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The phase velocity degeneracies of elastic waves in crystals are classified according to the type of 
geometry of the velocity sheet contacts and the nature of the singularities of the polarization 
vector fields near the degenerate points. An invariant method is proposed for determining the 
local geometry of the velocity sheets near a degeneracy and the index of the corresponding singu- 
lar point of the polarization field which does not require solving the wave equation. The behavior 
of several types of degeneracies is investigated for small perturbations of the elastic tensor of the 
crystal. 

INTRODUCTION 

Three bulk elastic modes can propagate along any given 
wave vector m in an unbounded isotropic medium; in gen- 
eral, these modes have different phase and group velocities 
v, ands,, and their polarization vectors A, (a = 1,2,3) are 
mutually orthogonal. In the linear theory of elasticity,' the 
squares of the phase velocities and the polarization vectors 
of the three isonormal waves ar%the eigenvalues and eigen- 
vectors of the Christoffel tensor A(m) = m i.m/p, where i. is 
the elastic modulus tensor andp is the density of the crystal. 
As m varies over the unit sphere m2 = 1, the functions 
v, = m v, (m) ands, (m) describe surfaces which consist of 
three sheets and are called the phase and group velocity sur- 
faces, respectively (or the velocity and ray surfaces).' It is 
often convenient to consider another characteristic sur- 
face-the refraction surface w, = m/v, (m)-in addition to 
the velocity surface. 

The acoustic axes are defined as the directions m, along 
which the phase velocities v,, -v, (m,) coincide (are de- 
generate) for at least two of the modes. Clearly, the velocity 
sheets must be in contact with one another along these direc- 
tions. We will henceforth assume that the degeneracies are 
two-fold (except where explicitly stated in the concluding 
section of this paper) and will use the subscript a = 3 to 
describe the nondegenerate branch: v,, = v,, # v,,, more- 
over, we take vl(v2 for every m. Acoustic axes correspond- 
ing to triple degeneracy can exist only if the elastic moduli of 
the crystal satisfy special conditions; we will show below 
that they are unstable, i.e., vanish under small perturbations 
of the tensor 2.  

Because of the phase velocity degeneracy, elastic waves 
propagating along or near the acoustic axis have some unu- 
sual properties. For instance, the polarization vectors for 
degenerate waves can be arbitrary in the plane normal to the 
polarization of the third nondegenerate wave. The vector- 
valued functions A,,, (m) are generally singular near the de- 
generate points. For certain velocity sheet configurations, a 
wave normal along an acoustic axis may correspond to sev- 
eral different group velocity vectors, so that internal conical 
refraction occurs. 

Under suitable conditions, transitions between states near 
degenerate points for the constant-frequency surfaces of the 
phonon spectrum may give the dominant contribution to 
such processes as phonon absorption of sound, phonon drag 
on electrons in semiconductors, and dielectric 
The temperature behavior and other physical properties of 
these effects depend strongly on the geometry of the contact 
region of the constant-frequency surfaces. Several types of 
contact geometry were first examined in Ref. 9 for the con- 
stant-energy surfaces of electrons and phonons in crystals. 

Much ~ o r k ' - ~ . ' ~ - ' ~  has been done on the properties of 
elastic waves propagating near acoustic axes. The latter may 
differ both in the contact geometry of the velocity sheets and 
in the nature of the singularities in A,,, (m) near a degener- 
ate point. In this paper we classify the acoustic axes in crys- 
tals and find an invariant method for determining the local 
geometry of the velocity sheets near a degeneracy and the 
index of the polarization field at the singular point in terms 
of the tensor 2 and acoustic axis m,. We also discuss the 
stability of the degeneracies under perturbations in i.. 

LOCAL GEOMETRY OF DEGENERATE VELOCITY AND 
REFRACTION SHEETS 

The directions m, of the acoustic axes can be found in 
the standard way from a knowledge of the tensor 2 (Refs. 10, 
12). The invariant degeneracy condition stated in Ref. 12 is 
equivalent to the requirement that the 7-component vector { 
should vanish: 

The degenerate velocity sheets can touch in various ways (at 
a point or along a curve), may be joined along a cone, or may 
intersect along a curve (Fig. 1 ) . Any method for determin- 
ing the contact geometry of the degenerate sheets without 
solving the wave equation will be of fundamental interest. 

It will be more convenient to analyze the local geometry 
of the refraction surface, which is obtained from the velocity 
sheet by replacing v, (m) by l/u, (m). The normal to the 
refraction sheet w, (m) is parallel to the group velocity vec- 
tor s, (m) everywhere': 

Degeneracy is also important in the phonon kinetics. s, (m)  =A, (m)  EAa (m)  m/pv, (2) 
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FIG. 1. Contact geometry: conical (a ) ,  local wedge (b) ,  and tangential 
( c )  degeneracies at a point; wedge ( d )  and tangential (e )  degeneracies 
along a line. The degenerate points and lines are indicated. In case b one 
of the two cross sections shown is defined by the condition that Am be 
parallel to pX m,; in this section the curves w,,, are smooth. 

except possibly at the degenerate points, at which the normal 
need not be defined. Equation (2)  relates the sheet geometry 
to the polarization vector field. 

