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The stability of the stationary solution of the equations of motion for the quasimomentum is 
investigated. Conditions are found for instability to occur within an energy interval and for the 
quasimomentum components to undergo regular or stochastic self-oscillations with time. Some 
physical consequences are discussed. 

1. INTRODUCTION AND FORMULATION OF THE PROBLEM 

It now seems clear that it is the rule rather than the 
exception for stochastic self-oscillations to occur in nonequi- 
librium nonlinear systems with phase spaces of dimension 
23. In particular, in Refs. 1, 2 and Ref. 3 conditions were 
found for the onset of stochastic self-oscillations in the elec- 
tric field and free charge carrier concentration in crystals 
and unordered semiconductors. The field dependence of the 
carrier trapping and/or production cross sections, and pos- 
sibly also the field dependence of the carrier mobility, played 
a key role. In the latter case the electric field no longer neces- 
sarily heats the carriers, as may be seen, e.g., from the fact 
that the Poole-Frenkel effect occurs when the mobility is 
determined by carrier trapping in shallow traps followed by 
ejection into the conduction (or valence) band. 

In this paper we study the even simpler situation when 
the concentration of free carriers (assumed for definiteness 
to be electrons) is specified and the motion of an individual 
electron is governed by the system of equations for the com- 
ponents of the momentum (by which we will always mean 
the quasimomentum). In this kinetic model the interaction 
among the electrons can be significant only when one allows 
for screening, as is required to calculate the probability of 
scattering by a charged impurity. 

We confine ourselves to a system with an isotropic para- 
bolic spectrum and take the energy minimum to lie at the 
center of the Brillouin zone." The carrier scattering is as- 
sumed to be nearly elastic. The system of equations for the 
components of the momentum p then has the standard form 

p=eE-T-' ( W )  p .  (1)  

Here E is the electric field vector, and the momentum relaxa- 
tion time T( W) depends on the energy w =p2/2m. It is this 
dependence that produces the nonlinearity of interest; we 
will see below that stochastic self-oscillations in p do not 
occur if T( W) is arbitrary. 

Equation ( 1 )  (with the relaxation term in the right- 
hand side) has been studied repeatedly in the literature (see, 
e.g., Refs. 4, 5).  It can be derived in the standard way by 
evaluating the time derivative of the velocity operator i and 
averaging the resulting expressions quantum mechanically 
(for a2pecified electron energy W). We need only include a 
term H,  in the Hamiltonian to describe the quasielastic scat- 
tering processes. As in laser  physic^,^ we define 

Here the brackets denote a quantum mechanical average, 
and v = v( W) is the electron velocity (also averaged quan- 
tum mechanically). It is clear that T(  W) should be identical 
to the transport relaxation time (not averaged over the dis- 
tribution function) that appears in the solution of the kinetic 
equation (provided that the conditions for its validity are 
satisfied). 

Obviously, 

where W,, =p2,,/2m and p,, are the thermal energy and 
momentum of an electron and A W is the field correction. 
Clearly 

Here the components of p,, appear as parameters. We note 
two things regarding Eqs. ( 1 ) and (2) .  

First, although system ( 1 ) is isotropic it still cannot be 
reduced to two equations (for the component of p parallel to 
E and for the energy correction A W). Indeed, we will be 
interested not only in the stationary state but also in the 
fluctuations about it. The latter are random and the direc- 
tion of p may be arbitrary. 

Second, A W determines only the "influx" of energy 
gained by the electron from the field. The energy "loss" to 
the lattice becomes appreciable over times of order T, ( W) 
(the energy relaxation time) and does not figure in Eq. (2)  .2' 

When using (2)  to calculate A W we must therefore remem- 
ber that the result is meaningful only for times 5 T, ( W). 

We will now proceed to find the stationary solutions of 
system ( I ) ,  i.e., its singular points, and study the time be- 
havior of the random fluctuations about them. 

2. STATIONARY SOLUTION 

Setting p = 0 in ( 1 ) and using a 0 subscript to denote 
the corresponding values of p and A W, we obtain 

po=et(Wth+AW0) E ,  (4)  

where 
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We find that way by writing 

where y and a (apart from a possible logarithmic factor) are 
wellknown constants (see, e.g., Ref. 7, 8).  The equation for 
A Wo then reads 

where 0 is the angle between pth and E. 
Equation (7)  may have one or several real positive solu- 

tions, depending on the parameters of the problem. If the 
field is sufficiently weak that W- T (where T is the lattice 
temperature in energy units), the solution is of course 
unique and is obtained by replacing W by Wth in the right- 
hand side of (7) .  However, we will be interested in the be- 
havior in a relatively narrow energy interval when 
Wth A Wo and y < 0. Negative y correspond to scattering of 
electrons by charged impurities ( y  = - 3 )  or by longitudi- 
nal acoustic phonons interacting piezoelectrically with elec- 
trons ( y  = - 1 ) .3' 

Setting Wth = cA Wo where c is of order unity and writ- 
ing 

we find from Eq. (7)  that 

A w,= we -(c(l-tc)3)%COS 0+((cc0s2 0 + i )  ( I + c ) ~ ) ~ ' ~  
(1+~)3  

(9)  
In this case there is a unique singular point. 

