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The correlation functions (polarization operators) of colorless currents are calculated over the 
entire range of (Euclidean) momenta in the instanton vacuum of quantum chromodynamics. The 
appearance of a pion pole due to the spontaneous breaking of chiral invariance is studied explicit- 
ly. The mass and the axial constant of the n meson, f, , are calculated in terms of the parameters 
found previously for the instanton medium. 

1. INTRODUCTION 

We showed in Ref. 1 that spontaneous breaking of the 
chiral symmetry of strong interactions necessarily occurs in 
the instanton vacuum of quantum chromodynamics 
(QCD). We calculated the Green's function of a quark in an 
instanton medium and, in particular, the chiral condensate 
($$) in terms of the basic characteristics of the instanton 
medium: the expectation value of the size of the instantons, 
p, and the expectation value of the distance between instan- 
tons, R. These expectation values can in turn be expressed in 
terms of the fundamental parameter A of QCD by means of a 
variational principle. 

An unavoidable consequence of the spontaneous break- 
ing of chiral invariance in strong interactions is the existence 
of Goldstone particles, an octet of pseudoscalar mesons. 

In the present paper we explicitly demonstrate the ap- 
pearance of a massless pion pole in the correlation functions 
(polarization operators) of colorless currents which have a 
nonvanishing coupling constant with the a meson. Using the 
methods and approximations of Ref. 1, we calculate the two- 
current correlation function 

in an instanton medium over the entire Euclidean range of 
the momentum p for the five Fermi types of interaction 
( r  = I,iy,,y, y, y5,opV ). Here r is understood as a unit ma- 
trix in terms of color. We will see that an important differ- 
ence between channels arises in a natural way in an instanton 
vacuum. We will find the residue at the pole in the pseudos- 
calar and axial channels, where a massless pion pole arises. 
In this manner we calculate the coupling constant of the pion 
with the axial current, f, , in terms of the parameters i? andp 
of the medium. We recall that the expectation value of the 
distance between pseudoparticles, i? is determined by the 
density of the medium [i? = (N/V) 'I4], and the latter is 
directly related to the gluon N /V=  (Fpv2/ 
32r2) N (200 MeV) .4 As for the expectation value of the size 
of the pseudoparticles, p we note that we have the ratio p/ 

z 1/3 from a variational principle.* This ratio was derived 
previously from phenomenological analysis4 Using these 
values of i? and p, we find good agreement between the cal- 
culated value of f, and the experimental value f, N 132 
MeV. 

When (small) current quark masses are introduced, the 
mass of the pion becomes nonzero. In this case we calculate 

the shift of the pole from the point p2 = 0, and we find the 
mass of the pion. 

The representation of the QCD vacuum as an instanton 
medium makes it possible to calculate the characteristics of 
the hadronic world by methods analogous to those used in 
the theory of disordered systems., In fact, we examine the 
propagation of quarks in a random external field. This field 
is specified by the collective coordinates of the pseudoparti- 
cles: the set of their positions z,, their sizes p,, and their 
orientations U, in color space. The result should be averaged 
over all the parameters which determine the field, by ex- 
pressing the field in terms of the expectation values of the 
characteristics of the medium. As in Ref. 1, we ignore corre- 
lations between different pseudoparticles, since they are 
small, on the order of the density. 

The analogy between problems of the theory of disor- 
dered systems (e.g., the problem of the behavior of an elec- 
tron in a metal with random impurities6) and the QCD in- 
stanton vacuum with which we are concerned here is rather 
far-reaching. The acquisition of an effective mass by a quark, 
for example, is completely analogous to the appearance in 
the Green's function of an electron in a metal of a finite 
relaxation time (but in the present case, this time depends on 
the momentum of the particle), and the appearance in the 
pseudoscalar channel of a massless pole corresponding to a a 
meson can be associated with the formation of a diffusion in 
the density-density correlation function. 

