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The influence of multiple scattering and of polarization of the medium on the intensity of coher- 
ent emission of low-frequency radiation by relativistic particles in a crystal is investigated. It is 
shown that the method of functional integration can be used to describe the emission of radiation 
by high-energy particles in matter. The method is used to reproduce the results of Migdal and Ter- 
Mikaelyan on the effect of multiple scattering and of polarization of the medium on the emission 
of bremsstrahlung by fast charged particles in an amorphous medium at low frequencies, and a 
formula is obtained for the effect of multiple scattering by chains of atoms and of polarization of 
the medium on the intensity of coherent emission by ultrarelativistic particles in a crystal. It is 
shown that, when particles propagate in a crystal, multiple scattering may have a significant effect 
on the way they emit at much lower particle energies, and in a much greater range of emission 
frequencies, than in an amorphous medium. This opens up new possibilities for studying the 
Landau-Pomeranchuk effect on many existing accelerators. 

1. INTRODUCTION 

The process of emission of radiation by a fast charged 
particle in a medium takes place over an extended region 
oriented in the direction of the particle momentum. In gen- 
eral, if the particle collides with a large number of atoms in 
this region, it will not emit radiation the way it does in a low- 
density atomic gas. Either amplification or attenuation of 
the emission by relativistic particles can then occur. This 
conclusion was first reported by Ter-Mikaelyan,' who stfid- 
ied the emission of radiation by fast electrons in a crystal. He 
showed that the motion of a particle of arbitrarily large ener- 
gy in a crystal may be accompanied by coherent and interfer- 
ence effects, and that these effects ensure that much more 
radiation can be emitted in a crystal than in an amorphous 
medium. The amplification effect occurs when the particle 
moves nearly parallel to one of the crystallographic axes, 
and if there is a large number of lattice atoms within the 
region in which the radiation is formed (the coherence 
length I). 

Landau and Pomeranchuk then showed2 that, in an 
amorphous body, the increase in the size of the region in 
which the radiation is formed with increasing energy leads to 
a significant reduction in bremsstrahlung. The effect they 
studied (the Landau-Pomeranchuk effect) occurs when the 
mean square multiple scattering angle within the coherence 
length is greater than the square ofthe characteristic angle of 
emission by a relativistic particle. Landau and Pomeran- 
chuk2 gave general formulas for the emission of radiation by 
a fast particle in a medium at low frequencies, and outlined a 
method for calculating the mean spectral density of the emis- 
sion in an amorphous medium. They estimated the emission 
spectrum in the case where the suppression effect is consid- 
erable. Ter-Mikaelyan subsequently showed2 that the 
bremsstrahlung from a relativistic particle in an amorphous 
medium is suppressed not only by multiple scattering but 
also by the polarization of the medium, and that the latter 

has an important effect on the emission in a broader range of 
particle energies than multiple scattering. 

The quantitative theory of emission by relativistic parti- 
cles in amorphous and crystalline media has, however, de- 
veloped out of different approaches to the description of the 
particle-medium interaction, and this has made it much 
more difficult to exhibit general relationships for, and distin- 
guishing features of, the emission process in these cases. The 
first quantitative results on the effect of multiple scattering 
on the emission of radiation by a fast particle in an amor- 
phous medium were obtained by Migdal,4 who used his own 
method based on the kinetic equation for the position and 
velocity distribution function of particles in the medium. 
The method was subsequently employed to investigate the 
effect of many other factors on the emission of radiation, 
including, for example, recoil in emission, photon absorp- 
tion, and so on (see, for example, Ref. 5 and the references 
therein). The theory of emission of radiation by relativistic 
particles in crystals has also been developed using the first 
Born approximation of perturbation t h e o r y . ' ~ ~ - ~  However, 
no quantitative results have been obtained so far on the emis- 
sion spectrum of fast particles within the framework of the 
method outlined in Ref. 2. 

Analysis of the range of validity of the Born theory of 
coherent emission by relativistic particles in crystals has 
~ h o w n ~ . ' ~  that this theory is valid if there is no particle chan- 
neling and they do not pass over potential barriers, and if the 
angle of scattering in the crystal within the coherence length 
is small in comparison with the characteristic angle of emis- 
sion of radiation by the particle. New emission effects arise 
when either of these conditions is violated. Moreover, it has 
been found that by no means all processes have been investi- 
gated even within the framework of the theory of coherent 
emission. In particular, the effect of multiple scattering on 
emission has not been examined. 

The emission of radiation by relativistic particles in a 
crystal in the presence of channeling and potential-barrier 
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crossing has attracted considerable attention in recent years 
(see the reviews in Refs. 10-13 and the references therein). 
It was shown that the curving of the trajectory as the particle 
moves in the continuous potential along crystallographic 
axes and planes produces a considerable change in the emis- 
sion spectrum as compared with the Born theory. 

