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A new variational technique is used to analyze a branching subcritical diffusion process which 
simulates percolation and has no self-intersections. The mean square distance between a wetted 
site and the coordinate origin is found as a function of the number of the generation in which the 
site is wetted. This dependence yields critical index values for percolation on a d-dimensional 
lattice which are in close agreement with results found in numerical experiments for 2<d<6. 

Much work has been devoted to percolation theory (see 
the original papers and reviews'-5). Three approaches to de- 
scribing percolation in d-dimensional lattices may be distin- 
guished-exact solutions, the mean-field technique (solu- 
tion on a Bethe lattice), and the renormalization group 
method. Exact solutions are currently available only for 
two-dimensional The mean-field theory is valid 
for spatial dimensions greater than or equal to the critical 
dimension d, = 6. This leaves the interval 2 < d < 6, for 
which no microscopic theory is available for calculating 
critical indices that agree reasonably well with values found 
from numerical experiments. 

In this paper we study the time evolution of the follow- 
ing percolation process. Let a wetted site be present at the 
coordinate origin. In unit time (one generation of the 
branching process), there is a certain probability that this 
site will wet anywhere from 0 to z lattice sites (where z is the 
number of nearest neighbors in the first coordination 
sphere). Each of the wetted sites may then wet their nearest 
neighbors during the next generation, etc. We will study how 
the mean-square size of the wetted cluster depends on time. 
(We will amplify this model below and discuss how this de- 
pendence is related to the definition of the correlation radi- 
us. ) 

For a quasi-one-dimensional Bethe lattice (tree), the 
percolation process is a Markov branching process whose 
properties are well-e~tablished.~ The situation for an actual 
d-dimensional lattice differs, because in general a single wet- 
ted site may correspond to several wetted Bethe lattice sites. 
Thus, if we use the Bethe model to describe actual percola- 
tion processes (this is tantamount to the mean-field approxi- 
mation), errors occur because the "daughters" of a single 
wetted site ("parent" ) may be erroneously counted several 
times as the descendents of different sites. The branching 
percolation can go back to a previously wetted site, and this 
recurrence is responsible for the nonmarkovian nature of the 

For any instance of the process one can find a unique 
sequence of parent-daughter sites whichjoins any site wetted 
at the N th generation to the coordinate origin. In this paper 
we regard the spatial distribution of parent-daughter se- 
quences as a distribution of random-walk trajectories on a 
lattice. The "Hamil t~nian" '~  of this distribution allows for 
the average number of times the unbranched random walk 
trajectory crosses the branches of the percolation trajectory 
(this number is calculated for a fixed trajectory position). 
The Hamiltonian thus takes into account the average num- 
ber of times the random-walk trajectory crosses the sites in 
the cluster. It describes a highly nonmarkovian process, and 
the percolation model in this paper is therefore not equiva- 
lent to the mean-field approximation. 

We will analyze the spatial distribution of the random- 
walk trajectories by using a variational principle with the 
nova1 test Hamiltonian proposed in Ref. 14 trajectories. The 
mean-square distance Ru between sites wetted in the ith and 
jth generations of the model process is found to be 

( R d >  = I i-jl for small 1 i-j 1 ,  
(Rd;)ml i - j l Z v  for large 1 i-j 1 ,  ( 1  

and for large (i - j (  the site distribution is scale-invariant. 
According to Refs. 10-12, the mean lifetime T of an ex- 
cluded-volume branching diffusion process is given by 
T- A -", where v, is a new critical index and A =p,  -p,  
wherep is the fraction of broken bonds andp, is the thresh- 
old for percolation. For A+ + 0 and J i  - j( = T, the formu- 
las derived below determine how the cluster radius R de- 
pends on A:R a A - 'p. The estimate for the corresponding 
critical index vp yields an exact value for the upper critical 
dimension d, and gives results in close agreement with vp 
found in numerical experiments for 2 c d c 6 .  