A standard approximation in the theory of disordered 
systems uses planar diagrams (this approximation corre- 
sponds to the classical equation). The use of this approxima- 
tion is ordinarily justified by assuming that the electron 
wavelength is short in comparison with the mean free path. 
We will also use this approximation here, but now the pa- 
rameter is the number of colors, N, + w .  The corrections in 
Nc correspond to "intersecting" diagrams and can be dealt 
with systematically by perturbation theory. 

As in our preceding study, we ignore the vacuum loops 
of quarks. Incorporating these loops theoretically is equiva- 
lent to making a correction - l/Nc, and they are apparently 
unimportant in a study of currents which are not flavor- 
singlets. (Incorporating the vacuum loops becomes of fun- 
damental importance only in a study of a singlet current 
associated with 17' meson; the solution of the U ,  problem in 
an instanton medium requires a special study.) We will ac- 
cordingly treat the correlation functions ( 1 ) in a theory with 
a single flavor, and we will ignore the vacuum loops with the 
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understanding that we are calculating the correlation func- 
tions of nonsinglet currents. 

2. DIAGRAMS FOR THE POLARIZATION OPERATOR 

We rewrite the two-current correlation function ( 1 ) in 
the external field of the pseudoparticles in the form 

nr ( p )  =- 1 d4xe-'l*') T r  {S  ( I ,  0 )  TS ( 0 ,  x )  r) . (2)  

Here S(x,y) is the quark propagator in the instanton medi- 
um, Tr includes a summation over the Lorentz and color 
indices, and the superior bar denotes the expectation value 
over the statistical ensemble of the instanton medium. 

Diagonalizing the zero-fermion modes of the individual 
pseudoparticles, we derived the following expression for the 
propagator S(x,y) in Ref. 1 [ 1, (40) ] 'I: 

whereSo(x,y) is the free propagator, $, (x)  is a zero mode in 
the field of pseudoparticle I (an instanton or anti-instan- 
ton), and the matrix T is constructed from the overlap inte- 
grals of the zero modes, 

In practice, an element TIJ is nonvanishing only for unlike 
pseudoparticles; an expression for it is derived in the Appen- 
dix of Ref. 1. 

Expanding (2)  and (3)  in the reciprocal of the quark 
mass m (we will take the chiral limit m+O in the final re- 
sult), we can write the polarization operator as a sum of 
diagrams as in Fig. 1, where each circle is associated with a 
factor of l/im, while the line connecting circles I and K is 
associated with the value of T,, (Ref. 1 ) . The crosses repre- 
sent external currents. Each line going into a cross is asso- 
ciated with a zero-mode $, , while each outgoing line is asso- 
ciated with $:. The averaging includes a summation over 
all pseudoparticles (and gives rise to a factor of N /2 for each 
species) and also an integral over all possible positions of the 
pseudoparticles in 4-space (divided by V '4') and their orien- 
tations in color space. In taking this average, one should 
allow for situations in which the same pseudoparticle is en- 
countered several times in a diagram. As in Ref. 1, we use a 
dashed line to connect pseudoparticles which are encoun- 
tered repeatedly. 

We showed in Ref. 1 that a correlation which arises 
because a quark may be "scattered" several times by the 
same pseudoparticle plays a fundamental role in the mecha- 
nism for the spontaneous breaking of chiral invariance. It is 

FIG. 1 .  Typical diagram for a polarization operator. 

ultimately this effect which is responsible for the appearance 
of the quark condensate. The contributions of leading order 
in N, to both the Green's function of the quark and the po- 
larization operator come from the planar diagrams in which 
the dashed lines intersect nowhere. 

