k: 

3 o 2  
ei(21 ( a ,  k) = i  + -2 j fT (u)  u2du 

2 okv, ,,(l,u- (o+iO)/kv, 
, (15) 

where the contours r, and r2 circumvent the pole u = o/ 
ku, from below and above, respectively. The functions 
&'(w,k) and ~ , ( w , k )  specified in this way are analytic over 
the entire complex k plane. The field El ( x )  can be written in 
a form more convenient for calculations, in accordance with 
Ref. 7: 

~ E o  j 8 2  (o,  k )  -80 
E,  ( x )  = - - e fkdk  

i 'CEo  - m  ket ( a ,  k) 

The difference E, (w,k) - E, (w,k) is given by an expression 
of the type in ( 15), but the integration is carried out over a 
closed contour around the pole u = w/ku,, traversed in the 
clockwise direction (cf. Ref. 7) :  

The functions E, and E, are related by 

&1(0l k )  =ez ( a ,  -k),  ci (0, k*) =E2* k )  , 

Both of the functions E ,  and E, tend toward unity at infinity 
and have a unique singularity k = 0. The function &,(w,k) 
tends toward the value (w,O) in the limit k 4  along 
any path in the upper half-plane outside the rectangular sec- 
tor which contains the imaginary axis and which is formed 
by rays emerging from the point k = 0 and making angles of 
f ?r/4 with the imaginary axis. The same comments evi- 

dently apply to the function e2(w,k) in the lower half-plane 
(the angles here are f 3a/4).  
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It can be shown that the equation c2(o,k) = 0 has an 
infinite number of roots in the lower half-plane with an accu- 
mulation point k = 0 (according to Picard's theorem re- 
garding the value of a function near an essential singular- 
ityI2), while in the upper half-plane it either has no roots (if 
E, > 0)  or has one root on the imaginary axis (if E, < 0).  
Analogously, the equation E, (w,k) = 0 has an infinite num- 
ber of roots of the upper half-plane, while in the lower half- 
plane it either has no roots (if E, > 0)  or has one root on the 
imaginary axis (if E, < 0).  Displacing the integration con- 
tour in the first integral in ( 16) to infinity in the upper half- 
plane, we find that this integral either vanishes (if E, > 0)  or 
reduces to a calculation for a pole on the imaginary axis (if 
E,  < 0) .  In the latter case the first term in ( 16) falls off ex- 
ponentially with distance [see ( 11 ) ], and it becomes insigni- 
ficant at large values ofx. We denote the second term in ( 16) 
by E 8, (x) .  Substituting ( 17) into ( 16), we find 

It is difficult to evaluate this integral because of the infinite 
number of poles with the accumulation point k = 0. On the 
other hand, it is a simple matter to find an asymptotic 
expression describing the behavior of E !, (x)  at large dis- 
tances x)yT/ko by the method of steepest descent.' The 
transition region for the function f, ( k d k )  is on the order 
of ko/yT, so at intermediate distances, k ; '(x(y,/k,, the 
function f . ( k d k )  can be replaced by a Fermi step, and we 
return to Eqs. (6)-(8).  At extremely large distances, 
x)yT/ko, values k(k, are important in the integral in ( 18), 
so that we have 

3Eo oo2k03 ko2 dk 
E!, (x)=--y- Eo oZ exp(yT) jexp (ikx-yT k,)z, ( 18.1 

0 

and for an extremal point in the argument of the exponential 
function we have I k, / = k y3 y:/3/~ ' /~4k, .  

Calculations analogous to those in Ref. 7 lead to 

where ~ , r ( T / m * ) ' / ~ .  At distances x)yT/ko the field 
E !, (x)  thus falls off in a manner characteristic of a nonde- 
generate plasma. Substituting w i  = 4nNe2/m* into( l9),  
and comparing the resulting expression with expression 
(44) of Ref. 7, we find that, in contrast with Landau's result 
for a Maxwellian plasma, we have an effective density 
N,, - N ( T / E ~ ) ~ / ~  in ( 19) instead of the total electron den- 
sity N. This effectiveness ( T / E ~  )312 is significantly smaller 
than the usual value T / E ~ ;  this result is to be expected since 
the pulling field ( 19) is formed by remote thermal electrons. 
The "intimidating" exponential factor exp(yT) is actually 
"covered" by the attenuation: at k$)yT we simultaneously 
have y, 4 (wx/u, )213. 

