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The resonance scattering of light by a predissociative state is described in the model of four 
intersecting terms A-( 1,2)-B, with strong coupling between terms 1 and 2. A closed representa- 
tion of Green's function is constructed for the model in which the intermediate electron terms 1 
and 2 are strongly bound. The transition amplitude I,(,,,,, is found in the quasiclassical approxi- 
mation. Resonant scattering of light by the predissociated 311,, state of interhalogen molecules is 
considered in detail. 

With all the obvious differences between chemical reac- 
tions and radiative transitions in molecules, there is an un- 
doubted analogy between the elementary mechanisms in 
these processes. In both cases, we have to deal with the mo- 
tion of nuclei on certain potential surfaces, and with transi- 
tions when these surfaces intersect. In chemical reactions, 
the nuclei move due to molecular terms whereas, in radiative 
processes, they move due to terms (quasiterms) of the mole- 
cule dressed with the photon "coat" U(x) + Nfiw, where 
U(x) is the molecular term, x represents the position of the 
nuclei, and w is the photon frequency. The quasienergy pic- 
ture' enables us to look upon radiative processes in mole- 
cules as, in many ways, similar to nonadiabatic transitions in 
atomic and molecular collisions. 

In collisions, the molecular term picture is uniquely de- 
termined by the nature of the colliding bodies insofar as their 
interaction is concerned. In radiative processes, the situation 
is more varied. The relative positions of the quasiterms and 
their interactions in crossing regions depend on the frequen- 
cy and intensity of the light wave, which can be readily var- 
ied under experimental conditions. 

The usual electronic-vibrational transition scheme for 
the absorption or emission of light by a molecule in the qua- 
sienergy representation has the same appearance as the two- 
term model in the theory of slow atomic collisions (Landau- 
Zener problem2). In the absence of a direct coupling 
between the initial (A) and final (B) states, e.g., as a conse- 
quence of symmetry selection rules, the transition can pro- 
ceed through a further term C. Transitions in a system of 
three (or more) crossing terms A-C-B are complex nonadia- 
batic transitions and describe forbidden transitions in slow 
atomic collisions and two-photon processes in  molecule^.^-^ 
A more complex situation arises in the case of multichannel 
reactions, where we have to deal with transitions in a system 
of four or more crossing terms. In radiative processes, the 
four-term model describes the scattering of light in the ab- 
sorption band of two strongly coupled electronic states, for 
example, scattering on a predissociated term. The four-term 
model takes into account two features of the multichannel 
problem, namely, interference between optically active elec- 
tronic states (reaction channels) and distortion of the shape 
of these terms, right up to a change in the nature of adiabatic- 
diabatic terms under the influence of coupling. 

We shall consider the theory of complex nonadiabatic 
transitions A-( 1,2)-B with strong coupling between elec- 
tronic states 1 and 2, and its applications in the spectroscopy 
of resonance Raman scattering (RRS) by diatomic mole- 
cules. We shall obtain a quasiclassical expression for the 
transition amplitude in the four-term system 

in second-order perturbation theory in the weak coupling 
between the terms A- ( 1,2) and ( 1,2 )-B in the presence of 
strong coupling between the intermediate terms 1 and 2, 
where IA ),I B ) are the electron-nuclear wave functions, 3 is 
the Green's function for the model of two strongly-coupled 
electron terms 1 and 2, and Vis the radiative coupling opera- 
tor. 

The expression we shall obtain is the solution of the 
direct and inverse problem of the theory of two-photon spec- 
tra in the presence of a strong electron-nuclear coupling. The 
resonant scattering of light on the predissociated state of 
molecules of the form Br,, IBr, and other interhalogens is 
discussed in detail. 

TWO-CHANNEL GREEN FUNCTIONS 

The analytic properties of multichannel Green's func- 
tions in the theory of nonadiabatic coupling are of indepen- 
dent interest. We shall assume that non adiabatic interac- 
tions can be as strong as desired but, essentially, they are 
localized in a limited region of space (Landau-Zener mod- 
el). 

In the adiabatic approximation, 9 is the convolution of 
electronic and nuclear Green's functions, so that 

9 (x, r; xf,  r f )  = grin (x, X I )  1 n ) ( n  1, (2)  
n 

where g,, (x,xl) is the Green's function for the nuclear mo- 
tion in the adiabatic potential U,, (x ) ,  In) is the electron 
wave function for fixed nuclei, and x, r are the nuclear and 
electronic coordinates, respectively. This sum is evaluated 
over the complete spectrum of adiabatic electronic states n.  
When the dynamics of the electron-nuclear coupling is taken 
into account, we have 

463 Sov. Phys. JETP 62 (3), September 1985 0038-5646/85/090463-05$04.00 @ 1986 American Institute of Physics 463 



FIG. 1 .  Diabatic 2-1, 1-2, and adiabatic 1-1, 2-2 terms. 