process. 
Percolation in nonideal lattices can be modeled as a DESCRIPTION OF THE MODEL 

branching diffusion processg subject to a "volume exclu- We regard percolation as a non-self-intersecting 
sion" principle which forbids returns to previously wetted branching diffusion process (return to previously wetted 
sites (i.e., no self-intersections are allowed). Such processes sites is not allowed). Assume that a wetted site is located at 
may be referred to as "tree growth with excluded volume"; the coordinate origin (by definition, it belongs to generation 
their properties were studied by numerical simulation in zero). The probability that his site will wet s of its nearest 
Refs. 10-12. neighbors (first-generation sites) is given by 
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where the C :  are the binomial coefficient and z is the coordi- 
nation number of the lattice. Each of the k th -generation sites 
has a probability P ( s )  of wetting s different sites in its first 
coordination sphere, which by definition belong to the 
(k + 1 ) th generation. If any of the ( k  + 1 )-generation sites 
coincides with a j-generation site with j<k, we remove it 
from the (k  + 1)-generation set. If more than two sites be- 
longing to the same generation coincide, all but one of them 
(chosen arbitrarily) are removed. Equivalently, we can de- 
fine percolation as a branching diffusion process, each in- 
stance of which is non-self-intersecting (i.e., as the growth of 
a tree with excluded volume). Figure 1 shows an example of 
such a process in two dimensions; it provides an adequate 
percolation model if the number of generation N is less than 
the mean lifetime T of the process. l 2  

Although the above-defined process is nonmarkovian it 
does not contain any cycles. In any given instance, each wet- 
ted site is wetted only once and is joined to the zero-genera- 
tion site by a unique path. 

Consider an arbitrary sitex, which is wetted in the N th 
generation for a given instance of the process. Then for this 
instance each generation contains one and only one site 
which belongs to the chain of sites joining x, to the O-gener- 
ation site. We writexi for the radius vector of the ith-genera- 
tion site belonging to the chain. 

In the continuous limit the joint probability distribu- 
tion of the d-dimensional vectors xi can be written in the 
form 

9 { x i ) =  ( 2 n ~ ) - ~ ~ / ~ I , - '  (N) exp (-H,{xi)), (2)  

where 

If self-intersections are allowed, the sequence {xi ) is an un- 
restricted random walk, and the Hamiltonian H, is therefore 
given by 

where E is the persistence length.I3 
The distribution (2) is known to correctly describe the 

excluded-volume effect for an unbranched chain if the Ha- 
miltonian is given byI3 

where V' ( r )  is a short-range potential. 
The second sum on the right is over all self-intersections 

of a given instance of a self-avoiding random walk. 
In analogy with self-avoiding walks, we assume that the 

spatial distribution density for the distingushed chain {xi ) is 
given by (2)  with the Hamiltonian 

By definition, the functional W{xi) is equal to the mean 
number of sites on the distinguished trajectory which are 
nearest neighbors of sites wetted in previous generations 
(this average must be calculated for a specified position of 
each of the sites xi in the distinguished chain). 

All instances of the process are free of cycles, i.e., they 
represent trees. We call the distinguished trajectory the 
trunk of the trees, and the functional W is the number of 
times the trunk crosses itself and the branches. In order to 
obtain a closed definition of the density 9 in (2)-(4),  we 
define Wself-consistently by assuming that the average spa- 
tial distribution of the sites on a branch relative to its branch- 
ing point (this is the unique point at which the branch and 
tree intersect) is the same as the distribution of the sites on 
the trunk relative to the root (the zero-generation site). 
With this assumption, W is given by 

Figure 2 illustrates the summation in the right-hand side of 
Eq. (5);  i indexes the site on the trunk, j is the number of the 
site at which the branch occurs, and T is the generation num- 
ber within the branch (regarded as a new process with the 
branch point xi as its root). The function g ( r )  is equal to the 

FIG. 1 .  Branching diffusion process for d = 2, N = 5 .  Each circle is la- 
beled by the number of the generation at which the site is wetted; the 
crossed-out circles and bonds are eliminated. 

FIG. 2. Diagram illustrating how the functional Wis calculated: iis a site 
on the trunk which is crossed by a branch with branching site j; T is the 
number of generations within the branch. 
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mathematical expectation of the number of sites wetted in 
generation r. In this paper we assume that g(7)  is equal to 
the corresponding distribution for a Bethe lattice, 

Since we assume self-consistency, we have 

V ( t ,  r)=G(O, O ;  t ,  r ) ,  (6) 

where G(O,O;r,r) is the Green's function for the trunk site 
distribution; it is equal to the probability density for site r to 
lie near point r when the root lies at the coordinate origin. 