At resonance (E, = O,W = a,) we have 

By incorporating the thermal motion we can treat the reso- 
nant situation without taking dissipation into account (ther- 
mal motion is equivalent to blurring of the resonance). The 
behavior Ebj,, ( x )  is studied by a method similar to that in 
the degenerate case; as a result we find ( 1 1 ) . 

At w 2 o, the thermal motion of the electrons in spec- 
trum (12) gives rise to an exponentially small attenuation: 

In this case we have 

(11') 

We see that the field E bj,, (x)  + Eoh0 initially increases in 
amplitude to 2Eo/c0 and then tends toward the uniform val- 
ue E,/E,, undergoing exponentially damped oscillations 
around it. 

93. TRANSVERSE PULLING FIELDS IN METALS WITH A 
SPHERICAL FERMl SURFACE 

1. T = 0. As in the other sections below, we are interest- 
ed in the long-range limit. It is customary here to distinguish 
between two limiting cases on the basis of the frequency: 

the extremely anomalous skin effect, 

infrared optics, 

Here a = 3/4(wg/02) (ui/c2). For the asymptotic val- 
ue of transverse pulling fields at x)k ; ' we find the follow- 
ing results from (2),  using (4)  and choosing a cut parallel to 
the imaginary axis in the complex plane k = k ' + ik " (Fig. 
1): 
in region (2 1 ), 

E in (x) z- (up/ca) Ho (kox) -2 exp (ikox-xjl) . (23) 

in region (22), 

E in (x) =-- ( 4 ~ ~ 1 ~ )  aHo (k0x)-' exp (ikox-211). (24) 

The asymptotic behavior in (23 was found in Ref. 4 in 
the region a- 1'3gko1( 1, which is contained in (21 ). We can 
also write expressions for the amplitudes of ordinary waves, 
which are determined by the poles of the integrands in (2) .  
In region (21 ) with 1 <kol<a'/3 (the case a-113(k01(1 was 
studied in Ref. 4) we have 
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while in region (22) we have 

where the skin depth is different in the different cases: 

Comparison of the ordinary and anomalous terms shows 
that in region (21 ) for x$k ; and in region (22) for ~ $ 6 ,  
we have Re E in (x))Re E A,, (x ) ;  i.e., the quasiwave which 
results from electrons of the reference point on the Fermi 
surface plays a leading role in metals far from the boundary. 

To some extent, the question of the number of roots of 
the dispersion relation (which determine ordinary waves) is 
relative. The very form of the dispersion function 
D(w,k) = 1 + k 'c2/w2 - E ~ , B '  (w,k) depends on the method 
used to identify the single-valued branch of the multivalued 
function EZ' (w,k) (multivalued in the presence of branch 
points). This function can be written 

The function q, (x) has two branch points, at X ,  = + 1. 
Introducing a cut from the point X, = 1 throughx = 0 [the 
corresponding cut in the k plane must not intersect the real 
axis-the integration path in (2 )  1 tox,  = - 1, and specify- 
ing arg(z - X)  at any point, we determine the single-valued 
function EZ' (w,k) and its range of existence. Consequently, 
by specifying a cut in the k plane in calculating the anoma- 
lous terms we are simultaneously specifying the form of the 
function dg) (o ,k) ,  which in turn determines the roots of the 
dispersion relation D(w,k) = 0, i.e., the ordinary terms. 

One form of the cut is most convenient-from the 
points k, = + (k, = i/l) parallel to the imaginary axis-in 
a calculation of the asymptotic values of the anomalous 
fields. Similarly, for this choice of the cut the integral along 
the cut gives the best description of the effect of the pulling of 
the field by conduction electrons: The exponential attenu- 
ation of the pulling field is determined exclusively by the 
range. Since the method for making the cut is given and does 
not depend on the parameters of the problem, a change in 
parameters (e.g., wr )  may create a situation in which a root 
k, of the dispersion relation falls at the cut. As the point k, 
goes from one side of the cut to the other, the quantity 
Im p ( a - ' )  changes discontinuously by & 2ri ,  so that the 
point k, generally ceases to be a root of the dispersion rela- 
tion. We might note that the possible appearance and the 
disappearance of roots singly, rather than in pairs, is due 
exclusively to the presence of the cut because of the branch 