We consider a neighborhood of a degenerate point m, at 
which the normal to the refraction surface is uniquely de- 
fined. Since the direction of the polarization vector of the 
nondegenerate branch is nearly constant near m,: A,(m) 
~A,(m,)=A,,, for 1 Am1 < l  (Am = m - m,) we can ap- 
proximate A,,, (m) by their projections a,,, (m) on the plane 
normal to A,,: 

a, (m) =A,, cos @+Ao, sin @, 

a, (m)  =-AoI sin @+Ao, cos @. 

Here A,,, A,, is an arbitrary pair of unit vectors forming a 
right-handed orthogonal frame with A,,. The angle @ in (3)  
depends on m, and the rotation of the polarization field near 
the degenerate point is determined by the change 21~n in @ 
when we follow a small closed path r around the point m, on 
the sphere m2 = 1 (the integer n is called the Poincart index 
of the singularity). The following definition will be useful: 
the quantity y ( y )  = [@(y )  - @ ( 0 ) ] / 2 ~  is called the in- 
complete rotation of the field ai when the vector Am rotates 
by the angle y along the path T. In this terminology, 
n = y ( 2 ~ ) .  

Strictly speaking, the functions A, (m) specify fields of 
undirected segments (called "line fields" in mathematics) 
rather than vectors. In fact, polarization vectors that differ 
only in sign are physically equivalent," just as in the case, 
e.g., of the orientation of the director in nematic liquid crys- 
tals. When we follow r around the point m, a line pointing 
along A, (m) will return to its original position but may 
point in the opposite direction (it will flip by an integral 
number of half-rotations) . The index n of a singular point of 

the polarization field may therefore be half-integral, in con- 
trast to classical vector fields, for which n is always an in- 
teger. 

Substituting the vectors ai (3 )  for A, (2) ,  we find that 

SI ,=so* (p  cos 2@+q sin 2 0 )  (4)  

to lowest order in Am, where we have written 
so-P+mo, p=P-mot q=QL2m0; (5 1 

P*=s  l I f ~ z z ,  Q I B = ~ a ~ + S ~ l r  
( 6 )  

SaB=A,,EAo~/2p~,i. 

In general the vectors p and q are linearly independent, 
lee., 

x=Ipql+O, (7)  

where [pq] denotes the vector product. The vectors s, (m) in 
(4)  are parallel to the generators of the internal refraction 
cone,'v2 whose elliptical base is orthogonal to m, 
( pm, = qm, = 0) with semiaxes u ,,, : 

2 ~ ; , , = ~ 2 + ~ ~ *  [ (p2+qZ) 2-4x2]'h. ( 8  

We will show below that when (7)  holds, the angle @ in (3)  
takes on values from 0 to + T, i.e., the index of the degener- 
ate point is n = + 1/2. The vectors si thus make a complete 
circuit around a surface that coincides with the internal re- 
fraction cone in the limit l A m J 4 ,  i.e., as r shrinks to the 
point m,. 

The local contact geometry of the degenerate sheets is 
determined by the geometric locus of points formed by the 
family of tangents li to all sections of the refraction sheets 
cut by planes passing through the acoustic axis m, (these 
tangents pass through the point m, in the limit I Aml--to) : 

1,ll [si, mo, A&] =moAvi-Amv,l, (9 )  

where si Am = A vi, s,m, = v,,. The corresponding surface 
{li) swept out by the tangents li as Am makes a complete 
circuit around the path T approximates the degenerate 
sheets to first order in Am. 

One can show [see Eq. (20) ] that near the acoustic axis 
(7)  

Av,,,es0AmT [ (pAm) '+ ( q l m )  '1 (10) 
% 

Substituting ( 10) into (9),  we find that in this case the sur- 
face {li) is a cone which is straightforwardly related to the 
internal refraction cone. A degenerate point m, for which 
x # 0 will therefore be said to be of the conical type (Fig. l a ) .  

We next consider the case when x = 0 but p and q do not 
vanish simultaneously. For definiteness we choose the vec- 
tors A,,, A,, so that p in (5)  does not vanish; then 

pf 0, q=llP. (11) 
The vectors si defined by (4)  are then coplanar as @ varies 
and lie in a plane whose normal N is parallel to so X p. If mo is 
an isolated degenerate point, then the two-dimensional fan 
generated by the vectors si (4)  corresponds to a limiting 
configuration of the field of normals; as m varies along r, 
this field forms a cone which becomes flattened along one of 
the semiaxes as m tends to m,. Substituting ( 1  1) into ( lo ) ,  
we find 
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The sheaf of planes passing through the acoustic axes m, cuts 
out various cross sections of the degenerate sheets; Eq. ( 12) 
implies that the section defined by the vector 

is the only one for which the tangents (9)  satisfy 

li(Am) =--Ii (-Am) 11 [sop]. (14) 

This means that the curves w,,, in section ( 13) are smooth at 
m, (in the other sections, the tangents to w,,, are discontin- 
uous at m,), and the surface {l, ) is a wedge whose edge N is 
parallel to si X p  and orthogonal to the plane of the fan s, 
(4).  An isolated degeneracy of this type will be called a 
wedge (Fig. lb). 