The emission of radiation by an ultrarelativistic particle 
was considered in Refs. 14 and 15 in the case of a thin crystal 
(whose thickness T is small in comparison with the coher- 
ence length I) for different ratios between the mean square 
scattering angle p i n  the crystal and the square of the char- 
acteristic emission angle 8: - y-2, where y is the Lorentz 
factor of the particle. It was shown that coherence effects do 
not appear in emission when 9 g i t  :. Violation of this con- 
dition gives rise to the suppression of coherent emission, as a 
result of which the intensity emitted by the particle in a crys- 
tal is reduced as compared with the Born theory of coherent 
emission. 

The present paper is devoted to low-frequency emission 
by ultrarelativistic particles in thick crystals (T>I), in 
which multiple scattering and polarization of the medium 
can have a considerable influence on emission. 

We note that the first attempt at taking into account the 
effect of the polarization of the medium on the coherent 
emission spectrum of fast particles in a crystal was made by 
Ter-Mikaelyan.I6 Bazylev and Zhevago subsequently exam- 
ined in detail the influence of the polarization of the medium 
on emission by channeled particles. They concentrated their 
attention on the motion of particles in a crystal under planar 
channeling conditions. More recently, it was s h ~ w n ' ~ . ' ~  that 
the polarization of the medium had a considerable effect on 
emission at low frequencies, not only in the case of channel- 
ing but also when this phenomenon was absent. 

There is particular interest in emission by high-energy 
particles in a crystal almost parallel to one of the crystallo- 
graphic axes, because coherence and interference effects are 
then particularly well defined. It has been noted19 that the 
emission of low-frequency radiation may then be significant- 
ly affected, not only by polarization of the medium, but also 
by multiple scattering of the particles by chains of atoms in 
the crystal, and multiple scattering in fact becomes the 
dominant effect in a broad range of particle energy and pho- 
ton frequency. However, quantitative results were not ob- 
tained for this effect. 

We shall show below that, when radiation is emitted by 
particles in a crystal, the emission effects are similar to those 
in an amorphous medium, but often occur at much lower 
particle energies and in broader frequency intervals. More- 
over, it turns out that the emission of radiation by ultrarelati- 
vistic particles in a crystal gives rise to effects that are actual- 
ly absent from amorphous media. 

General formulas for the emission spectral density, 
which describe emission by ultrarelativistic particles in a 
thin layer of a medium, are presented in Section 2. These 
formulas enable us to examine how multiple scattering and 
polarization of the medium affect the intensity of coherent 
and bremsstrahlung emission by fast particles (electrons 
and positrons) in both crystalline and amorphous media 

from a unified point of view. 
In a previous brief note," we drew attention to the fact 

that the average emission spectral density due to relativistic 
particles in a medium could be determined by the method of 
functional integration. This method is used in Sections 3 and 
4 below to reproduce the Migda14 and Ter-Mikaelyan3.5 for- 
mulas for the effect of multiple scattering and of polarization 
of the medium on bremsstrahlung by high-energy particles 
in an amorphous medium, and to derive a formula for the 
effect of multiple scattering and of polarization of the medi- 
um on the intensity of low-frequency coherent emission by 
fast particles in a crystal. 

Section 4 compares basic characteristics of the radi- 
ation emitted by ultrarelativistic particles in crystalline and 
in amorphous media. It is shown that an effect analogous to 
the Landau-Pomeranchuk effect (whereby radiation by fast 
particles in an amorphous medium is suppressed) is also 
possible in a crystal. However, in contrast to the amorphous 
medium, the radiation produced in a crystal is not the usual 
bremsstrahlung, but coherent emission by ultrarelativistic 
particles. The essential point is then that the conditions for 
the suppression of coherent emission are satisfied at much 
lower particle energies, and in a much wider range of emit- 
ted-photon frequencies, than in the amorphous medium. 

Section 5 is devoted to the special case of emission at 
moderate particle energies, at which relativistic particles 
produce dipole radiation in a crystal. It is shown that, in 
contrast to amorphous media, multiple scattering in a crys- 
tal has a significant effect on the emitted radiation, not only 
for 9 8  :> 1, but also when y2 z( 1, where 9: is the mean 
square of the particle scattering angle within the coherence 
length in the medium. 