points of the function E ( ~ )  (w,k). In region (21 ), for example, 
as we go to lower frequencies ( ~ - ' / ~ 4 k , l < l )  the field 
E kd (x)  is described by expression (25) ,  but it contains one 
term, the first. As we go to higher frequencies ( k , ~ $ a ' / ~ ) ,  it 
contains only the second term. As wr  is varied in accordance 
with the discussion above, the roots of the dispersion rela- 
tion, moving with respect to the cut, intersect it. It should be 
noted that as the point k, goes across the cut the contribu- 
tion of this root to the total field in (2) ,  which disappears in 
(25), appears in an anomalous term (as can be seen directly 
by examining the case in which k, falls on the cut) ,  so that 
the resultant (true) field in the metal is of course continuous 
with respect to wr. 

In calculating the asymptotic behavior of the field at 
distances x$k ; ' we are dealing with exponentially small 
increments, so that the question of the number of poles is not 
very important. However, in a calculation of, say, the imped- 
ance, the contributions of the two poles and of the integral 
along the cut are comparable in magnitude, and to find the 
frequency dependence we need to study the analytic proper- 
ties of the function D(w,k) and, in particular, to study this 
situation in which a cut is crossed by a pole.4' 

2. T #O, I = m. Incorporating the thermal motion of 
the electrons in (3 )  leads to the following expression for the 
dielectric constant: 

Calculations from (2 ) ,  analogous to those given above 
for the case of a longitudinal field, yield the following results 
for x) y,/k,: 

in region (2  1 ) and 

in region (22).  This "thermal" attenuation may be observ- 
able in semimetals or degenerate semiconductors, where the 
Fermi energy is far lower than in "good" metals. 

For comparison, here is the result calculated for 
E in (x)  in a Maxwellian plasma: 

2 VP 'h 

E in (XI = - 3"ca ~~y~~~ (2) 

It can be seen from expressions (29) and (29') that the ratio 
of the amplitudes of the transverse pulling fields in a degen- 
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erate plasma and a Maxwellian plasma is - ( T / E ~ ) ~ ' *  as in 
the case of a longitudinal field [cf. ( 19) 1. 

94. EFFECT OF THE LOCAL GEOMETRY OF THE PULLING 
FIELD, THE FERMI-LIQUID INTERACTION, AND QUANTUM 
EFFECTS ON THE STRUCTURE OF THE PULLING FIELD 

1. Let us examine the structure of the pulling field in a 
metal with an arbitrary Fermi surface (we restrict the dis- 
cussion to the case of a zero temperature). The wave vectors 
of the pulling field are found from Eqs. (5) .  Clearly, the law 
describing the attenuation of the pulling field depends on the 
type of singularity in eaB. The nature of the singularity of the 
cornponents~,~ is determined to a large extent by the nature 
of the singularity in (R , ). In particular, if u: v i  #O, where 
vc = v (p, ), the singular part of E$) can be expressed in terms 
of the singular part of (R, ): 

The expression for (R, ) becomes infinite at 
Ak r k  - kc = 0. The nature of the divergence of (R, ) is 
related to the local structure of the Fermi surface near the 
points p,. The cases encountered most frequently are5.* an 
0-type singularity (Re(R, ) colnl k,/Ak I, Im(R, ) has a 
discontinuity) and an X-type singularity (Re(R , ) has a 
discontinuity, Im(R, ) m lnl kc/Ak I ). In addition to these 
singularities in metals whose Fermi surfaces have lines of 
parabolic points, a singularity is intensified for selected di- 
rections of the wave vector k: I (R, ) I co (kc/Ak)", 0 < v < 1 
(see Ref. 8, where a dumbbell-shaped Fermi surface was 
studied as an example). 

Evaluating the integrals along the cuts drawn from the 
branch points E;$: k, = kc + i/l, we can find characteristic 
expressions for the distribution of the pulling field in metals 
with arbitrary Fermi surfaces. These expressions are given in 
Tables I and 11. 