The dependence AW,-E -' is rather unusual. How- 
ever, we note that E must not approach zero. Indeed, for 
large A Wo the scattering by charged impurities becomes in- 
effective and is superseded, e.g., by scattering by acoustic 
phonons via the deformation potential; Eq. (9)  then breaks 
down and the energy gained during time T decreases as E 
decreases. Moreover, we have noted that the energy gained is 
limited by dissipation, and this may be the most important 
factor of all. At steady state we have 

According to Ref. 7, for energy dissipation by acoustic phon- 
ons via a deformation potential we have (for W4 T) 

Here E, is the deformation potential  constant,^ is the crystal 
density, and the right-hand side defines [. 

Together with relations (6) ,  (8),  ( 9 ) ,  and ( 1 I ) ,  Eq. 
(10) yields 

By assumption re N r ,  i.e., A W>A Wo. We will consider the 
constraints imposed by these inequalities in Sec. 4. 

3. CONDITIONS FOR INSTABILITY OF THE STATIONARY 
STATE 

The conditions for the stationary state [i.e., the singular 
point of system ( 1 ) 1 to be stable are found in the standard 

and expanding the right-hand side of ( 1 ) in Sp to get the 
secular equation for A: 

A simple calculation gives 

b,=r-'(W,) (3+ v), bz=t-'(W0) (3+2v), 

where 

Equation ( 14) has the roots 

We see that for Y < - 1, i.e., for 

the root A ,  is positive, so that the stationary state is unstable. 
According to Shi l 'n iko~,~ . '~  the growth of instability in 

this case may lead either to a unique periodic stable mode or 
to a periodic motion of the saddle type (in the latter case we 
anticipate a homoclinic structure). The first case occurs 
when A ,  + A ,  < 0, i.e., for 

and the second when A ,  + A, > 0, i.e., when 

For y = - 3 these inequalities take the form 

and 

Of course, A Wo must be less than the energy at which the 
momentum dissipation mechanism changes. 

4. LIMITING ASSUMPTIONS 

We have made the following assumptions in the calcula- 
tion: 

1 ) Charged impurities rather than phonons are primar- 
ily responsible for the momentum scattering. 

2)The energy relaxation time is long compared to the 
momentum relaxation time. 

3) Most of the electrons are unheated. 
The condition for the first assumption to be valid fol- 

lows by comparing the corresponding relaxation times. As 
before, we confine ourselves to a system with a parabolic 
isotropic spectrum. Using the well-known formulas for the 
relaxation times (see Refs. 7 and 8 or any other textbook on 
semiconductor physics), we get the following condition: 
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Here z is the charge of the scattering center in electron 
charge units, W, and a, are the Bohr energy and radius in 
the crystal, s is the speed of sound, N, is the charged impurity 
concentration, and 17 = 8m W 7 T 2 ~ ,  where r, is the screen- 
ing radius; we can substitute We (8 )  for Win the left-hand 
side of (20) and in the formula for 7. We then get 

The condition for the validity of the second assumption 
follows by comparing the times T(  W,) and T, ( W,) ( 11 ); 
this leads to the inequality 

which is certainly satisfied if (20') holds. 
Finally, the condition for the third assumption to be 

valid is that 

where A W is the energy gained by the electron during time 
7, ( We ) . Using Eqs. ( 1 1 ) , ( 12) and the familiar expression 
for the coefficient a in relation (6), we get 

If we asume the rough values N, = 1015 ~ m - ~ ,  M / m  = lo4, 
V, = p / M  = 10WZ2 ~ m - ~ ,  a, = lo-' cm, and El W,' 
= lot3, we obtain Ex 103V/cm from (22'). 

5. PHYSICAL CONSEQUENCES 

Inequalities (19'a), (19'b) show that in weak fields, 
instability occurs only in a narrow interval of low energies 
whose upper bound is determined by (19'a). We observe 
that for A W,(T the instability develops against a "global" 
resistive background (most of the electrons are not involved 
in the self-oscillations, whether regular or stochastic). 

Under conditons ( 19'a) the crystal momentum of the 
electrons within this narrow energy range varies periodically 
with time. Formally, one would expect electromagnetic 
waves of frequencies - T- ' ( W,) to be emitted. However, we 
note that the electron energy "drops" at random times sepa- 
rated on the average by intervals of the order of T, ( W) (for 
W z  A W,). For this reason, it is likely that regular self-oscil- 
lations can be observed in this way only in experiments with 
very good time resolution. On the other hand, under condi- 
tions (19'b), stochastic oscillations should be excited and 
show up experimentally as "noise" in the measurement 
channel. This noise is superposed on the regular self-oscilla- 
tions and makes their detection more difficult. 