All the results reported below were obtained within the 
framework of classical electrodynamics. The use of this ap- 
proximation in the description of the radiation emitted by 
high-energy particles in a crystal is justified if recoils on 
emission can be neglected, and if the particle collides with a 
large number of atoms in the medium within the coherence 
length. These conditions are satisfied in a wide range of par- 
ticle energies and emitted-photon f r equenc i e~ .~~ '~  

2. SPECTRAL DENISTY OF LOW-FREQUENCY RADIATION 
EMITTED BY A RELATIVISTIC PARTICLE IN A MEDIUM 

In classical electrodynamics, the spectral energy den- 
sity emitted by an electron as it moves on a path r ( t )  in a 
medium is given by2' 

where w and k are, respectively, the frequency and wave 
vector of the radiated wave, k * = E, (w)w2, E, (w ) is the per- 
mittivity of the medium, v ( t )  is the particle velocity, and do 
is the solid-angle element in the direction of emission. (Here 
and in what follows, we shall use the system of units in which 
the velocity of light is set equal to unity.) 

By integrating with respect to the emission angles in 
(2.11, we find 
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s ink  1 r  (T++) -r ( T )  1 
X -  

l r ( T + ~ )  -r(T) I 

Typical values of the scattering angle of a relativistic particle 
in a medium are small, so that the integrand in (2.2) can be 
expanded in terms of the scattering angle. Using the result 

where v = v ( T )  and v6(7)  = 0, we find that" 

Equation (2.4) is valid if the scattering angle  AT) within 
the interval AT providing the principal contribution to the 
integral with respect to T in (2.4) is small, i.e., when 
9( AT) ( 1. The order of magnitude of AT can be determined 
from the relation 

The length I = VAT traversed by the particle in the time 
AT is called the coherence length.5'22 This length is of funda- 
mental significance in the study of emission by relativistic 
particles in a medium because, within this length, there is 
significant interference between waves emitted by the parti- 
cles at different points along their path. 

If the scattering angle within the coherence length is 
small in comparison with the characteristic angle of emis- 
sion by a relativistic particle 9, <y- ', we can expand (2.4) 
in terms of the small parameter y8,.  The first order of this 
expansion corresponds to the dipole approximation, for 
which the spectral density of the emitted radiation is given 
by 

m 

where 
m 

6,=o (1-ve,"(w)), W(v)  = dt*(t)evt. 
- m  

These formulas generalize the corresponding results of 
Ref. 10 to the case where emission by a particle is affected by 
the polarization of the medium. The derivation of these for- 
mulas does not make use of any specific law of motion of the 
particle in the medium, so that the final formulas can be used 
for both amorphous and crystalline media. The difference 
between the emission processes in these two cases will ap- 
pear only when the formulas are averaged over the scattering 
angles and over the positions of the atoms in the medium. 

We note in this connection that the spectral density giv- 
en by (2.4) is the functional E '{6(r))  of the random values 

of the scattering angle 6 ( r )  in the medium. This functional 
must be averaged over all the possible realizations of the 
random process 6 ( ~ ) .  The essential point then is that the 
functional (2.4) is a Gaussian in the random variable 6 ( 7 ) .  
Since this random variable is also a simple Markov process, 
the averaging can be performed analytically by the method 
of functional i n t e g r a t i ~ n . ~ ~  

In the ensuing presentation, we shall be interested in the 
emission of radiation by a relativistic particle (electron or 
positron) in a medium at frequencies w 2 yw,, where w, is 
the plasma frequency, i.e., we shall consider the case where 
both multiple scattering and polarization of the medium 
may have a significant effect on emission. It  is well-known5 
that the permittivity of the medium can be written in the 
following form in this frequency range: 

E , )  1 - 0 2 / u  wpKo,  

and we can expand in terms of the parameter w, / a .  

3. FUNCTIONAL APPROACH TO THE EFFECT OF MULTIPLE 
SCATTERING ON EMISSION BY AN ULTRARELATIVISTIC 
PARTICLE IN AN AMORPHOUS MEDIUM 

We shall begin by considering the emission of low-fre- 
quency radiation by an ultrarelativistic electron in an amor- 
phous medium. We shall show that the effect of multiple 
scattering on emission by the particle in the medium can 
then be taken into account by the method outlined in Ref. 2, 
in which the average spectral density is calculated for a fast 
particle in a medium by means of functional integration. 

It is well-known5 that, in an amorphous medium, the 
distribution of the particles over the angles 9. at time T is 
given by 

where 20 is the mean square scattering angle per unit length. 
The probability density that the scattering angles 
6, = 6 ( n A )  at times 9., = nA lie in the intervals 
(6 ,  ,6, s d 6, ) isz3 

where A = T/N. 
We shall now use this relation to write down the average 

spectral density emitted by an electron in an amorphous me- 
dium in the form of a functional integral with respect to the 
Wiener measure d,6: 

m m 

Since 

we find that all the terms in (2.4) containing different com- 
ponents of the vector 3 = (9, ,ay ) can be factored, so that, 
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when the average spectral density (dE /dm). is evaluated, it 
is sufficient to evaluate the functional integral for only one of 
the components of the vector 6. In view of this, we have 

where 
z 

and if is one of the components of the vector 9. 
The functional integral (3.4) is a Gaussian, so that it 

can be evaluated analytically by a standard pr~cedure. '~  The 
result is (see Appendix) 

where 

Substituting (3.5) in (3.3), we can readily show that, to 
within the accuracy specified (we are discarding terms of the 
order of 29. and Y-~), we have 

where T is the path length traversed by the particle in the 
medium. 