When ( 11 ) holds, the smooth curves w,,, in the section 
( 13) (which of course meet at the point m,) may actually 
coincide completely, so that the refraction sheets meet along 
a curve as shown in Fig. Id. We call this type of degeneracy a 
wedge degeneracy along a line. It can be regarded as the 
intersection of two sheets that are smooth near m,; the nor- 
mals s, to these sheets and the polarization vectors vary con- 
tinuously across the degeneracy line. On the other hand, the 
normals to the outer and inner sheets and the polarization 
vectors of the corresponding wave branches are of course 
discontinuous. Because the isonormal wave modes are or- 
thogonal, the orientation of the polarization vectors in each 
of the branches v, (m) < V 2  (m) differ by ?r/2 on the two edges 
ofthe wedge degeneracy line2' (see Fig. 2k below). At points 
right on the degeneracy curve, the possible directions of the 
degenerate-wave polarization vectors are determined by the 
two-dimensional fan of the vectors s, (m,), which is orthog- 
onal to N and bounded by the geometric normals to the 
smooth refraction sheets. 

Finally, both p and q may vanish, 
p=q=o. (15 )  

According to (4), the field of normals si (m) then tends to 
the single orientations s, (m,) = s,(mo) = so as m-m, 
which is independent of the direction of Am. This implies 
that for arbitrary rotations of the vectors A, near a degener- 
ate point m, at which p and q both vanish, the vector so given 
by Eq. (2)  must be invariant, i.e., it must be independent of 
how m approaches m,. The degenerate sheets at mo thus in- 
tersect each other smoothly, i.e., the degeneracy is of the 
tangential type (either isolated or along a curve, cf. Fig. lc, 
el .  

The degeneracy condition ( 1 ) and ( 7 ) ,  ( 1 1 ), ( 15 ) thus 
provide an invariant method for determining the directions 
of the acoustic axes m, and the contact geometry of degener- 
ate refraction or velocity sheets (conical, wedge-point or 
wedge-line, tangent-point or tangent-line3'). We stress that 
the calculations require only a knowledge of the tensor ?-it 
is not necessary to solve the Christoffel equation. The orien- 
tations of the polarizations Ao, needed to find p and q are 
given by the familiar equations (see, e.g., Ref. 1 ). 

SlNGULARlTlES OF POLARIZATION FIELDS NEAR VARIOUS 
TYPES OF DEGENERATE POINTS 

The above classification of degeneracies in terms of the 
contact geometry of the refraction (or velocity) sheets is 
clearly exhaustive. However, classifications based on crite- 
ria other than the contact geometry are also possible. In par- 
ticular, a more diverse classification is obtained by analyzing 
the rotation of the polarization fields around degenerate 
points. We will see that each geometric type corresponds to 

FIG. 2. The polarization fields A, (i  = 1,2) near various degeneraci&: a - i), isolated degeneracies with index a )  n = 1; b) n = - 1; c, d )  n = 1/2; f, e)  
n = - 1/2; g, h )  n = 0, y(q)+O; i)  n = 0, y(q)=O; j )  line of tangential degeneracy; k) line of wedge degeneracy; l ) ,  superposition of a tangential 
degeneracy point on a wedge degeneracy line; m) tangential degeneracy at the intersection of two lines of wedge degeneracy. 
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several types of singular behavior of the polarization field 
near a singular point. 

We have already observed that the index of a singular 
point of the polarization field may be integral or half-inte- 
gral. We take the index to be positive (negative) if the direc- 
tion of rotation of the vectors ai is the same (opposite to) the 
direction along which the path r is traversed. The direction 
of the rotation is determined by observing the rotation 
planes of ai and Am, as seen from the ends of the vectors A,, 
and m,. For definiteness, we take A,, to be oriented so that it 
makes an acute angle with m,. Clearly, the index can be de- 
fined uniquely in all cases except when the nondegenerate 
wave is purely transverse (A,,, m,) . 