The functional W is defined up to a constant factor, 
which depends on the branching density of the various in- 
stances of the branching diffusion process. We set E = a = 1, 
because the critical indices are independent of the constants 
E and a and no method is yet available for comparing the 
numerical factors in scaling laws of the type ( 1 ) with results 
from numerical simulations. 

VARIATIONAL PROCEDURE 

In this section we suggest a variational procedure whose 
main idea is to construct a test Hamiltonian H{xi ) which 
allows us to independently vary the scale of the fluctuations 
((xi  - x , ) ~ )  for different scales of the "time" intervals 
li - j (  (this requires introducing infinitely many param- 
eters). The parameters of the test Hamiltonian, the Green's 
function G, and the asymptotic scaling laws are found by 
maximizing the right-hand side of the variational inequa- 
lity'' 

where 
N 

J J ' - ~ n a x < ,  I (N) = (2n&)-""/ . . . 

and the mean ( F )  of the functional F{xi ) is defined as 

Following Ref. 14, we make the change of variables 
xi+y;f, which enables us to explicitly separate the additive 
contributions in E and W from the fluctuations. The latter 
are observed on segments of the trajectory of length between 
2" and 2" + ' , where m = 1,2 ,..., M ( M  = [log2N] and [a ]  

TABLE I. The inverse transformation b ; " ) + { x , )  for N = 16. 

FIG. 3. Illustration of the change of variables x, try;" for M = 4, N = 16. 
The indices i = 1,2, ..., 16 of the points xi  are indicated on the trajectory. 
The dashed-and-dotted, dashed, single, double, and triple lines approxi- 
mate the trajectory to within the time scales t,, m = 0,1, ..., 4, respective- 
ly. 

denotes the integral part of a ) .  To simplify the calculations 
we assume that M is an integer. 

We define the vector y;" to point from the midpoint of 
the segment joining the points x,,, and x,,, - , ,, _ , to the 

"intermediate" point x,,,- ,,, _ , on the trajectory (Fig. 3 ) .  

It is easy to see that the functional E{x,b;")) is equal to 

where t ,  = Nk ; ',y; = xN,km = 2". 

If we include y;, the number of independent variables 
y;",m = 1,2 ,..., M,I = 1,2 ,..., k, - , , is equal to N and thus to 
the number of independent variables xi .  Since the linear 
transformation xi+y;" is norm-preserving, its Jacobian is 
equal to 1. Figure 3 shows the vectors xi and y;" for M = 4, 
while Table I gives the inverse transformation. 

In general, the inverse transformation +;")-{xi ) is 
given by 

where 

Physically, the sum 

Xi - 3 Bm, 
m, 1 

xi= 2 Bm, L V ~  
m, 1 
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measures the deviation of the trajectory constructed to time 
scale t, from the more refined (m + 1 )th approximation, 
which is twice as accurate. 

We will take the test Hamiltonian to be the following 
functional, which is constructed by analogy with EG;"} in 
(9):  

M p-i 

where the variable parameters a, (m = 0,1,2, ..., M )  deter- 
mine the variances of the yy, i.e., the scale of the fluctuations 
over time intervals t, . 

For this test Hamiltonian 

3 
E - H  = - { O N - - 1  7 t m - ( ~ m 2 t - - i )  } (12) 

m= 1 

The corresponding "Green's function" is 

(r-r') 
G ( i ,  r ;  i, r') =erp [ - -1 ( 2 n r  ( i ,  j)}-d", ( 13 

2.t(z, I )  

where 

r (i, j )  = p;, t  ( i ,  j )  Omz, 

and the P,,, are the coefficients in the expansion of the vec- 
tor x i  - xj in terms of they;": 

An expression for P,,, (i, j) was presented and analyzed in 
Ref. 9, where it was shown that if the variance 2, varies as a 
power oft, , i.e., 

then 

and the numerical factor/?oscillates between 1 and 2'" - as 
i and j vary and reaches a maximum for i = N. 