Substituting z = rr in (3.6), and transforming from in- 
tegration with respect to the complex variable z to integra- 
tion with respect to the real variable x = Re z, we obtain the 
final expression for the mean spectral density in the form 

where E& = 4e2?0-T/~IT is the spectral density corre- 
sponding to the Bethe-Heitler result for the intensity emitted 
by a particle in a low-density gas at low frequencies, and the 
Migdal function4 is given by 

6r ( 8 )  =24sz { 1 dx cth re -28x  sin 2sx - 
0 

4 

The mean spectral density (3.7), obtained by the meth- 
od of functional integration, is identical with the corre- 
sponding result for a fast particle in a medium (see Section 
20 in Ref. 5 ), obtained by the Migdal method4 in which mul- 
tiple scattering in the amorphous medium is taken into ac- 
count. Thus, quantitative results on the Landau-Pomeran- 
chuk effect, in which the emission by relativistic particles in 
a medium is suppressed, can be obtained either by using the 
kinetic equation or by functional integration. We shall now 
show that functional integration frequently enables us to ex- 
amine, from a unified point of view, how multiple scattering 
affects emission by particles in both amorphous and crystal- 
line media, and we shall determine the conditions under 
which this approach is valid. 

4. SUPPRESSION OF COHERENT EMISSION BY 
RELATIVISTIC PARTICLES IN CRYSTALS 

The above formulas show that the spectral density emit- 
ted by fast particles in a medium depends significantly on the 
ratio of the square of the characteristic emission angle to the 
square of the scattering angle within the coherence length. 
When a relativistic particle moves through a crystal nearly 
parallel to one of the crystallographic axes or planes, there 
are significant correlations between its successive collisions 
with lattice atoms. These correlations ensure that the scat- 
tering of the particles in the crystal is stronger than that in an 
amorphous m e d i ~ m . ' ~ ~ ~ ~ . ~ ~  We shall show that this in- 
fluences the character of the radiation emitted by particles in 
a crystal at low frequencies. 

The difference between the scattering angle in a crystal 
and in an amorphous medium is greatest when the particle 
propagates at a small angle $ to one of the crystallographic 
axes (the z axis), but well away from the densely packed 
crystallographic planes. Let us therefore consider in greater 
detail the emission process in a crystal in this case. 

In this situation, correlations arise in collisions between 
the incident particle and atoms in an individual chain lying 
along thez axis in the crystal, as long as collisions with differ- 
ent chains of atoms may be regarded as random. The effect of 
correlations is that, for small $ and w and high energies&, the 
motion and emission of a particle in a crystal are largely 
determined by the continuous potential of the chains of 
atoms in the crystal, i.e., the potential of the crystal lattice 
averaged over the coordinate z (Refs. 10 and 26-28). 

where u ( r )  is the potential energy of the interaction between 
the incident particles and an individual atom in the lattice, p 
is the radius vector in thexy plane perpendicular to the crys- 
tallographic axis (z axis), pk is the position of the k th chain 
of atoms in the xy plane, and a is the average separation 
between atoms in the chain. 
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The motion of particles in a field with this potential 
distribution can, in general, be either finite (channeling) or 
unbounded (traversing potential barriers) relative to the 
chains of atoms lying parallel to the z axis in the crystal. 
Finite motion is possible if the angle $between the incident 
beam and the chain axis is small in comparison with the 
critical angle for axial channeling $, = (4Ze2/&a) 'I2, where 
Z lei is the charge residing on the nucleus of a crystal atom. 
When IC, > $,, all the particles incident on the crystal execute 
infinite motion relative to the crystallographic z axis. In this 
range of angles $, the average scattering angle in the crystal 
assumes its maximum v a l ~ e , ~ ~ ~ ~ ~  so that we shall now con- 
fine our attention to fast particles propagating in the crystal 
in this particular case. 

We are interested in the emission of radiation at low 
frequencies, for which the coherence length I is much greater 
than the length 2R /$ (R is the atomic screening length) 
within which an electron is scattered as a result of collision 
with each chain of atoms. In this frequency range, the details 
of the interaction between the incident particle and each in- 
dividual crystal atom are unimportant, and only the interac- 
tion between the incident particle and each chain of atoms as 
a whole is significant. 