The Christoffel equation near a degenerate point m, has 
the form' 

. h = v 2 ~ .  (16) 

To second order in perturbation theory, the components of 
the vectors a, (3  ) and the phase velocity are determined by 
the system of equations 

M a ~ a i P = A  ( c t 2 )  a,,; a,  P=l, 2 ,  (17) 

where repeated Greek subscripts are understood to be 
summed, A($) = uf (m)  - u:, , 

and q,,.e, denotes a dyadic product. System (17) has the 
solution 

2 A  (v1T2) = M ~ ~ + M ~ ~ F [  ( M l ~ - i ~ l ~ 2 ) Z + 4 M ~ 2 2 ]  ", (20) 

a l  ,li{2M,,, IC.Iz2-Mi+F[ ( M 1 1 - ~ f ~ 2 ) 2 + 4 M ~ ~ 2 1 " ' ) .  (21) 

[Recall that Eq. (20) implies ( 10) to first order in Am.] In 
order to calculate the index n we must find the rotation y of 
the a, (2  1 ) along a path r around the point m, (it is obvious 
that the rotations of the mutually perpendicular vectors a, 
and a, coincide). However, it is easier first to reduce the 
problem to calculating the rotation of another vector which 
can be expressed more easily in terms of the components 
Ma@, for instance the vector 

plj ( M i l -  Mzz, 2M12). (22) 

It is easy to show that the rotation o f p  is twice that for 
a, (21): 

2dcD=d$, (23) 

where 0 and Y are the angles between A,, and a,, p, respec- 
tively. Thus, n is equal to one-half the index of the singular 
point m, for the vector field 

p= ( p , ,  p z )  ( p A m + A m P A m / 2 ,  q A m + A m G A m / 2 ) ,  (24) 

where 

The rotation y,, ( p )  of the vector field (24) can be calculated 
from the PoincarC formula 

Alternatively, one can follow the prescriptions and methods 
formulated in Ref. 17. We omit the tedious analysis and sim- 
ply state the results. 

A. x - - [ p q ]  f O 

We have seen that when this condition holds, m, is a 
singularity of the conical type. The index of m, in the corre- 
sponding polarization field ai can only take the two values 
n = + 1/2 (Fig. 2c, e) ,  where the sign of n is determined by 
the formula4' 

n = 1 / 2  sign ( x m , ) .  (27) 

It is also easy to see that near a conical degenerate point we 
have 

a , ( h n )  L a ,  (-Am) (28) 

to first order in Am. 

B. x=O, p f O ,  q = q p  

In this case we have a wedge-point or wedge-line degen- 
eracy. An analysis of the polarization field singularities near 
m, shows that three different cases can occur. 

a )  g # r l f ,  where 

f=LPL, g=LBL, L11 [ p m , ]  . (29) 

The degeneracy is then locally a wedge with index 

n=O. (30) 

One can show that the incomplete rotation does not vanish 
identically: y(p)+O, i.e., the field is singular at m, (Fig. 
2g). 

b )  g  = ~ f ,  f # 0. The degeneracy is again a local wedge, 
but with index + 1/2 (Fig. 2d, e )  in accordance with the 
formula 

Let A' and A" be the pair of orthogonal vectors defined by 
the condition q = 0: (A' :A" + A" 2A1)m0 = 0. Also, let q, 
be the angle between the vectors Am and L. In both cases 
(30) and (31),  the vectors ai coincide with A', A" to first 
order in Am for arbitrary p, 1 Aml. They therefore change 
direction discontinuously by n-/2 upon passage through the 
point m, (Fig. 2d, f, g) .  The rotation of the polarizations ai 
thus occurs in a small neighborhood of L defined by 
p 5 I Am 1 < 1. Through second order in Am we then have 

a, ( A m )  llai ( - A m )  (32) 

in the particular section for which AmllL; moreover, g = 0, 
i.e., 7 = 0, with respect to the basis consisting of the vectors 
ail, = Aoi . We note that the orientations of A', A", and ai 1, 
coincide if n = + 1/2 (Fig. 2d, f ) .  

c )  f = g  = 0. According to (20) ,  in this case the func- 
tions u,,, (m, + Am) coincide to second order in Am along 
the curvex whose tangent Am at m, is parallel to L. In other 
words, the requirement q = 7 p in condition B above is nec- 
essary for a wedge-line degeneracy.5' We have already found 
that the polarization vectors change direction discontinu- 
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ously by ~ / 2  when the wedge degeneracy curve is crossed points on the same edge of the curvex. (If the rotation angle 
(Fig. 2k). q, of the vectors Am along r is measured from one of the 

C. x=O, p=q=o edges of the degeneracy line, we find that lim y ( ~  - E )  
€-.a 

According to the results in the previous section, in this case = ,/2 for the incomplete rotation of the polarization field.) 
the velocity sheets are degenerate either at an isolated point As already noted, there is an additional jump of T/2 in the 
Or a curve. As in the case of wedge degeneracy, addi- orientation of ai when a line of wedge degeneracy is crossed 
tional information can be gained by examining the singxlari- (Fig. 21). 
ges of the polarization fields. We consider the matrices F and d )  6 = 0, D, > 0. In this case the degeneracy is isolated 
G in an arbitrary basis with X,  axis parallel to m, and write (sporadic  tangent^^) and 

F= (Fii ,  Ftz, F z z )  , G= (Gii,  Gi2, Gzz); (33) 

6= [FG] ; 

The following six cases need to be distinguished for condi- 
tion C. 

a)  S#O, D > 0. The degeneracy is then isolated (a  true 
tangent vector existsI2) and the index n = f 1 (Fig. 2a, b)  
is given by 

n=sign D,; (36) 

b)  S #0, D < 0. In this case we have an isolated degener- 
acy (hybrid tangentI4) with index 

n=O, y ( 9 )  +O. (37)  

As in condition B ( x  = O), the incomplete rotation y ( q , )  
does not vanish identically, so that the field ai is singular 
near m, (Fig. 2h). 