The diagrams for the polarization operator are conve- 
niently classified in three groups (Figs. 2a, 2b, and 2c): a )  
diagrams in which the same pseudoparticle is never encoun- 
tered in the upper line and the lower line; b)  diagrams in 
which there is only one common pseudoparticle in the upper 
line and the lower line (this pseudoparticle may be encoun- 
tered an arbitrary number of times); c) diagrams in which 
there are two or more common pseudoparticles in the upper 
line and the lower line. We denote by II,,,,, (p)  the corre- 
sponding contributions to the polarization operator. The 
heavy lines in Fig. 2 are the exact Green's functions of the 
quark in the "pseudoparticle representation," D, and FIJ 
(Ref. 1 ) .  

The diagrams in Fig. 2a correspond to a splitting of 
correlation function (2)  into a product of expectation val- 
ues. Incorporating the Green's function from (3)  in n0(p) ,  
we find 

For brevity we have introduced the notation 

- 
S(p)  is the quark propagator in the instanton vacuum. In the 
planar approximation (to which we restrict the present pa- 
per),S(p) is [ I ,  (5411 

where M(p)  is the effective mass of the quark, expressed in 
terms of the Fourier transform of a zero mode [ 1, (50) 1 .  
Consequently, no (p )  is the noncoupling part of the polar- 
ization operator made up of the exact propagators of the 
quark in the instanton medium. 

Let us examine the "Born" part, ll, (p), represented by 
the diagrams in Fig. 2b. We first note that the interior part of 
these diagrams, including the dashed lines connecting a pair 
of pseudoparticles I ,  three Is, four Is, etc., can easily be 
summed. We denote the sum by a double dashed line (Fig. 
3 ) .  The heavy line connecting two identical pseudoparticles 
in the diagrams in Fig. 3 is by definition1 the Green's func- 
tion in the pseudoparticle representation, D,(zK 
-z,,U,,U,),withI= K,i.e.,thequantityy [ I ,  (44)l.The 

summation represented in Fig. 3 corresponds to a double 
geometric progression (over the upper and lower lines) and 
gives us 

(seedefinition [1, ( 49 ) l ) .  
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FIG. 2. Three groups of planar diagrams for l T ( p ) ,  a- 

+ +... , Uncoupled; b--with one common pseudoparticle; c- qf,)  = with two or more common pseudoparticles in the upper 
K and lower lines. 

To calculate II, (p)  we must now take into account the 
fact that the exact quark propagators D(F)  can be (and 
must be) inserted in the upper and lower lines both before 
and after the double dashed line. It is natural to relate the 
corresponding diagrams to the definition of the vertices of 
the polarization operator, which we denote by yI (p) (Fig. 
4).  Analytically, the vertex function yI (p) is 

Since the diagrams in Fig. 4 end with the same pseudo- 
particleI, yI (p) in the momentum representation is an inte- 
gral over the momentum in a closed loop, which we have 
written in the notation of (6) .  The factors N/2 in (9) stem 
from the summation over the intermediate pseudoparticles 
K and L, 1/V stems from the average over the positions of 
these pseudoparticles, and the factors im/( 1 - imy) 
d m 2 &  - c stem from the summation of the geometric pro- 
gression which arises because pseudoparticles K and L may 
repeat an arbitrary number of times. The matrix ru is one of 
the five Fermi types, and it is a unit matrix in terms of color. 

The integrals over orientation in (9)  can be evaluated 
easily by making use of the explicit expressions for the 
Green's functions D, and FIK [ 1, (46), (5 1 ) 1 and for the 
density matrix of the zero modes (see the Appendix in Ref. 
1).  We find 

FIG. 3. Definition of a double dashed line. 

Here we have determined the reduced vertex function 
rI (p), divided by a factor 2 VN, /NE.  The factor VN, /NE 
arises in ( 10) because we have preferred to express the result 
in terms of the effective mass M(p) [ 1, (50) ] rather than 
directly in terms of the Fourier transforms of the zero 
modes. The coefficient 2 results from taking the trace over 
color of the density matrices of the zero modes. 

