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The motion of charged particles in a magnetic field B having a regular component B,  and large- 
scale fluctuations SB is analyzed. The effect of small-scale scattering on the motion of the parti- 
cles in a large-scale magnetic field is taken into account. The diffusion coefficient (D, ) of the 
particles across the regular magnetic field B, is calculated. For small-scale fluctuations of a 

general type there is always a diffusion across the field B, with a coefficient D, = D W/B i, 
where D ll is the coefficient for diffusion along the magnetic field. This diffusion arises from the 
scattering of particles by small-scale fluctuations. 

1. In several problems in plasma physics it is necessary 
to deal with the motion of charged particles in random elec- 
tromagnetic fields which have very different correlation 
lengths and correlation times. One such problem is the effect 
of collisions on transport in large-scale fluctuational 
fields'-3; another is the diffusion of cosmic rays in the galac- 
tic magnetic field.4 

Let us consider the motion of particles in a magnetic 
field B = B, + SB ( JSB / ( I B, 1 ) strong enough that the Lar- 
mor radius rH and the cyclotron resolution period 2n7/wH 
are much smaller than all the scale lengths and scale times of 
the problem. A particle can then be assumed "tied" to a 
magnetic line of force and constrained to move exclusively 
along it. In the absence of a random field component SB, the 
particle moves across the magnetic B, by diffusion: 

where S is the distance traversed by the particle along the 
magnetic field, and 
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is the so-called magnetic diffusion coefficient.' The z axis is 
directed along the field B,, and LC is the correlation length 
along z of the random process SB. We further assume that 
the particle moves along B, not freely but diffusively, with a 
mean free path If ( r ,  <If (LC ) and with a diffusion coeffi- 
cient D II due to any scattering process, involving either colli- 
sions or a scattering by fluctuations. At first glance it ap- 
pears that we would have 

Substituting (2)  into ( I ) ,  we find6.' 

Expression (3)  means that the motion of a particle 
across the magnetic field is not ordinary diffusion as it is 
usually understood: 

d -  
DL = lim - rLZ=O. 

1,- d t  

The motion described by (3)  might be called "second- 

order diffusion." However, it is not completely correct to use 
expression (2)  : Expression ( 1 ) presupposes that as a line 
moves a distance S)L, away from the initial point So = 0 
along a line of force it is displaced an average distance 
r, = (Dm S) ' I 2  from the unperturbed magnetic surface. Un- 
til we have traversed a distance S- LC,  the line of force un- 
dergoes essentially no excursion from the unperturbed mag- 
netic surface. Consequently, a particle on such a line of force 
undergoes an equally small displacement in the transverse 
direction. In expression ( 2 ) ,  on the other hand, a particle 
which returns repeatedly is displaced a distance 
s = (D  II t )  ' I 2 ,  but this displacement is quite different from 
the length S of the line of force, which is assumed in ( 1 ) . 

Let us consider a simple example in which the path 
length S can easily be calculated exactly. Figure 1 shows a 
pattern of lines of the magnetic field B. At distance LC there 
is an equiprobable transition to either the line of force which 
is the continuation of the given line of force or to the two 
adjacent lines of force, separated from the given line of force 
by a distance S = LC (SB ') ' 1 2 / ~ , .  After a time 
At = L f /D , the particle will thus probably deviate a dis- 
tance S from the line of force. As it then moves by diffusion 
along the line of force, the particle may return to its original 
line of force or a neighboring one, but there is a large prob- 
ability (2/3) that it will be on a line of force which is separat- 
ed from the original line by a distance S until the distance LC 
is traversed. The path traversed by the particle is thus the 
sum of individual segments with a length on the order of L C .  

FIG. 1. ' 
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We can thus find 7, the average velocity of the particle along 
the line of force: 

At times t > At, the average distance traversed by a particle 
along B is thus 

S=Vt=D,lt/L,. (4 )  

Substituting (4 )  into ( 1 ), we find 

This example shows that the superposition of two indepen- 
ent random processes, as in our problem, leads to ordinary 
diffusion, not second-order diffusion. 