C )  S#O, D = 0. This is a necessary condition for a tan- 
gential degeneracy to lie on a line of wedge degeneracy. By 
examining the beh.@ior of the polarization field along a 
small path I? around the point m, on the sphere m2 = 1 
which crosses a line of degeneracy X, one can show that the 
vectors ai rotate continuously by ~ / 2  on the arc of r joining 

The associated polarization field ai (m) is nonsingular near 
m, (Fig. 2i). 

e)  S = 0, Dl = 0. This condition is necessary for degen- 
eracy along a line passing through the point m, for sheets 
that just graze each other. The polarization fields are nonsin- 
gular along this line, (cf. Fig. 2j). 

f )  S = 0, D, < 0. This is a necessary condition for: 1) 
tangential degeneracy along one or two lines passing 
through m,; 2) wedge degeneracy along two lines that inter- 
sect at m,, where the two sheets are tangent at m, (Fig. 2m). 

For all cases of tangential degeneracy at m,, the orienta- 
tion of the vectors ai near m, satisfies condition (32) for all 
sufficiently small Am. We may summarize our results in Ta- 
ble I, which lists the types of acoustic axes. 

STABILITY OF THE ACOUSTIC AXES 

If the elastic modulus tensor 2. is slightly perturbed by 
an amount A2, a degeneracy may move, split into several 
degeneracies, or disappear. The above results can be used to 
predict which situation will arise for each type of degener- 
acy. 

We first argue simply as follows. Without loss of gener- 
ality we may assume that the relative magnitude IA2./2.) of 
the perturbation is small compared to the average radius 
R, z /Am[ of the path r on the sphere m2 = 1, so that [A?/ 
2.1 (R, ( 1. Such a perturbation clearly will not appreciably 
alter the distribution of the polarization field ai along r and 

TABLE I. Classification of acoustic axes in terms of the contact geometry of the velocity sheets and the singularities of the polarizat~on field near the 
degeneracy. 

Index and rotation of 
the oolarization field Dimension and coordinates of singularity I Geometric type 

Degenerate at the point ma, [(ma) = 0 

Algebraic conditions 

Conical 

Local wedge x - O ,  p * ~ .  q=rlp 1 "-'11 1 ? = I ) / .  1 - 0  

Wedge line 

n= ' l2  sign (xrnu) 
n=O. y ( q )  S O  
P L = ' , / ~  sign ( f p ( d - ~ ~ F )  [pm,]} 

Tangential 

x=O,  11'0 q=qp,  f = g = O  D~rec t~on  of the polarlzatlon 1 vectors changes abruptly by 

/ ?r/2 upon crosslng the l ~ n e  

x=O. p=q=O 

I 

Degenerate along a line x passing through 
m,, (=Oonx  

One or two tangent lines x-0 .  p=q=O No singularities 
Tangential degeneracy ma Direction of the polarization 
at the point where two wedge vectors changes abruptly by 
lines intersect ?r/2 upon crossing the line 

line 
Sheets tangent at a point mu 

I 
lying on a wedge line 

s=0. D,=O 
&.i'o, ,g=o 
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will therefore leave the index n unchanged (recall that n 
takes discrete half-integral values and can only change by a 
multiple of * 1/2). It follows that if the degeneracy splits, 
the sum of the indices of the new degeneracies must be equal 
to the index of the initial degeneracy, and a degeneracy can 
vanish only if n = 0. 

We now consider the stability problem in more detail by 
analyzing the equation 

g (mo+Am, ;+A;) =0, (39 

which follows from ( 1 ) and determines the coordinates of 
the perturbed acoustic %xes. If the basis vectors A, are cho- 
sen so that the matrix A(m,) = m, ?m,/p is diagonal, then 
to first order in Am and A? condition (39) reduces to the 
system 

2Amp+dl=0, 2Amq+d2=0, (40) 

where 

We have assumed in (41) that the matrix components 
AaS = m o b a  A?A,m,/p u;, are nonzero and that lAaB 1 
)A &. The perturbations A? considered below will be as- 
sumed to satisfy this condition. In the special cases when this 
condition fails, the form of Eqs. (40) remains the same but 
the expressions (41 ) for d ,,, may no longer be correct. 