(10) 
is the Wronskian of the nuclear solutions, where A ,, = i for 
an open channel (for which f,, = f, ). The transition coeffi- 
cients form the unitary matrix (R ,+ ). If we suppose that this 
matrix is known, we can continue the solution of (6)  beyond 
the region of interaction (x' > 0) .  

The point-source influence functions Y ,,, Y ,,, and 
Y,, for channels 0-1, 0-2, and 2-0 will be determined by 
analogy. The conditions of unitarity and symmetry for all 
the transition matrices (R ,+ ) have the form 

The off-diagonal terms m f n  characterize nonadiabatic R,,--/Aon=Hmn++/Amo, 
transitions. Motion in the reaction coordinate is assumed Rnm-+IAon=Kmn-+IAo~ 
one-dimensional, and we consider 3 (x,r; xl,r') for the two- Rnm+-/Ano=Rm,+-/Amo. 
term model n, m = 1,2 of a general form on the assumption 
than the source, the observer, and the turning point are suffi- 
ciently distant from the nonadiabatic region x -0. 

Figure 1 shows the crossing terms and defines the 
branch labels. Outside the region of interaction, the function 
9 is conveniently written in the form 

where 

[E-H(x, r) ]3,(x, r; x', r') =6(x-x') In)(nl. (5)  

The component Y of the solution can be interpreted as the 
influence function of a point source located on the term n. In 
the region x' < x,x' < 0 one of the solutions of (5)  can then be 
written in the form 

1 si0 (x, r; xl, r') = - Y :OYt (x', r') Y lain (x, r) , 
Aio 

( 6 )  

where 

Y;tt(xr, r') =fio(x') 1 I) (7 )  

is a unit wave departing from the interaction region along 
the 1-0 branch (plus a reflected wave in the case of a closed 
1-0 channel). The linearly independent solution of the mul- 
tichannel equation, given by 

forx<O and by 

for x > 0, describes the propagation of a unit wave incident 
on the interaction region along the 1-0 channel, and the sub- 
sequent branching for the solution that is regular on seg- 
ments of the 0-l,0-2, and 2-0 terms. The functions are solu- 
tions of the single-channel Schroedinger equation with the 
corresponding asymptotic behavior: f ,+ and f; are unit 
waves propagating over the term n in the positive and nega- 
tive directions, respectively, and fa], fo2, f2, are solutions that 
are regular on the corresponding branches of the 0-n and n- 
0 terms, normalized to the unit component of the wave de- 
parting from x = 0. Next, 

These relationships ensure that the fluxes incident at x = 0 
and leavingx = 0 are equal for an arbitrary position x' of the 
source, and that the situation is symmetric under time rever- 
sal. This also means that there are no additional particle 
sources within the interaction region. 

The representation of the auxiliary solutions Yo,, Yo,, 
and Y,, in terms of the elements of the matrices (R : ) was 
found by considering the physically intuitive picture of flux 
branching in the region of x-0. It is obvious that, for 
xx' < 0, the positions of the source and observer are not equi- 
valent, i.e., 

9olr (x, r ;  x', r') f 9",,(x', r'; x, r ) ,  

as in the case of a ray crossing the separation boundary 
between two media. 

It is readily seen that the linear combination of all the 
auxiliary solutions 

3 ( x ,  r; z', r') = [ 9 0 c  (x, r; x', 7 ' )  +902(x,  r; x', r r )  ]@ (XI) 

+[9io(x, r; x', r') +9zo (x, r; x', +)I@ (-z'), (12) 

where@(y) = 1 and@(-y )  =Ofory>O, hasthecorrect 
asymptotic behavior, is symmetric under the interchange of 
x and x', and constitutes a two-channel Green's function. 

The nuclear components of the multichannel Green's 
function are symmetric under the simultaneous interchange 
of the nuclear coordinates and electronic indices 

9 n m  (x, x') = 3 m n  (x', X )  , (13) 

and constitute bilinear combinations of adiabatic (diabatic) 
solutions f 5 outside the nonadiabatic region, with coeffi- 
cients that change when the argument x or x' passes through 
the quasicrossing point x = 0. 