2. Up to this point we have been employing a gas model 
for conduction electrons. The incorporation of the Fermi- 
liquid interaction leads to changes in the nature of the singu- 
larity of E, . It was shown in Ref. 8 that in the collisionless 
limit with IAk I(kc the components of the electron liq- 
uid of a metal can be described by 

where E:~=E;?) ( ~ , k , ) ;  the quantities ezB and AaB are de- 

TABLE I. 

termined by integral equations and are finite [in order of 
magnitude, e& - ( w , , / ~ ) ~ ,  Asp - (w,,/w)'N/(  WE^) 1. They 
depend on the Landau correlation function and also on the 
shape of the Fermi surface. 

Incorporating the Fermi-liquid interaction eliminates 
the divergence of the components and weakens the sin- 
gularities. It is true that in some cases the singularities of the 
transverse components cap may in fact be strengthened 
(Ref. 8) .  If the Fermi surface is a sphere, the Fermi-liquid 
renormalization does not change the nature of the singular- 
ity of the transverse part of ca8 at all. 

For the longitudinal part of e, in the case of a spherical 
Fermi surface, we find from (3  1 ), making use of the finite 
value of 1, 

Nature of 
singularity of 

&El 

Let us examine the anomalous term in ( I ) ,  using 
expression (32) instead of ( 6 )  for E,,. For the asymptotic 
value of the longitudinal pulling fields we then find, in place 
of (81, 

Longitudinal field 

E $  (x ) / (E , ,02 /o i  ), 
x > k ; '  

4 w2 X 
E,, (2) k - - G E . ( ~ ~ X )  -I In-'(k0x) exp( i k ~ x  - i-) , 

3i coo2 
(33 

In Ikc/JkI I (k.x)-l 
(kc/Ak) ( k , ~ )  

where 

If the Fermi-liquid interaction is ignored, the factor here is 
G- 1 for an arbitrary Fermi surface, and it is strictly equal to 
one for a spherical Fermi surface. 

If the Fermi surface is a sphere, the dimensionless Lan- 
dau function F(pF,pk ) F ( 8 ) ,  where 8 is the angle between 
p, and pk, is conveniently expanded in a series in Legendre 
polynomials: 

TABLE 11. 

Nature of Transverse field 

singularity of E ' , , ( x ) / ( H 0 v F / c ) , x ~ k ; '  
&::I I a<<i 
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The coefficients F,, fall off rapidly with n (in particular, for 
Na and K we have F0z - 0.6; IF,/, IF,l, ... 41; Ref. 15), so 
we can write 

The Fermi-liquid interaction is thus essentially unseen in the 
structure of the pulling field. Expression (36) was derived 
for the case w(wo. 

In an anisotropic metal, the Fermi-liquid interaction 
changes the amplitude of the pulling field, and in some cases 
it changes the way in which the pulling field falls off. In 
metals with complicated Fermi surfaces the factor G de- 
pends on the Landau function much more strongly than in 
an isotropic metal. The change in the amplitude and in the 
decay law as we go from a Fermi-gas description to a Fermi- 
liquid description is particularly obvious in the infrared re- 
gion [see (22) ]. If the transverse pulling fields are due to 
singularities 

then at great distances ( x ~ k ;  ') there will be a change in 
the dependence of their amplitude of the parameter a ,  while 
in the intermediate region there will be a change in the decay 
law of the pulling field. For a logarithmic singularity we 
have 

while for a fractional-power singularity we have 

up a2 a e ~  ~ 2 2  ( X )  - -a- P.. - H,, (/cox) -('+l' exp ( i k . 2  - T) , 
C Oo N 

(cf. Table I1 for the case of a transverse field with a( 1 ) . 
If the Fermi-liquid interaction strengthens the singular- 

ity [SP&:'oo (Ak /kc )lnIkc/Ak I, while SP ~ j f ' ~ '  oo In-'/ kc/ 
Ak I I ,  the decay law 