The expansion ( 14) involves at most two vectors y;" 
with the same index m. The dependence ( 16) can be traced 
to the fact that the k th term, for which li - jl = t,, gives the 
dominant contribution to r ( i ,  j ) .  The contribution from 
larger m (smaller t, ) decreases as 2'"'" - i b ecause the fac- 
tor 2, decays, while the contribution from smaller m (larger 
t, ) drops as 2 - "' - "'Im - I because the factor P k,, de- 
creases. Figure 4 plots r as a function of li - jl for v = 4/5. 
The oscillations of f l  are insignificant (they average out in 

FIG. 4. The dependence of ~ ( i ,  j )  on / i  - jI2' found by numerically sum- 
ming the series with dm = t ;,v = 4/5, i = const. 

the formula for Wand do not alter the index Y ) .  

The postulated dependence ( 15) is self-consistent in the 
sense that we use it to calculate the dependence of r ( i ,  j) on 
li - jl, while at the same time Eq. ( 15 ) is a consequence of 
the requirement that the test Hamiltonian be a minimum 
with respect to the a, for large t, (see below). 

We now explicitly identify the contribution to ( W )  
from the effective interaction between trajectory sites i and j 
forwhich k, ( / i - j l<k ,+ ,  . By Eqs. (4) ,  (8) ,  and (13), 

If we replace the sums overs and r b y  integrals and substitute 
g ( r )  V(r,r), G(i,O;i - s,r) ,  and r( i ,  j )  from Eqs. (5) ,  (6) ,  
(14), and (16), we get 

The coefficient g, is independent oft, and T both for t, (N 
and for t, = N = T. In general, for N(T g, does not 
change the scaling dimension of the mth contribution to 
( W ) .  

Substituting the expressions for I ( N ) ,  (E - H ), and 
( W ) from ( 1 1 ) , ( 12), and ( 18) into the variational inequa- 
lity ( 7 ) ,  we obtain 

For N-CC the variable parameters u, of the test Hamilton- 
ian are determined by maximizing the argument of the expo- 
nential in the right-hand side of (20): 

d+Z om -tmomd-godtmA/6=0 for t,-N, (21 

~~+z- tm~md-2gmdtm4/3=0 for tmKN. (22) 

For small t ,  Eq. (22) has the solution u, = t y2, 
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which is the same as the corresponding parameter in the ior agrees with the finding in Ref. 12, where it was shown 
functional E in (9) .  The function r ( i ,  j) determining the that for N )  T the process does not describe percolation clus- 
Green function in ( 13) is therefore equal to ~ ( i ,  j) = li - jj ters but instead obeys the statistics of lattice figures. 
for small ( i  - jl. For large t, 

and hence ~ ( i ,  j )  - i - jI2". By minimizing ihe test Hamil- 
tonian H ( 10) we thus define a process which coincides with 
an unrestricted random walk for short times and is scale- 
invariant for long times. The critical index v in (23) deter- 
mines how the squared radius of the growing percolation 
cluster depends on the number of generations N (on the 
growth time) : 

DISCUSSION OF THE ASSUMPTIONS AND RESULTS 

The reduction of the percolation process to a branching 
diffusion process is exact. The principal assumption made in 
this paper is contained in Eq. (6 ) .  Although the assumption 
is a conjecture of the self-consistent potential type, the pro- 
posed method does not reduce to the mean-field technique. 
The Hamiltonian of the distribution (2 )  modeling the be- 
havior of the trunk is defined self-consistently, whereas the 
test Hamiltonian ( 10) used to study (2 )  contains an infinite 
set of variable parameters whicn determine the spectrum of 

Recent numerical studies of percolation cluster the fluctuations in the model spatial distribution: 

growth14-l6 indicate that the mean lifetime of an excluded- The full strength of conjecture (6 )  is not needed, be- 
cause the final expression for vp is unchanged if we take 

volume branching diffusion process is equal to 
V(r,r) equal to any scaling potential normalized to unity: 

TmA-'t, (25) 
V ,  ( r ,  r )  = ~ - ~ " f  ( r / ~ " )  

where v, is a new critical index, 1 GV,  < 2, v,  I d  = = 1. 
with v1<v. For N  = T, expressions (24) and (25) determine how 

In terms of a systematic variational analysis, it might be the mean square radius of the percolation cluster depends on 
more logical to carry out the variational procedure for a Ha- A in the subcritical region: 
miltonian with the potential V,. However, since this does 

Our percolation model thus gives the result 

for the critical index vp of the correlation radius. 
Table I1 lists values of vp calculated by Eq. (27), to- 

gether with results from numerical experiments for 2 < d < 6 
and exact values fo rd  = 2 and d = 6. Our calculated values 
for vp agree with the simulation results to within the compu- 
tational error. 