The scattering of a particle by the continuous field of 
each chain occurs at the azimuthal angle e, in the xy plane, 
perpendicular to the chain axis (z axis). The angle 9 ,  
through which the particle is scattered by a chain, is related 
to the azimuthal scattering angle e, byloS2' 

m 

U (p) bZ2 ) -: 
6=2$ sin - 2 '  ~ p = ~ ( b ) = ~ - 2 b J $ ( i - - - -  

Pa EL P 

where b is the impact parameter for the chain, E~ = ~ $ ~ / 2  is 
the energy associated with transverse motion of the particle, 
and p, is the minimum separation between the particle and 
the chain axis. 

Multiple scattering by different chains of atoms redis- 
tribute the particles in the azimuthal anglee,. In the case that 
we are considering, in which the motion takes place well 
away from densely packed crystallographic planes, colli- 
sions between the particle and the different chains of atoms 
can be regarded as random. In the simplest case, the distribu- 
tion of the particles in the angle e, at depth z satisfies the 
kinetic equation 

where n is the density of atoms in the crystal. 
Equation (4.3) was first used in Refs. 29 and 30 to de- 

scribe scattering of channeled ions in a crystal. It was shown 
in Refs. 10,24, and 3 1 that (4.3 ) is valid for ultrarelativistic 
particles not only in the case of channeling, but also when 
this phenomenon is a b ~ e n t . ~ '  

The general solution of (4.3) is a complicated function 
of the azimuthal angle e, and depth of penetration of the 
particle in the crystal.1° Substantial simplification arises 
when $%$,. In this range of $, we can expand (4.2) in pow- 

ers of the parameter U / E ~  - $f /$'. In the first approxima- 
tion, we have 

For $)$, , the characteristic azimuthal scattering angle in a 
crystal is small in comparison with unity, so that the func- 
tion f in (4.3 ) can be expanded in terms of the angle p ( b  ), 
which leads to the equation 

where e, (b )  is given by (4.4). 
Equations (4.4) and (4.5) show that, if the initial angu- 

lar distribution of the particles has the form of a delta-func- 
tion f ( e , , O )  = S(e,), the distribution at time r = z/v is the 
Gaussian 

!(T. = ( 2 n a , ~ ) - " ~  exp (-*2/20c.t)  (4.6) 

where 9 = $e, and a, = $2 2 is the mean square scattering 
angle in the crystal per unit length. The probability density 
that the particle scattering angles in the crystal 
9 ( n A )  = 9, = $e,(nA) at time t ,  = nA lie within theinter- 
vals (9,  ,9, + dS, ) is given by 

We shall now use this expression to write the mean spectral 
density emitted by a relativistic electron in a crystal at low 
frequencies in the form of a functional integral over the Wie- 
ner measure: 

where E '{9(7)) is the functional defined by (2.4). 
Formula (4.8) differs from the corresponding formula 

( 3.2) for an amorphous medium only by the fact that 6 (7)  is 
a two-component process in the latter case whereas, in a 
crystal, a ( ? )  is a one-component process (scattering is pos- 
sible only at the azimuthal angle e,) and by the fact that the 
mean square scattering angle in the crystal is different from 
that in the amorphous medium. Moreover,the spectral den- 
sity (4.8) differs from the corresponding expression (3.3) 
for an amorphous medium only by the fact that, in (3.3), we 
must replace Q :, with Q * , and, in the expression for Q, , 
given by (3.4), we must replace a with a, .  

As a result, we find that 

where 
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x exp (-2s,x) 
@(sc,=*8s2{-T+ j d x  ( X  sh x)"' 

1 chx-I  x [ sin 2scx+ - - 
8s, s h x  

x (sin 2s.x+ oos 2s.z) 1). (4.10) 

Formula (4.9) describes the effect of both multiple scatter- 
ing and polarization of the medium on the coherent emission 
intensity due to fast particles in a crystal at low frequencies. 

Let us consider some limiting cases of (4.9). For small 
and large values of the argument, the function @(sc ) as- 
sumes the form 

where 

r l=J dyy-"'(sh y)-'" (ch y-1) - 1,333. 
1 

Thus, when s, , 1, we have 

If in addition to s, , 1 we have w,yw, , the formula given by 
(4.12) becomes identical with the corresponding result of 
the theory of coherent emission by relativistic particles inter- 
acting with chains of atoms in a c r y ~ t a l . ~ " ~  When w 5 yap ,  
Eq. (4.12) shows that the polarization of the medium re- 
duces the emitted intensity relative to the Born theory of 
coherent emission. 

Ass, -0, Eq. (4.9) provides a more accurate value for 
the coefficient in the corresponding result reported in Ref. 
19, where it was derived on the basis of qualitative estimates 
of the spectrum emitted by a relativistic particle in the crys- 
tal for sc+O. According to (4.9) and (4.12), the result in 
this case is 

Thus, when s, ( 1 (w (2Nw LP ) , coherent emission by parti- 
cles in a crystal is substantially suppressed. 