E 22 ( x )  - ( k , x )  -' ln-' ( k , x )  exp ( ik ,x-x /1)  

also differs from the decay law 

E 2 ( x )  - ( k , x )  -' exp ( i k , x - x l l )  

at x#k ; ' [cf. (23) 1. 
3. What role do quantum effects play in the structure of 

the pulling field? Going over to a quantum treatment means 
taking into account the nonzero momentum fik and energy 
fio of the photon. To avoid complicating the discussion, we 
will use the "gas" expression for the dielectric tensor. It can 

be shown (S. Shipl'kin, personal communication) that in- 
corporating the nonzero energy and momentum of the pho- 
ton does not change the structure of the singular parts of the 
components of the tensor E $ )  (from the semiclassical ex- 
pressions'). As we will see below, the nonzero values of h 
and fik give rise to beats in the structure of the pulling field. 
These beats are related to a splitting of the singularities of the 
components E , ~  in the quantum treatment. We can demon- 
strate the situation in the example of longitudinal pulling 
fields. For EL:) (w,k) we have 

For clarity we consider an isotropic electron dispersion rela- 
tion; we find 

HereAk* = k - k , + , w h e r e k $  = k o ( l  f h / 4 & , ) .  
We see that in the upper k half-plane, two branch 

points5' of EL:) appear when I k 4p, / f i :  k,, = k ,+ + i/l and 
kbl = k; + i/l. The integration contour used in this case 
[see ( 1') ] is shown in Fig. 2. The splitting of the singularities 
must be taken into account under the condition 

I Ak I (k,h/&,, i.e., in the region x)k, '&,/fio. As a result 
of the addition of two pulling fields with approximately 
equal wave vectors we find "quantum" beats in the pulling 
field: 

We see that at k ; '(x4k ; '~,/h we can use the semiclas- 
sical approximation, ( a ) ,  while at x sk ;  '&,/h we must 
use the quantum treatment, and it does in fact give rise to 
beats. We wish to emphasize that the splitting of the singu- 
larities and the beats caused by this splitting stem from the 
nonzero value of the ratio ha/&,. 

For an arbitrary Fermi surface, the splitting of the sin- 
gularities of&, of other types can be taken into account in a 
similar way. 

For a Fermi surface of complex shape we need to take 

FIG. 2. 
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9 the quantum approach even in the limit fiw/&,+O if the 
band v, = 0 on the Fermi surface has a self-intersection 
point or if a loop is generated there (or disappears there) 
As was shown in Ref. 8, this situation is possible if the wave 
vector is directed nearly along the tangent to a parabolic 
point on the Fermi surface. We denote the wave vector in 
this case by kc,, emphasizing that not only the length of the 
wave vector but also its direction is critical. In this case, the 
value found for kc, from ( 5 )  tends toward infinity, and to 
analyze the singularities (e.g., in the longjtudinal part of 
E , ~  ) we should use not (4) but expression (39), from which 
we easily find kc, -kc (~ , / f iw) ' /~ -  ( p , / f i )  (fiw/&,)'I2. The 
pulling field6' decays in the region k ; '41 (k, '~,/fiw in 
accordance with 

while at x>k ; '&,/fiw- k, ' (~ , / f iw) ' /~  we again find 
beats [cf. (41) 1: In the critical direction, quantum beats 
begin closer to the surface of the metal than in th i  case of an 
arbitrary direction. 

We emphasize that there may be cases in which the 
critical direction is one of the "good" directions in the crys- 
tal. In copper, for example, the direction of the critical wave 
vector kc, is the [ 1001 direction. l6  

Quantum effects are particularly marked at x4l .  In a 
metal in an rf electromagnetic field there is a "nonremova- 
ble" electron mean free path I,, (Ref. 17; this mean free path 
stems from electron-electron collisions), given in order of 
magnitude at T<fiw by 

The dimensionless factor W depends on the exact value of 
the probability for a transition during a collision. It is clear 
from (41 ) and (43) that the quantum beats of a pulling field 
with a wave vector k, should be clearly observed at W g l .  
The quantum asymptotic behavior due to the critical direc- 
tion (a  pulling field with a wave vector kc,) may also be 
observed at W- 1 (since in this case we have 
I,, >k , 1. 