Assume first that the acoustic axis is of the conical type, 
i.e., that x#O. Then the vectors p and q are noncollinear and 
system (40) has one and only one solution, which deter- 
mines the displacement Am of the acoustic axis. To lowest 
order, 

Aml= (dzpz-dlqz) /2xmol 
(42) 

Amz= (dlql-dzpl) /2xmo, Am3=- (Am12+Amz2)/2, 

where Am, is the displacement along the direction m,. This 
implies that a conical acoustic axis cannot split (and there- 
fore of course cannot vanish)-for any sufficiently small 
perturbation A?, only the position of a conical degeneracy 
point m, can change. Such degeneracies are said to be stable. 
The above discussion provides a quantitative basis for the 
qualitative interpretation in Ref. 12 of conical degeneracy 
points as points where the two lines defined by Eq. ( 1 ) inter- 
sect on the sphere m2 = 1. 

Now let the unperturbed acoustic axis be a local wedge 
of index n = 0. Then q = 7 p but g#qJ and we must retain 
terms quadratic in Am in the left-hand side of (39). We get 

If we decompose Am in terms of its projections on the or- 
thogonal unit vectors L, M, and m,: 

where L = pxm,/lpl and M = p/ /p / ,  Eqs. (43) and (44) 
with ( 11 ) yield 

(Am,) (g-qf) =qdl-dz. 

Clearly, (45) has no solution if 

while for 

(qd,-d,)/ (g-ql) > O  (47) 
there are two solutions: 

AmI=* [ (qd,-d2)l(g-qf) 1'". (48) 

In the latter case, we readily find the expression 

Am2= (dl!-dIg)/21pl (g-qf) (49) 

for the second coordinate of Am from (43), (45). 
If the unperturbed local-wedge acoustic axis has index 

n = * 1/2 then q = 7 p and g = 7J and we must consider 
terms - 1 AmI3 in (39). Using (44), we obtain 

+Kz (Am,') +d,=O, 

where we omit the elaborate explicit expressions for K, and 
K,. Equations (50) lead to the cubic equation 

for Am,, where K =K, - 7 K1. It is easy to see that for a 
general perturbation, for which 

Eq. (5 1 ) has the unique solution 

Moreover, (50) implies that 

However, if the perturbation does not satisfy (52) (specifi- 
cally, if 177 d, - d ,  1 5 d :'*) then Eq. (5 1 ) may have either 
two or three roots (in the former case, one of the roots is 
unstable). 

The behavior of local wedge degeneracies under a per- 
turbation thus depends on the index n. If n = 0, the degener- 
acy will disappear if (46) holds and will split into two degen- 
eracies if (47) is satisfied. Since in general the vectors p and q 
corresponding to these degeneracies are noncollinear, the 
index conservation rule implies that the splitting must pro- 
duce a pair of conical acoustic axes with indices + 1/2 and 
- 1/2. On the other hand, a local wedge degeneracy with 
n = + 1/2 is in general stable and remains conical. How- 
ever, for special types of perturbations A?, such a degeneracy 
may split into three conical degeneracies or into a pair of 
degeneracies, one of which is unstable. If the tensor 2. is per- 
turbed further, the degeneracy may split into a conical pair 
or else disappear, and consequently its index n = 0. 

We next examine the behavior of tangential acoustic 
axes when the tensor ? is perturbed. In this case p = q = 0 
and condition ( 39 ) is approximated by the system 

We take an arbitrpy baiis with X, parallel to m, and 
consider the matrices F and G; in addition to (34), we will 
write 
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FIG. 3. Intersections of the line LE, with the surface R for conical ( a )  
and local-wedge degeneracies (n  = 0 and f 1/2 forb and c, respective- 
ly). The heavy lines and points show the initial position, while the 
dashed lines and open circles show the positions after the perturbation. 

The system (55) has the solutions 

The number of real roots of (55) determines the behavior of 
the various types of tangential degeneracies under perturba- 
tions of 2. and can be found by further analysis. A true tan- 
gential degeneracy (n = k 1 ) splits into a conical pair with 
equal indices n = + 1/2. A hybrid tangential degeneracy 
(n = 0, y ( q )  f 0)  disappears if 

sign Dl i=-s ign  D,,, sign D,,=sign D ,  (58) 

and splits into four conical degeneracies if 

sign D,,=sign D,,, s ign  D2,=-sign D,. (59) 

Finally, if 
sign D,,= sign D,, (60) 

then the degeneracy will either disappear or else split up into 
four conical degeneracies, depending on the specific nature 
of At. When (59) is satisfied, the degeneracy may also split 
into a pair of tangential degeneracies (for which we must 
have n = 0, since when t is further perturbed they either 
disappear or else split simultaneously into a pair of conical 
degeneracies). A generic perturbation will cause a sporadic 
degeneracy (n = 0, y(p)=O) to disappear; however, split- 
ting may also occur for special perturbations At.  

Finally, one can show that lines of degeneracy are un- 
stable. Indeed, according to Ref. 12 at least five of the seven 
equations specified by ( 1) are satisfied identically along ev- 
ery acoustic axis. The degenerate points are thus determined 
by a system of two equations and can be regarded as the 
points of intersection of two lines x,, X, on the sphere 
m2 = 1. A degeneracy linex will result ifx, andx, happen to 
coincide. Such a linex is clearly unstable, and a generic per- 
turbation A2 will remove all degenerate points on a line of 

wedge or tangential degeneracies with the exception of a few 
isolated points on or near the line. One sees readily that the 
same behavior occurs if one of the equations holds identical- 
ly for all m, i.e., for all points on the sphere m2 = 1 rather 
than merely on a line x,. 