For arbitrary values of s,, the function @(sc ) can be 
found numerically. Figure 1 shows the calculated values of 
this function and of the Migdal function @, (s) in (3.8). 
These curves show that the functions @(s, ) and QM (s) are 
very similar to one another. The values ofs, and s for given E 

and w may, however, be very different, so that the conditions 
under which there is a significant change in the nature of the 
emitted radiation in crystals may be significantly different 
from those in amorphous media. 

Let us now compare the basic characteristics of the ra- 
diation emitted by relativistic particles in a crystal and in an 
amorphous medium. If the potential due to an individual 
atom of the medium is the screened Coulomb potential 

u ( r )  = (ZeZIr)  exp ( - r /R )  , 

then, according to (4.6), we have 

In the case of motion in an amorphous medium, it is known5 
that3' 

so that the quantity N in (4.9) is given by 

Formulas (3.8) and (4.9) show that, whenw S yw,, the 
polarization of the medium has a considerable effect on the 
emission of radiation, and the effect occurs in the same fre- 
quency range for both crystals and amorphous media. Multi- 
ple scattering affects the emission of radiation in amorphous 
media and in the crystals for frequencies w Sw,, and 
w 5 2NwL,, respectively. For small values of the angle $(R / 
a)$)$, ), Eq. (4.16) shows that N> 1, so that the character 
of the radiation emitted by a particle in a crystal becomes 
substantially modified at lower particle energies and in a 
wider frequency range than in the amorphous medium. 

Figure 2 shows the calculated emission spectra due to 
electrons with E = 1 ( a )  and 10 (b)  GeV in an amorphous 
medium (broken curves) and in a crystal (solid lines). The 
electron beam is incident on a tungsten crystal at the angle 
$ = 2 mrad (the condition $> $, must be satisfied) to the 
crystallographic (100) axis. 

These results show that, when the particle radiates in a 
crystal, the frequency range in which multiple scattering has 
a significant effect on emission is much greater than the cor- 
responding frequency range in an amorphous medium. A 
further important point is that, at very high particle ener- 
gies, the effect of multiple scattering on emission in an amor- 
phous medium cannot be treated independently of the polar- 
ization of the medium, but this is possible in a crystal. The 
condition for this is that w,, (yap (2Nw,,. These inequal- 
ities are satisfied, for example, when an electron with E = 1 
GeV propagates in a tungsten crystal at an angle $ = 2 mrad 
with respect to the ( 100) axis. When E = 10 GeV, it is readi- 
ly verified that yw, S w,, (2Nw,,, so that, at this energy, 
there is a frequency interval in which the effect of multiple 
scattering can be treated independently of the polarization of 

FIG. 1. 
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the medium both in the crystal and the amorphous medium. 
Thus, when relativistic particles propagate in a crystal, 

the suppression of coherent emission (analog of the Landau- 
Pomeranchuk effect in which bremsstrahlung is suppressed 
in an amorphous medium) can occur at much lower particle 
energies than in the amorphous medium. This provides us 
with new possibilities for studying the Landau-Pomeran- 
chuk effect on existing accelerators. 

5. EMISSION OF LOW-ENERGY PHOTONS BY RELATIVISTIC 
PARTICLES IN A CRYSTAL IN THE DIPOLE APPROXIMATION 
OF CLASSICAL ELECTRODYNAMICS 

The results obtained in the last Section refer to particles 
with a Gaussian angular distribution of the form given by 
(4.6). The condition for this to be so is that, firstly, the parti- 
cle move in the crystal at an angle $that is much greater than 
the critical angle $, for axial channeling and, secondly, the 
mean square of the azimuthal scattering angle for a particle 
interacting with the chains of atoms within the coherence 
length be small in comparison with unity. A separate exami- 
nation of the emission of radiation by a particle in a crystal is 
necessary when these conditions are violated. In general, 
this type of analysis can be performed in the dipole approxi- 
mation for a relativistic particle radiating in a medium 
y e 4 1 .  

It is w e l l - k n ~ w n ' ~ * ~ ~  that, in the dipole approximation, 
the spectral density radiated in an amorphous medium is the 
same as the corresponding Bethe-Heitler expression for the 
intensity emitted by a fast particle at low frequencies. We 
shall show that, in contrast to an amorphous medium, multi- 
ple scattering of a particle by chains of atoms in a crystal can 
have a significant effect on the intensity of coherent emission 
at low frequencies when the condition f c g  1 is satisfied. 

In the dipole approximation, the spectral density due to 
a relativistic particle at low frequencies is given by (2.5). In 
the emitted-photon frequency range in which we are inter- 
ested, the length I = 2f/w in which the radiation evolves is 
much greater than the length 2R /$, in which the particle 
acceleration 6 ( t )  differs from zero during a collision with a 
chain of crystal atoms. In this frequency range, the quantity 
IW(v) l 2  in (2.5) can be written in the form 

where 9, is the scattering angle in the nth collision with a 
chain of atoms and t, is the time at which the collision takes 
place. The expression given by (5.1 ) must be averaged over 
the random values of the scattering angle in the crystal. 