85. PULLING FIELD DURING THE DIFFUSE REFLECTION OF 
ELECTRONS FROM THE SURFACE OF A METAL 

To determine the role played by the countary condi- 
tions, we examine the structure of longitudinal pulling fields 
for the case of a purely diffuse reflection. For simplicity we 
assume that the Fermi surface is spherical. We ignore the 
Fermi-liquid interaction, and we set T = 0. It follows direct- 
ly from Maxwell's equations that 

4n 
El' (x) - - j (x) =0, 

io 
(44) 

where the field in vacuum is E (x < 0)  = E,, and the con- 
duction current 

V I  

can be found by solving the kinetic equation for the electron 
distribution function. This equation is given in the T approxi- 
mation by 

(45) 
where Sn is the deviation of the distribution function from 
the equilibrium Fermi function. The boundary conditions 
on (45) in the limiting case of purely diffuse scattering of 
electrons by the surface are chosen in the usual form: 

where the constant A satisfies the condition that a conduc- 
tion current does not flow across the metal-vacuum inter- 
face." The subscript + specifies the value of the function 
with v, >O. Using (45) and (46), we find from (44) the 
following integral equation for E 1 1  (x)  : 

Here ( . . .) + means an integration over that part of the Fer- 
mi surface on which the condition v, > 0 holds [cf. (4)  1.  
Transforming to dimensionless variables X =k, x, 
u=u,/v,, and using 

m 

we find the equation 

(or) -'-i j ( i- ( 0 ~ ) - '  x) du L ( X )  =3 u exp 
0 

U 

for the component of field ( 1 ) which decays at + co . The 
constant B --PwA/E,v, must be determined from the 
boundary condition E l  (x  = 0) = Eo(&, - 1 )/E,, which is 
equivalent to the condition for no flow of a conduction cur- 
rent. 

Equation (48) can be solved by the Wiener-Hopf meth- 
od by means of Fourier transforms. For this purpose, the 
function L (X) is continued as an even function, and the first 
term on the right side of (48) as an odd function, onto the 
negative semiaxis X <  0. We introduce the field 

Eif(X)=O (X)Ei  ( X ) ,  El-(X) =0 (-X) Ei ( X ) ,  
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Following the Wiener-Hopfmethod (Ref. 19, for exam- 
ple), we factorize the dielectric constant &(a ) ,  the Fourier 
transform of the kernel of Eq. (48) : &(a) = r, r - , , where 
the function 

-+io 

1 xko-' d x  
r h =  ex* {- J ~ne(-) -} 

2nLw+io I + i / o ~  x-k  

is analytic and has no zeros at k " < l/l. We recall that 
u = ku,/(w + i /r)  [see ( 6 )  1, and we note that in the limits 
J k  J+O and J k  J+w the factorization is given directly by ex- 
pressions (9)  and (9'). Using (49), we find from Eq. (48), 
extended to X < 0, the following equation: 

where the E : (k)  are Fourier transforms of the functions 
E :  (XI. 

Since we have E : (X = co ) = 0 and, as can be seen 
from the continuation of Eq. (48), E ,  (X = - m ) = 0, 
the half-planes in which the left and right sides of (50) are 
analytic intersect in a band around the real k axis. Conse- 
quently, both sides of (50) are equal to an entire function, 
which we must choose here in the form r, - ikB /k, (see 4 1.7 
in Ref. 19), so we can find E ,+ (k)  [and, if necessary, 
E , (k)  also]. The constant B, as we have already stated, is 
found from the boundary condition 

Et (-I-0) = lim[ikEtt (k) ] =-PEa/~o 
h+-  

and from the asymptotic form of r, [see (9') 1. We finally 
find 

wherer,=r,=, = (1 -p)"', k l  = ulko( 1 + i/wr),andu, 
is given in (9'). Expression (51 ) gives us the exact solution 
of the problem in the k representation. 

Since all the terms in braces in (5 1 ) except the first give 
us zero during an integration along the banks of the cut, the 
expression for the pulling field can be written in the form 

by multiplying and dividing (5 1 ) by r -, . The contour Cis 
shown (by the heavy line) in Fig. 1. At largex, this integral 
is dominated by the vicinity of the branch point 
k, = k, + i/l (or ub = 1); at this point, r -, is analytic by 
definition. We thus have from (52) 

Comparing ( 52') and ( 7), we reach the conclusion that the 
asymptotic expressions for E L  (x)  (at x>k; ' )  for the 

specular and purely diffusion scattering of electrons by the 
surface differ only by a constant factor 

The quantity r P k b  can be calculated by using an integral 
factorization form (49), which gives us, after some manipu- 
lation, 

In ( l+o (w) ) 

- = 

where u(w)  is the function which is the inverse of 

The parameter u, in the extreme cases in terms of p 
coincides with either a, (if l,B 1 - 1) or g, ( J p  / ) I  ): 

Evaluating the integral in (53) approximately, and making 
use of (54), we find 

0,215(l+i13) (I-PI-'", I I-P I 
{ 0,47, IPIB1 ' 

(55 

We see that in the most interesting case-far from a 
resonance ( lp 1 > 1, w<wo)-not only the structure of the 
pulling field but also the wave amplitude is relatively insensi- 
tive to the nature of the scattering of electrons by the surface. 
Near a resonance (w zoo) the boundary conditions is seen 
to be important; the amplitude of the pulling wave increases 
substantially. 