If a tangential acoustic axis m, lies on a wedge line, 
there will be no degenerate points near mo if (58) is satisfied, 
whereas the degeneracy will split into a conical pair if (59) 
holds [either ofthese cases can occur if (60) is satisfied]. We 
note that because the index is conserved by continuous per- 
turbations only if the degeneracy is isolated, the sign of n for 
conical degeneracies may be arbitrary. 

The stability of the acoustic axes can also be treated 
from the viewpoint of the theory of singularities of smooth 
mappings. '' In this case, the problem for two-fold degener- 
acies reduces to analyzing a certain mapping Y of the sphere 
m2 = 1 into the three-dimensional space SM(2) of symmet- 
ric 2 x 2 matrices. The image of Y is a two-dimensional sur- 
face f2 in SM( 2 ); each degeneracy is mapped to a point on R 
which lies on the line LE, consisting of matrices of the form 
ui, where - co < (T < co and i is the unit 2 X 2 matrix. One 
can show that an acoustic axis m, will be stable if the map- 
ping p is transverse to LE,, which is equivalent to requiring 
that the point m, be regular for the composite mapping 
.rr 0 Y, where .rr is the projection on the plane normal to LE,. 
Conical degeneracy points have this property (Fig. 3a). On 
the other hand, local-wedge degeneracies with n = 0 corre- 
spond to "fold" singularities of 7 0 Y (Fig. 3b), while for 
n = + 1/2 fl has a "swallowtail" degeneracy (Fig. 3 ~ ) . ' ' ~ ' ~  
The analysis of the singularities of these mappings for per- 
turbations 2 4  + At reduces to solving equations of the 
form (45) and ( 5 1 ), respectively. Finally, tangential degen- 
eracies can be studied by analyzing the Porteus invariants19 

h h 

of the pair of quadratic forms Am FAm, Am GAm. 

CONCLUSIONS 

Acoustic axes may be present in crystals of all symme- 
try classes. Furthermore, no crystals without acoustic axes 
have been discovered to date, although in principle they 
could exist (degeneracy of elastic waves would not occur in 
such crystals).' '"23'6 The maximum number of degeneracies 
possible for tensors 2. of different symmetry was considered 
in Ref. 10. The formulas presented in Table I above make it 
easy to determine which types of acoustic axes can occur 
along axes of various symmetry. Tangential degeneracies, 
which always occur along C ,  or C, axes (Refs. 3,4, 10, 1 1 ), 
correspond to indices n = 1 and n = + 1, respectively, and 
in the latter case 

s ign  n = s i g n [ ( ~ i 6 h 3 , , - d i , Z )  ( d 1 2 A 3 , - d , 3 2 ) - 4 ~ i b 2 A 3 k 2 ] ,  

where 
Aa~'cna-cBB, di2-~i2+ ~ 6 6 ,  di3=~13+~55 

(clearly, sign n = sign d l ,  for cubic crystals). Conical de- 
generacies with n = - 1/2 occur along a third-order 
axis.3,4, 1 0 ~ 1 1  Both tangential degeneracies and (if the longitu- 

dinal and transverse branches are degenerate) local-wedge 
degeneracies can occur along a two-fold axis. The symmetry 
of acoustic axes lying in a plane of symmetry may be arbi- 
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trary, except that conical degeneracy of the quasitransverse 
and quasilongitudinal branches is ruled out. The index of 
conical degeneracies m, in a symmetry plane is given by 

in a coordinate system with X I  parallel to m,. 
In triclinic crystals with a generic tensor I?, the acoustic 

axes must clearly be of the conical type in general. However, 
since the symmetry decreases the number of independent 
components of 2, unstable types of degeneracies inevitably 
occur along certain high-order axes. In addition to the tan- 
gential degeneracies along C, and C, axes noted above, a 
line of wedge degeneracy may be present in hexagonal crys- 
tals if'.5.'0 

O<lL6-1110 / [A ie (Are -A~ . )  +dls21 (1 

(this occurs, e.g., in ice, magnesium, and quartz crystals). 
Although such acoustic axes are unstable, they disappear or 
split only for perturbations AF that violate the symmetry of 
the degenerate axis m, in a specific way. 

In other cases, for which the symmetry does not permit 
the existence of unstable degeneracies, such degeneracies 
can still arise if some of the elastic constants happen to coin- 
cide, as may occur, e.g., due to the critical behavior of the 
elastic moduli near a phase transition or when driving exter- 
nal fields are present.6' More commonly, the elastic con- 
stants may be nearly but not exactly equal. In this case, sta- 
ble acoustic axes (or  if they are absent, the close proximity of 
the velocity sheets) may be regarded as resulting from a 
small perturbation A? of an unstable degeneracy at a point 
m,. We stress that in this case the distribution of the polar- 
ization vectors at distances Am from m, (A?/?,( / Am 1 ( 1 ) is 
almost identical to the configuration of the polarization field 
for the "unperturbed" unstable degeneracy. 