As before (Section 4), we are interested in the radiation 
emitted when a particle propagates in a crystal at a small 
angle $ to the crystallographicz axis, but well away from the 
densely packed crystallographic planes. The particle is then 
scattered by each chain of atoms at the azimuthal angle p in 
the plane perpendicular to the z axis. Multiple scattering by 
different chains of atoms redistribute the particles in angle p. 
The resultant change in the azimuthal scattering angle after 
collisions with n chains of atoms is given by 

The components of the vector 6, in the xy plane perpendicu- 
lar to the crystal z axis are, respectively, given by 

In our case, particle collisions with different chains of 
atoms in the crystal are random and independent, so that, in 
(5.1),  we can explicitly average over the azimuthal angles 
p, . If we define the average of cos p during scattering by an 
individual chain of atoms by the expression 

where a, and dol (p) are, respectively, the total and differ- 
ential scattering cross sections of the chain, and if we recall 
that 

(COS (Qn-Ok) )=(COS rp>"-", (sin cp)=O, 

we find that 

This expression is still to be averaged over the quantities rj 
defining the interval of time between jth and j-l th collisions 
of the particle with the atomic chains. Since the collisions are 
random, the distribution over rj is (see, for example, Ref. 
33) 

where T = ($al nu) - ' is the average mean free time between 
successive collisions with the chains of atoms. Since 

we obtain the following expression for the mean value of the 
function cos v(t, - t ,  over the random quantities T, : 
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We are interested in radiation emitted in a crystal whose 
thickness is large in comparison with the coherence length I, 
so that the contribution of path segments of scale I at entry 
and exit from the crystal to the emitted radiation can be 
neglected. We shall now average (5.3 over 7, , using (5.5 ) 
and then, having substituted n = k + m, we extend the sum- 
mation over m to the interval ( - w , co ). After summing the 
geometric progression, we find that 

where JZr = T/v? is the number of collisions between the 
particle and the chains of atoms in the crystal. 

We now substitute (5.6) in (2.5) and obtain the follow- 
ing expression for the spectral density emitted by a relativis- 
tic particle in the crystal: 

where 

(5.8) 
F ( x )  = 3 x ( 3 / 2 - ~ 2 )  arcctg X + ~ X ~ ( I - ~ / ~  In ( I + X - ~ ) .  

No mention has been made of the specific interaction 
between the particle and the field of an individual chain of 
atoms in the derivation of (4.7), so that this formula can be 
used to consider the emission of radiation by particles in a 
crystal, both for $>$, , i.e., when the particle angular distri- 
bution is Gaussian and the average azimuthal scattering an- 
gle for a particle colliding with each chain of atoms is small, 
and for $5 +hc, i.e., when these conditions are not satisfied. 
All that is necessary is that dipole radiation be produced by 
the relativistic particle in the crystal, i.e., yZ E 4 1 .  

Let us now consider some limiting cases of (5.7). TO do 
this, we note that the asymptotic behavior of F ( x )  is 

Formulas (5.7) and (5.9) show that, when f @<l, the 
spectral density depends significantly on the relationship 
between the frequencies w, wd and yw,. 

When w, (yw,, we have from (5.7) and (5.9) 

If, in addition tow, (yw,, we have $%t,b,, we can expand in 
terms of $, /$ in (5.9). In the first approximation to this 
expansion, (5.9) becomes identical with the corresponding 
result of the theory of coherent emission with allowance for 
the effect of polarization on emission, as given by (4.12). 

The quantity w, in (5.7) depends on the sign of the 
particle charge and on the relationship between the angles $ 
and $, . The maximum value of this quantity is attained for 
$5 &. In this range of values of $, we have w, -4y2naR$, . 

[When $5 $, , the motion and emission of relativistic posi- 
trons in a crystal can be described assuming a continuous 
potential of the chain of atoms of the f ~ r r n " , ' ~ , ~ ~  
U , (p )  = U d  / p ,  where U, = 2Ze2/a. In a field with this 
potential distribution, wd = 2?ry2naR$f /$). ] Comparing 
this value of w, with yw, , we find that the following inequa- 
lity is satisfied in a wide range of energies: 

and, consequently, there are three regions of w in which the 
character of the radiation emitted by particles in a crystal is 
significantly different: 

When o 5 yw, , the polarization of the medium has a 
considerable effect on the emitted radiation. When w>w, 
(this corresponds to a coherent length I, which is small com- 
pared with the mean free path v? of the particle between 
successive collisions with chains of atoms) and the radiation 
is determined only by the properties of the interaction 
between the particles and the individual chains of atoms. In 
this frequency range and for w 5 yap ,  formula (5.7) be- 
comes identical with (5.10). On the other hand, for frequen- 
cies in the range yo, (w(wd, (5.7) and (5.9) show that 

Formula (5.11 ) shows that, for frequencies 
yo,, 4W(Wd, multiple scattering of the particles by chains of 
atoms in the crystal leads to a rapid reduction in the spectral 
density with decreasing radiated-photon frequency. 