CONCLUSION 

1. It is meaningful to distinguish a pulling field only at 
distancesx>k; ', i.e., at distances large in comparison with 
the path traversed by a Fermi electron over the field period. 
Analysis of the quantum and temperature effects introduces 
some new length scales: at x > k ,  "quantum" beats 
of the pulling-field waves arise because the branch points of 

move away from each other; at x>k & ' E ~ / T ,  the pulling 
field falls off in the manner characteristic of a nondegenerate 
plasma. Just which of the two types of asymptotic behavior 
will be seen first depends on the relation between fiw and T. 
The x axis is thus partitioned into intervals in each of which 
certain groups of conduction electrons or others are mani- 
fested. In anisotropic metals, this partitioning depends 
strongly on the direction of the normal to the surface with 
respect to the crystallographic axes. 

2. In a study of the structure of a high-frequency trans- 
verse field one should distinguish between two frequency 
regions: the region of the extremely anomalous skin effect, 
(2 1 ), and the region of infrared optics, (22 ) . In region (2 1 ) , 
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with 61<k, ', the hierarchy of length scales is the same as 
for a longitudinal field. The pulling fields determine the "ac- 
tual" asymptotic behavior at large distances from the sur- 
face of the metal. In region (22), and under the condition 
k; '(x<S,, the amplitude of the anomalous wave exceeds 
the amplitude of an ordinary wave. The pulling field deter- 
mines the actual asymptotic behavior. 

3. If the band v, = 0 at the Fermi surface has a self- 
intersection point, or if a loop begins (or disappears) there, 
macroscopic pulling fields can propagate with a wave vector 
k c c  %ko. 

4. In isotropic metals, the Fermi-liquid interaction is 
essentially not manifested in the structure of the pulling 
field. In anisotropic metals, this interaction can both change 
the amplitude of the pulling field and also change its decay 
law [see (37)  and (38)l.  

5. Since the results of the calculation of the longitudinal 
pulling fields far from a resonance differ by only a numerical 
factor in the limiting cases of purely diffuse and specular 
reflection of electrons by the boundary, we can assume quite 
confidently that this result will also hold in the intermediate 
case (with a specular coefficient 0 < q  < I ) .  This circum- 
stance justifies a study of the qualitative features of the pull- 
ing field in the case simplest for calculations, that with 
specular reflection of electrons. 

We are sincerely grateful to G. Ya. Lyubarskii and V. 
G. Peschanskil for a useful discussion of many aspects of this 
work. 

"In this paper we are discussing only electromagnetic fields. 
"We are considering macroscopic pulling fields here, for which the condi- 

tion 1 kc la41 holds (kc is the wave vector of the pulling field, and a -ti/ 
p, is an interatomic distance). 

"The dispersion relation for this wave, w2 = og + 3k 2v:/5, w 5 w,, natu- 
rally agrees with the dispersion relation for a longitudinal plasma 
wave. lo  

4'This point is parti_cdlarly important in a study of the impedance and of 
other characteristics as functions of the magnitude of the magnetic field 
normal to the surface of a metal, whose effect is seen in a replacement of 
o r b y  ( o  f o, )T, where w, is the cyclotron frequency.I3 

5)A finite mean free path I smoothes over the singularities in EZ' ,  and we 
can speak of a splitting of these singularities only in the case 
k+  - k->Ill .  

6'The wave vector k, corresponds to a macroscopic pulling field because 
of the condition 1 k,al <l. The factor of h / e ,  in the expression for k,, 
and in (42) does not arise from the Fermi function. It is written in this 
form for convenience in the calculations: 

The quantities rn? and u, are the effective mass and velocity of the elec- 
trons at the critical point. 
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