In estimating the amplitude of the self-oscillations or 
the time-averaged energy of the stochastic oscillations 
("noise intensity"), it is helpful to reduce system ( 1 )  to di- 
mensionless form. We limit ourselves to the case y = - 3 
and divide the dimensional momentum and time by 

respectively. Setting 

we find 

in place of ( 1 ) . 
The (nonlinear) equations for the deviations Sq form 

the stationary solution q, are similar ( the vector { appears 
only through q,). System (25) contains only one vector pa- 
rameter q,, , which is also dimensionless. This means that in 
terms of dimensional quantities the oscillation amplitude of 
the quasimomentum can be expressed solely in terms ofp, 
and p,, . Under conditions ( 19'a) and ( 19'b ) , p, and p,, are 
comparable in order of magnitude, so that the oscillation 
amplitude will be proportional top,  and the noise intensity 
topf/2m = We. 

Calculation of the electron density in the energy inter- 
vals ( 19'a) and ( 19'b) (as well as the other quantities ex- 
pressed as integrals) requires integrating over the momenta 
p,, between appropriate limits. The parameter p,, then 
drops out of the equations and the result is expressed solely 
in terms of We. Indeed, since we are assuming that We / T  is 
small, the lattice temperature can affect the result only by 
influencing the total electron density n. Assuming the elec- 
tron gas to be nondegenerate, we find that the electron den- 
sity in the "active energy intervals" is given by 

where const denotes a numerical factor of order unity [simi- 
lar formulas also hold for the separate intervals ( 19'a) and 
( 19'b) 1. Similar arguments yield the result 

for the square of the current density fluctuation Sj; here j, is 
the average current density in the sample. I t  is thus plain that 
the effect of the stochastic self-oscillations of the quasimo- 
mentum on the current noise in semiconductors should be to 
increase the noise (as compared with ordinary carrier pro- 
duction and recombination noise) and to alter the current 
dependence of the noise at low currents (of course, for the 
reason indicated above, the limiting case jo+O cannot oc- 
cur) .  The magnitude of the small parameter ( We /T)3 deter- 
mines how pronounced this effect will be. 

We note in closing that the third assumption made in 
Sec. 4 is by no means essential. Indeed, without it the energy 
interval of the instability expands and the effects discussed 
above may become much more pronounced. However, in 
this case one must also analyze the (possibly time-depen- 
dent) distribution function of the hot electrons. 

I am very grateful to L. P. Shil'nikov for kindly clarify- 
ing some mathematical points for me. 

"It is easy to see that in this case nothing fundamental is changed if we give 
up the isotropic and/or parabolic approximation (at  least in materials 
which have only one energy minimum). 

"The time 7, ( W) should not be confused with the usual average energy 
relaxation time. An expression for re ( W) can be derived, e.g., by consid- 
ering the right-hand side of Eq. (5.10) in Ref. 7. 

3'We also have y < 0 for scattering of electrons by optical (polarization) 
phonons; however, in this case the electron energy must be large com- 
pared to T. 

558 Sov. Phys. JETP 62 (3), September 1985 V. L. Bonch-Bruevich 558 



'V. L. Bonch-Bruevich and Le Vu Ky, Zh. Eksp. Teor. Fiz. 85, 1701 
(1983) [Sov. Phys. JETP 58,990 (1983)l. 
'V. L. Bonch-Bruevich and Le Vu Ky, Phys. Status Solidi (b)  124, 11 1 
( 1984). 

'V. L. Bonch-Bruevich, Pis'ma Zh. Eksp. Teor. Fiz. 41,58 ( 1985) [JETP 
Lett. 41, 69 ( 1985) 1. 
4R. A. Smith, Semiconductors, Cambridge Univ. Press ( 1959). 
5V. L. Bonch-Bruevich and S. G. Kalashnikov, Fizika Poluprovodnikov 
(Semiconductor Physics), Nauka, Moscow ( 1977), Chaps. 1,4. 
6R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics, 
Wiley, New York (1969). 

'F. G. Bass and Yu. G. Gurevich, Goryachie ~ l e k t r o n ~  i Sil'nye ~lektro-  

559 Sov. Phys. JETP 62 (3), September 1985 

magnitnye Volny v Plazme Poluprovodnikov i Gazavogo Razryada 
(Hot Electrons and Intense Electromagnetic Waves in Semiconductor 
and Hot Discharge Plasmas), Nauka, Moscow ( 1975). 

'V. L. Bonch-Bruevich and S. G. Kalashnikov, Fizika Poluprovodnikov 
(Semiconductor Physics), Nauka, Moscow (1977), Chap. 14. 

9L. P. Shil'nikov, Mat. Sb. 77, 461 (1968). 
'OL. P. Shil'nikov, Supplement I1 to the Russ. translation of Bifurcation 

Generation of Cycles and its Applications by J. F. Marsden and M. 
McCracken, Mir, Moscow ( 1980). 

Translated by A. Mason 

V. L. Bonch-Bruevich 559 