2. We can prove this assertion in a general form. We 
introduce f (r,v,t), the particle distribution function under 
the conditions specified above. The kinetic equation for this 
distribution function is 

d j / d t + v , , h ~ f = ~ ( v )  f .  (5 )  

The operator L ( v )  describes the scattering of particles 
by small-scale functions, h = B/JB I is a unit vector along the 
direction of the magnetic field B = B, + SB, and vll is the 
velocity of the particle along the magnetic field. We intro- 
duce the average values 7 and B, and the fluctuating values 
of Sf and SB in (5 ) ,  under the assumption that the fluctu- 
ations are small: 

f=f+6!1 I6 f l< l f l ,  
B=B,+GB, J 6 B / < I B o ( .  

We take an average of Eq. (5 )  over the ensemble of realiza- 
tion of the random quantity. Following Ref. 3, we find 

a p / a t + ~ ~ , h , v f = L  (v)J+I,, , 
+= r 

d 6Bi,(r, t )  6B,,(r', t ' )  
Z = - J l  v l lG(rr  v, t ( r ' ,  v', t ')  f '  dri -_ -_ BoZ 

d - 
x vII' - f ( r ,  v', t )  dr' dv' dt', 

dr ,  
(6 )  

dG/dt+vl,h,VG=L (v)G+6 (t-t') 6 (r-r')  6 (v-v ' )  

In order to calculate the diffusion coefficient in Eq. (6) ,  
we need to know the properties of the operator L (v) .  We 
restrict the discussion to Hermitian operators L having a set 
of discrete negative eigenvalues A,, A,,..., A, ,... 

If the fluctuations scatter the particles in such a way 
that the distribution function tends toward isotropy, the op- 
erator L must have these properties. Let us explain this as- 
sertion. The operator L describes the relaxation of the distri- 
bution function in a homogeneous medium. Its eigenvalues 
are the reciprocal relaxation times of the corresponding ki- 
netic moments, so that they must be negative real numbers. 
The operator L is thus Hermitian. We also note that the 
distribution function 7 satisfies a continuity equation; it fol- 
lows that the operator L has at least one eigenvalues A, = 0. 

For simplicity we also assume that only one eigenvalue is 
zero. If there are several such values, the derivation becomes 
more complicated, but the final result-Eq. (17)-is the 
same. 

For the Hermitian operator L we introduce a set of or- 
thonormal bar and ket vectors in the standard way: 

The operator L + is the Hermitian adjoint of L. 
We turn now to the solution of the second equation of 

system (6 ) .  We write G in the form 

G= J g ( k )  exp {-3i~+ik (r-r') } dk, ~ = t - t '  

Substituting into (6 ) ,  we find 

-hg ( k )  +ikllvllg ( k )  =L ( v )  g ( k )  + (2n) $6 (v-v ' )  . ( 8)  

The quantity k v I  in (8 )  serves as a perturbation since we 
have k ll v l  -A1 /LC, lf (LC where 1 is the mean free path 
of the particles with respect to scattering by the small-scale 
fluctuations ofL (v)  . We expand Eq. ( 8 )  in the small param- 
eter 1 /LC. In the zeroth approximation we find the follow- 
ing expression for the Green's function G from (8  ) : .. - 
G (r ,  V, t 1 r t ,  v f ,  t ' )  = In, v)exp (-h,z) 6 (r-r') (n, v' I. 

"-0 ( 9 )  

z>o 
In first-order perturbation theory we have 

A:') = i k l l ( l , v ~  vI l  1 1 , ~ ) ;  (10) 

the physical meaning of A A" is that it is a quantity propro- 
tional to the average velocity of the particles. We choose a 
coordinate system in which we have A A ' )  = 0. 

Taking into account small terms of second order, we 
find the diffusion corrections: 

m 

Here A h2' = D ,, k Ti, where D is the coefficient of the diffu- 
sion along the magnetic field B, due to scattering by small- 
scale fluctuations. 

Correction ( 1 1 ) is important only for the eigenvalue A,, 
since A A'' = A  A ' )  = 0. For the other eigenvalues, ( 11 ) is 
small. Using ( 1 1 ) , we can write (9)  as 

G ( I ,  v, t  1 r ', v', t l )  = 10, v)  ( 2 ~ 0 , ~ ~ )  -'126 (rl-rl') 

x exp {- ( 2 - 2 ' )  2 / 4 D , , ~ )  (0, v' I (12) 

Here the vector B, is directed along the z axis. Substituting 
( 12) into (6),  we find 

m  +m t 

I - =  f l  x-+ J J v l l i n , v >  6B,,6B1, 8,, (r-r', T )  - d 
n=o rim -_  Bo2 8 r, 

(13) 

X (n, v' I vll' If (v', r,  t )  )dvfdr 'dt ' ,  
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where 

f (2nDl1~)- '"6 (r,-r,') exp {- (2 -2 ' )  Z I W I I ~ } ,  

en (r-r', r )  = n=O 
exp (-L,T) 6 (r-r ' ) ,  nB1. 