Equations (21), (22) imply that the structure of the 
trunk for each instance of the process is self-similar.I6 For 
small times t, the distribution of the sites is the same as in 
the mean-field approximation, which corresponds to v = 1/ 
2. For large t, (t, ) l , t ,  g T )  the distribution is determined 
by the statistics at the critical pointp = p, , while the t, -+T 
it is determined by the statistical behavior in the subcritical 
region A+ + 0. 

For N )  T, the distribution changes because g ( r )  in the 
functional ( W )  decreases abruptly. This qualitative behav- 

TABLE 11. 

not alter the result we have used the simpler conjecture (6 )  
in the text. According to Ref. 17, the scaling dependence on 
A for the characteristic length of the dangling (dead-end) 
branches leaving the backbone of a percolation cluster is the 
same as for the backbone itself, which supports ( 6) .  

Although we have analyzed the properties of the spatial 
distribution of a distinguished sequence of sites in this paper, 
we have not studied how the number of wetted sites changes 
with time (generation number). For this reason, the func- 
tion g ( r )  is essentially prescribed in the formulation of the 
problem. The choice of g ( r )  is determined by the fact that 
the quasi-one-dimensional Bethe model is the only percola- 
tion model for which the number of wetted sites is known 
exactly as a function of generation number. The close agree- 
ment between the results in this paper and the results of 
numerical experiments could result from the fact that the 
presence of a cluster generated by the distinguished sequence 
of wetted sites increases the probability that branching sites 
will "disappear," which in turn effectively increases the dis- 
tance from the percolation threshold when g ( r )  is calculat- 
ed. 

"Values denoted by" and are taken from Refs. 11 and 10, respectively; for lack of 
experimental data, the values indicated byc are taken equal to the exact values on a 
Bethe lattice; indicates values calculated in Refs. 6-8. The other results for v ' " P  

are taken from Ref. 18. 

564 Sov. Phys. JETP 62 (3), September 1985 



We note that the triple summation in the functional W  
enumerates the pair interactions between sites in the distin- 
guished sequence; the average number of sites wetted in pre- 
vious generations can be calculated under the condition that 
the number of Nth  -generation sites is greater than zero (be- 
cause there exists an N th site of the distinguished sequence). 
The conditional mean found in this way is quite different 
from the average number of sites in an instance of the pro- 
cess. For a Markov branching process ( a  process on a Bethe 
lattice), the latter number is proportional to 

Our description of the excluded volume effect in terms 
of the functional Win the hamiltonian is based on analogy 
with the statistics of self-avoiding random walks, for which 
Eq. (6) is now generally employed. 

The assumptions discussed above are necessary in order 
to reduce the problem to an analysis of the scaling properties 
of the distribution 9 { x i ) .  The variational analysis of 
9 { x i }  for a specified fixed functional W { x i )  is quite rigor- 
ous. 

It is noteworthy that according to perturbation theory, 
in which W { x i )  is assumed to be small compared with 
E{xi ), the average number oftimes, N - ' W{xi ), an instance 
of the process encounters a wetted site is equal to 

which for d < 6 tends to infinity as N 3  - as N + a ,  while 
the corresponding average with the density 9 { x i )  is finite. 
Similarly, for d<2 an unrestricted random walk has self- 
interactions, unlike self-avoiding walks of arbitrary dimen- 
sion. l4 

CONCLUSIONS 

In this paper we have treated percolation as a self-simi- 
lar branching diffusion process that obeys the excluded vol- 

ume condition. Our model is intermediate between the Bethe 
lattice model, which completely neglects self-intersections, 
and the exact treatment. Our expression for the critical index 
Y predicts the exact value d, = 6 for the critical dimension 
and yields results in close agreement with numerical experi- 
ments and exact values of Y, for 2<d<6. 
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