The relationships given by (3)-(13) define the multi- 
channel Green's functions in the one-dimensional model of 
atomic collisions in terms of single-channel solutions. The 
single-channel solutions describe different ways of crossing 
the strong interaction region along diabatic and adiabatic 
trajectories. 

GREEN'S FUNCTIONS IN THE QUASICLASSICAL REGION 

The above expressions enable us to use familiar quan- 
tum-mechanical models as the single-channel solutions. 

464 Sov. Phys. JETP 62 (3), September 1985 Vetchinkin etal. 464 



FIG. 2. Predissociation ( E , )  and interference ( E , )  during molecular- 
term crossing. 

From now on, we shall confine our attention to the simple 
quasiclassical situation. 

The matrix (R 2 ) is determined in the quasiclassical 
situation in accordance with the usual rules for crossing the 
nonadiabatic r e g i ~ n , ~  and its form depends on the relation- 
ship of the crossing region and turning points. Figure 2 illus- 
trates typical crossing of terms with different slopes. High 
energies 

correspond to the scattering problem, and lower energies to 
predissociation and resonances. 

When one of the channels is closed and the energy E lies 
above the crossing point of diabatic terms, the nuclear com- 
ponents G,, have the following form for x, x'<O 
(t i  = p  = 1) 

IalZ G,, ( x ,  x ' )  = - 1 
gnne-'S1z cos Sz2 + - e-" gnme-iez2 cos S12,  

A A 
(14) 

G~~ ( x ,  X I )  = - a e-'jm0 ( X I  f n o  ( x t )  , 
2A (15) 

where S,, is the classical action given by 

for diabatic terms U,, and by 

for adiabatic terms U,, . In these expressions, q, is the quan- 
tum phase equal to n-/2 in the adiabatic limit and 3n-/4 in the 
diabatic limit.' Moreover, 

l ~ ] ~ = i - e - ~ " ,  
(16) 

A = r - i S 1 ~  cos S22+ie-2a s in (S l z -S , , )  ; 

and the nonadiabaticity factor is given by 

where z,, z,* are the crossing points of adiabatic terms in 
complex space, 

and g,, are the quasiclassical single-channel Green's func- 
tions found in Ref. 5 and given by 

-2i 
grit = cos [ s., (an.  x<) - - 

[pn1 ( x )  pni ( x ' )  4 " I 

for infinite motion along the 1-1, 2-1 terms and by 

-2 1 n 
g , ~  = . - cos [ s , , ( a . ,  2,) - -1 

[pn2 (x1 pnz (.'I I 'Is cos Sl2 4 

for finite motion along 1-2, 2-2 terms. For brevity, we have 
used So, = S,, ( a ,  ,b, ) to denote the action in the case of 
motion due to the term U,, between the turning points a,  
and 6,. 

Thus, the nuclear components of the multichannel 
Green's function constitute a linear combination of diabatic 
and adiabatic Green's functions (14) plus the mixed pro- 
duct of the solutions ( 15), which include backward inelastic 
scattering. 

The zeros of the Wronskian A determine the position 
and lifetime of the predissociated states. Variation of S af- 
fects the shift AE, and the broadening r, of the level E,,  
until there is a change in the nature of the resonance (diaba- 
tic or adiabatic). In the limiting case, when S( 1, we find that 

where E, is determined by the Bohr quantization condition 
S, ,  (a,,b, ) = .TT( u + 1)  for motion along the diabatic term 1- 
2. The S = 0 Green function is equal to the sum of diabatic 
solutions: 

9 = 9 , 2 + 9 2 t .  

In the opposite limit, when 8% 1, we obtain 

0 2 2  AE, = - e-" sin 2S12,  
2n 

b2 

0 2 2  271 r.=2 - e6 C O S ~  s,,, - = J 2. 
2n 0 2 2  ax p22 
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FIG. 3. RRS in a system of terms with strong nonadiabatic 
bonding (IBr molecule): a-molecular-term representation, 
b--quasiterm representation. 