The formulas obtained in this Section are valid if the 
dipole approximation can be used for the radiation emitted 
by particles in a crystal, i.e., if z ( 1 .  When $-$,, we 
have the order-of-magnitude result @- $:, so that the ine- 
quality y2 Z-fqf 4 1 gives rise to a restriction on the par- 
ticle energy E .  We note in this connection that there is a range 
of energies E in which both y$, < 1 and yw, <wd are satisfied. 
In particular, these inequalities are satisfied when 1/ 
4naR 2<y<ma/4Ze2. 

The authors are greatly indebted to A. I. Akhiezer, M. 
L. Ter-Mikaelyan, and S. V. Peletminskii for supporting this 
research and for numerous discussions of the questions 
touched upon in this review. They are also indebted to E. L. 
Feinberg for a number of interesting discussions on the his- 
tory of the problem. 

APPENDIX 

Let us find the mathematical expectation (3.4) by the 
well-known procedure based on the evaluation of functional 
integrals23 of Gaussian form. We shall do this by taking 

Q.= lim 3 e-Q2Q. (R, q )  , 
N - + o o - _ ~  

where 
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If we now change the variables in accordance with the 
expression y, = (2uA) -"29,, we obtain 

T N Y 

where b = 2qA(iou/A) "', and the nonzero elements of the 
matrix A are 

Since the matrix A is positive-definite, it can be reduced to a 
diagonal form with the aid of a unitary matrix U, i.e., 

where a, > 0, n = 1, ..., N. If we now transform to new varia- 
bles z,  in accordance with the formula 

we find that (A.2) can be expressed in terms of the eigenval- 
ues a, : 

w N 

Q.(i\.. q )  = (det A )  - ' "  1. . . j di, . . . dzN e r p l  b z u.,.z,] 

where 4 = (2a, ) - I .  Formula (A.3) can also be written in 
the form 

1 
Q. ( N .  q) = (det A)-'" erp ( _  o N 2 )  , 

where A - ' is the inverse of A .  
We now introduce a set of quantities D, that are the 

minors of order N - n + 1 of the determinant of the matrix 
A ,  lying in its bottom right-hand corner. According to Refs. 
35 and 36, we then have 

\ N 

where D, + , = 1. Hence, 
s 

Since we must take the limit as N+ cc in(A. 1 ), we shall 
investigate the behavior of the quantities D, in this case. We 
first note that 

and 

If, instead of D,, we write D(nA) ,  then, in the limit as 
N--+a ,  the quantity D(nA)  will tend to the value at t = nA 
of the continuous function D ( t )  (Fredholm determinant23), 
which is a solution of the differential equation 

8 
- D ( t )  =iooD ( t )  
d t2  

subject to the initial conditions D(NA) = D ( r )  = 1 and 
D ' (7)  = 2ap, which follows from the recurrence relation 
(A.5) and conditions (A.6).  The solution is 

We now rewrite (A.4) in the form 

1 ioo 
=-eXp{qzTb3  [ D ( n ~ l ) D ( ( n + f ) A ] - ~  

Dl'] (A) 
n = i  

Integrating with respect to q, passing to the limit as 
N+cc, and replacing the quantities D(nA)  with the func- 
tion D ( t ) ,  which is continuous at t = nA, we finally obtain 
(3.5). According to (A.7) and (3.5), whenp  = 0, 

"In the derivation of (2.4), we have used the transformations given in Ref. 
2. However, (2.4) is somewhat different from the corresponding result 
in Ref. 2. The difference is due to the fact that, when the formula for the 
spectral density due to a relativistic particle in a medium was derived in 
Ref. 2, the terms discarded were of the same order as those retained (see 
Ref. 10 in this connection). 

"Equation (4.3) is valid if the scattering of particles in the crystal is large- 
ly determined by the continuous potential due to the chains of atoms. 
This requirement is satisfied if the average scattering angle in the crystal 
is much greater than the average scattering angle of particles due to 
scattering by thermal vibrations of lattice atoms. At high particle ener- 
gies, this requirement is satisfied in a much greater range of angles I) as 
compared with the angles I&$, for which the phenomenon of particle 
channeling is known to o c ~ u r . ' ~ . ~ '  

3'Expression (4.15) was obtained with logarithmic precision (see the dis- 
cussion of how a can be obtained, given at the end of Section 19 in Ref. 
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