Since we are interested in the solution of Eq. (6)  over times 
t>il -', we have L(v)  7") = 0 in the zeroth approximation; 
i.e., the function 7") is 

From (13) and (14) we find 
co 

The summation in ( 15 ) begins with n = 1, since we 
have il A ' )  = 0 according to ( 10). Using ( 1 1 ) and (7) ,  we 
can write expression ( 15 ) in the form 

Assuming the fluctuations SB to be isotropic, we finally find 
our diffusion equation from (6)  and ( 14) : 

where the transverse diffusion coefficient is 
D~ = ( W/B;)D, , .  

Over times t )L  :/D and scale lengths LBL,, the mo- 
tion across the magnetic lines of force is thus purely diffu- 
sive. In the literature, however, we find the assertion8 that 
for any ordinary diffusion process describable by a parabolic 
equation, i.e., a heat-conduction equation, the diffusion co- 
efficient is zero in a random magnetic field. We thus consider 
the simplest approximation of a diffusion process which 
leads to a heat-conduction equation, Brownian motion of a 
particle in a random velocity field. 

3. We assume that the motion of a charged particle is 
described by the equation 

drldt=V ( t )  h,  (18) 

where h is a unit vector along the direction of the magnetic 
field, given by 

h= ( B o l S B )  / / B o +  6B1, 

and V(t) is a Gaussian random function with a correlation 
scale time 7, so small in comparison with the typical time for 
a change SB that it can be approximated by the expression 

< V ( t )  Ti ( t ' )  >=2Dl16 ( t - t ' ) .  

The random process V(t), which is statistically independent 
of SB, describes diffusive motion of a particle along a mag- 
netic field with the diffusion coefficient D . 

We introduce the probability density for finding a parti- 
cle at the time t at the point r: 

Averaging over the random process V(t) (the angle brackets 
indicate the averaging) by the method of functional integra- 
t i ~ n , ~  we find from ( 18) a standard diffusion equation: 

The further averaging over the random field SB is usually 
carried out by a standard method involving a splitting up of 
f into an average function F and a small random increment 
Sf. Substituting this expression into (191, we find the fol- 
lowing equations for F: 

1 dl.' 0 
--=- 

d d -  d 
h ,"h, , - -Ft-D,b,-F 

Dl, d t  dr, drk Or, dr, (20a 
a d d d 

+-(b,h,k+b,h~,) -6f+-b,b,-6f, 
dr, lirk dr, ark 

d dF d d d 
+-(b,h,,,+b,ho,)---b,b,---6f +--(bibh 

8 r,  dr, dr, dr, dri 
- d~ a - a 3 a 

-btbh)-f - ( b , b , - b , b k ) y  6f+ --(b,h,,+b,ho,)-- 6f 
dr, a r i  or, dri ark 

where b, = SB, /B,; 1 b, 1 ( 1. Assuming Sf - b and retaining 
in (20) those terms which are quadratic in b, we find that the 
second term on the right side of Eq. (20a) cancels out com- 
pletely. This cancellation is interpreted as meaning that 
there is no transverse diffusion.' However, it can be seen 
from (20b) that the terms of the type b, (d/dr, )Sf are not 
quadratic in b but terms of first order, since the width of a 
perturbation Sf in the transverse direction is 6-LC ( 5  ') ' I 2 .  

For this reason, we cannot carry out a successive expansion 
in powers of b(r) in (20b), since all the quantities contain- 
ing b, ( a  /&, )Sf are terms of first order in b ( r )  , not of sec- 
ond order, as was assumed in Ref. 8. To find the answer we 
take the following approach: We carry out an averaging first 
over the random process b ( r )  and then over V(t) . The result 
will of course be independent of the order of the averaging 
steps, but in the second case the series in b ( r )  is found in a 
natural way: 

t 

From (21) we find 
f 

DL.= j ( V ( t )  V (z).bkl ( r )  b iL(r  ( r ) )  )dr ,  
- m 

which gives us the following expression in first order in b ': 
- 

D,ih=Db,b,. 

This expression agress with the results above. 
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