The quantity E, is determined by the Bohr quantization con- The adiabatic 1-1 and diabatic 1-2 scattering amplitudes are 
dition SZ2(a,,b2) = ?r(u + 4) for motion along the adiabatic as follows: 
term 2-2. The Green's function for S = cc is equal to the VA 1 

sum of adiabatic solutions: IA(~-1)s = 

8=811+8,2. ?E n 
x c o s [ ~ ( a , , x ~ ~ , x ~ ) - - ]  exp[ i~(a,,x.~,;Cg)-i-], (25) 

Near the pole, the resonance term of the Green's func- 4 4 

tion is the product of the wave functions of quasistationary VA, 1 

states. For x,xl < 0, the Green's function has the form =( (p~uf ) ' / s  )A, ( (p2~r)'j2) 

which is valid to within terms -T, where e, r 2 ( x )  is the 
nuclear wave function for the binding term U,,; m = 1, 
n = 2 in the diabatic limit (84 1 ) and m = 2, n = 1 in the 
adiabatic limit (6) 1 ) . 
RRS IN THE HIGHLY NONADIABATIC REGION 

Figure 3 shows the Raman scattering scheme in the re- 
gion of the transition to the predissociated state: (a )  in the 
molecular-term representation and (b)  in the quasiterm rep- 
resentation. The term scheme is typical for halogen and in- 
terhalogen molecules. 

The above expression for the two-channel Green's func- 
tion enables us to find the transition amplitude I,,,,,,, (1)  
in an analytic form. The principal contribution to the inte- 
gral ( 1 ) is provided by the regions of crossing of quasiterms 
A and B with term 1. Assuming that all the term-crossing 
points are distant from one another, we can evaluate ( 1) by 
the method of steepest descents. For the case shown in Fig. 3, 
we have 

which was shown previously in Refs. 3 and 4. In these 
expression, VA , and V ,, are the matrix elements of the ra- 
diative transitions, and ( AU'), , and ( AU') ,, are thediffer- 
ences between term slopes, calculated at the crossing point. 

The intramolecular interaction gives rise to interfer- 
ence between the diabatic and adiabatic scattering ampli- 
tudes. When the excitation frequency w is close to the quasi- 
crossing point (the difference is of the order of the splitting 
of terms 1 and 2), the interaction parameter is large: 
(26 2 1 ) .  In the adiabatic limit 2 6 ~ 1 ,  and the main role is 
played by scattering by the repulsive adiabatic term 1-1, so 
that I, ,,,,,, -IA,, -,,, and the scattering amplitude has no 
poles and varies smoothly with exciting frequency. 

For excitation frequencies that are distant from the 
quasicrossing region, the interaction parameter is small and, 
in the diabatic limit (264 1 ), the amplitude I,, ,,,,, becomes 
identical with the scattering amplitude for the 1-2 diabatic 
term. Near resonance with the quasistationary state, the 
principal contribution to the amplitude I,,,,,,, is provided 
by the pole term. The contribution of this term, given by 
(23), is equal to the estimate based on the Fano method:' 

+ I A ( l - 2 ) B  e-isz2 
A 

COS Sl*, 
Figure 4 shows the RRS spectrum of the IBr molecule 

(24) and its dependence on the exciting frequency w, calculated 
lA(i-i)~=(A/ V811VlB), IA(l-z)B=(Al VSJizVIB), from (24)-(26). The molecular terms and the matrix ele- 
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seen from Figs. 4a and 4b, the excitation profile varies from 
the highly irregular form, characteristic for discrete RRS 
(Fig. 4b), to the smooth form, typical for scattering on the 
non-binding term (Fig. 4a) for which the exciting frequency 
approaches the quasicrossing region. 

Nonadiabaticity manifests itself also in the distribution 
of the overtones at fixed exciting frequency w (envelope 
along the n axis). As the exciting frequency approaches the 
nonadiabatic region, the intensity distribution rapidly 
changes its character in the same way as in the transition 
from scattering on a bound state to scattering on a non-bind- 
ing term. 

The effect of nonadiabaticity on the intensity and width 
of distant overtones (n = 28, 37) in the spectrum of the IBr 
molecule was calculated in Ref. 12. Such distant states were 
chosen because they had the largest overlap integrals with 
the intermediate states 311 and 'II. Our results show that 
interference between the diabatic and adiabatic channels 
manifests itself in the relative intensity variations along the 
entire series of overtones, right down to the lowest-order 
overtones, and is considerable when the exciting frequency 
approaches the frequency of the transition to the quasicross- 
ing region. Experimentally, it is simpler to investigate this 
effect than to establish changes in the excitation spectrum of 

O Z Y 6 8 1 D n  a high-order line. 

FIG. 4. Vibrational structure of the RRS spectrum of the IBr molecule as Thus, studies of RRS spectra of molecules in the ground 
a function of the frequency of exciting radiation: in the region of quasi- electronic state can be used to determine the position, shape, 
crossing (a)  and well away from the quasicrossing region (b).  and nonadiabatic parameters of excited electronic terms. 
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