We now pause briefly to discuss the case of three-fold 
acoustic axes along which the phase velocities of all three of 
the isonormal modes are equal. In this case all three of the 
functions A, (A) are singular near m,. The polarization 
fields of the degenerate branches are therefore triads rather 
than dyadsI2.l6 (i.e., we have a 3-tuple of orthogonal vectors 
A, at each point m) ,  and their singularities thus cannot be 
described by the Poincare index formalism. Triple degener- 
acies are easily shown to be unstable. Indeed, the Christoffel 
tensor is obviously diagonal along a triple acoustic axis, 
A ,  = u: a,,, where 6 ,  is the Kronecker symbol. The condi- 
tion for a perturbation AC to preserve a triple degeneracy 
near m, is that 

ALL,= (m,Ac^m,+m,~Amr~m&) ,,/p 
= [vO2+3. ( L . ~ )  ] 6,) , (61) 

which gives a system of six equations for the three unknowns 
Am and A(v2). I t  is also easy to see that regardless of the 
symmetry of the axis, such degeneracies can occur only if the 
components of the tensor F satisfy additional constraints. 
This explains why triple acoustic axes do not occur. 

The approach developed in the previous section for ana- 
lyzing the stability of acoustic axes is based on the degener- 
acy condition ( 1 ) and can be used to find the coordinates of 

perturbed degeneracies for matrices A2 of arbitrary struc- 
ture. Moreover, our conclusions are independent of the spe- 
cific nature of the thermodynamic effect that alters the elas- 
tic properties of the crystal, and they are valid for all 
perturbations that can be described formally in the wave 
equation ( 16) by adging a real symmetric matrix (not neces- 
sarily of the form AA = mAFm/p) to the Christoffel tensor. 
Such perturbations include phase transitions, elastoelectric 
and piezoelectric effects, electrostriction, e t ~ . ~ ' . ~ '  However, 
other phenomena cannot be treated in this manner ( a c o u s t ~  
gyration, for example, because the corresponding term AA 
responsible for this effect is not real-valued). One can show 
that if acoustogyration is allowed for by adding a term pro- 
portional to the gradient of the d e f ~ r m a t i o n " ~ ' ~  to the elastic 
energy, the acoustic axis either remains fixed or else disap- 
pears (there can be no splitting or displacement). On the 
other hand, if we describe elastic wave absorption phenom- 
enologically by adding an imaginaryAerm the tensor 2, 
then the effective Christoffel tensor A + AA is nonhermi- 
tian, in contrast to the acoustogyration tensor, which is Her- 
mitian. Under such a perturbation, the acoustic axes (in- 
cluding conical ones) may split or disappear. 

"However, the mathematical approach in Refs. 12 and 16, in which the 
polarization fields are assumed in addition to be directed, has proved 
fruitful in many cases. 

"We will see below that a line of wedge degeneracy is unstable, i.e., a small 
generic perturbation of the tensor ? will eliminate contact between the 
outer and inner sheets at all but at most finitely many points on or near 
the line. Our labeling of the degenerate wave branches by the rule 
u, (m)  <v2(m) is therefore natural in this case also. 

"Similar types of contact geometry were considered in Ref. 4 for the con- 
stant-frequency surfaces of the phonon and electron spectra. 

4'According to Refs. 1 and 2, the sign of x m, also determines the direction 
of rotation of the vectors s, (m,) along the internal refraction cone as the 
polarization vector of the degenerate wave rotates. 

,'For Am#O the equality u ,  = u, breaks down at higher order in perturba- 
tion theory. According to ( 1 ), the vanishing of the vector {on the linex 
is necessary and sufficient for an arbitrary degeneracy to occur alongx. 

6'For example, one can use the temperature dependence of the elastic mod- 
uli of Hg2C12 crystals found in Ref. 22 to show that lines of wedge degen- 
eracy form near the tetragonal-rhombohedra1 phase transition in 
Hg,C12, even though this crystal is not transversely isotropic. These lines 
cross the sphere m2 = 1 at points corresponding to two- and four-fold 
axes, so that a tangential degeneracy is superposed on a line of wedge 
degeneracy at these points (for the case of a four-fold axis, at the point 
where the two lines intersect). According to Ref. 14, the formation and 
subsequent removal of the degeneracy lines changes the sign of n for a 
tangential degeneracy along the four-fold axis. An unstable tangential 
degeneracy not due to symmetry occurs along the two-fold axis (parallel 
to X,) in the tetragonal Hg2C12 phase, because the equality c,, = c,, 
(Ref. 22) continues to hold at low temperatures. We may also mention 
BaTiO, ceramic, for which the data in Ref. 23 show that a line of tangen- 
tial degeneracy is present if the ceramic is placed in an external electric 
field of suitable magnitude. 
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