We have derived an expression for the left-hand vertex 
of the polarization operator in the case in which the pseudo- 
particle I is an instanton. For the right-hand vertex we 
should make the replacement p-+ -p, and in the case in 
which I is an anti-instanton we must use the replacement 
y,-+ - y,. We note that rI (p) does not depend on the orien- 
tation UI of pseudoparticle I ,  because the currents under 
consideration here are colorless. 

Summing over the common pseudoparticle I, taking an 
average over its position and orientation, and recalling the 
expression for the double dashed line [see (8 )  1, we find the 
following expression for the sum of the diagrams in Fig. 2b: 

Finally, we consider the diagrams which have two or 
more common pseudoparticles in the upper and lower lines; 
we denote their sum by II,(p) (Fig. 2c). To calculate II,(p) 
we must first determine the sum of the ladder diagrams in 
Fig. 5, where a double dashed line appears as a rung (Fig. 3 ) .  
Nonladder diagrams and also ladder diagrams with "renor- 
malized" vertices (Fig. 6) are not planar. It is not difficult to 
see that they contain an extra factor of l/Nc (from the more 
complicated average over orientations) in comparison with 
simple ladder diagrams (Fig. 5);  they also have an addi- 
tional numerically small factor which stems from the inte- 
gration over the angles of the relative positions of the pseu- 
doparticles. We are systematically ignoring nonplanar 
diagrams. 

We denote by SIK (p)  the sum of the s-channel ladder 
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diagrams in Fig. 5 .  Using the vertex functions yI ( p )  calcu- 
lated above, we can then write the contribution to the polar- 
ization operator from the diagrams in Fig. 2c as the sum of 
four terms, because pseudoparticles I,K can be both instan- 
tons and anti-instantons (we use a superior bar to denote the 
latter) : 

Here (n /2V)JdUI  UK arises, as always, from the summa- 
tion and averaging over pseudoparticles I and K. The task 
which remains is to calculate S I K .  

3. THE S-CHANNEL FOUR-TAIL FUNCTION S,, 

The ladder diagrams in Fig. 5  are easily summed with 
the help of the Bethe-Salpeter equation shown in Fig. 7. The 
heavy lines in Fig. 7 represent the exact quark propagators in 
the pseudoparticle representation, D ( F ) ,  while the double 
dashed lines represent the sum of the diagrams in Fig. 3, 
equal to - E* [see ( 8 )  1. Since the propagators D ( F )  by de- 
finition' include the "end" factors l / im ,  both the seed term 
and the integral term in the Bethe-Salpeter equation should 
be multiplied by ( im)4  if we use the definition of the double 
dashed line in ( 8 ) .  The integral term in Fig. 7 essentially 
represents two diagrams, since the intermediate pseudopar- 
ticle L can be either an instanton or an anti-instanton. 

After these comments, we write the Bethe-Salpeter 
equation in the momentum representation [we are using the 
notation in ( 6 )  1 : 

sIK ( p ,  c.., u.) =rnho4 J ( d k ,  d k 2 ) D K I ( k l ,  UK, uI) 
(kz ,  Ur, U K )  

This equation is written for the case in which both of the 
pseudoparticles I and K are instantons. It is easy to see that 
ST = S ,  and S ,  = S  ,. Consequently, only two of the 
four quantities are independent. If I and K are distinct, the 
Bethe-Salpeter equation becomes 

X J  d u i  .I (dki d k z ) D ~ ( k , ) S r i ( p ) D i i ; ( k z ) .  ( 1 4 )  

The general solution of Eqs. ( 1 3 )  and ( 1 4 )  is quite 
complicated because several different structures which de- 
pend on the orientation matrices UI and UK arise during the 
iteration of the seeds. However, in a study of the correlation 
functions of colorless currents the vertex functions y,,, ( p )  
do not depend on the orientation of the pseudoparticles U, 
and U K .  For this reason, expression ( 12) includes the four- 
tail functions SIK ( p ,  U, , UK ) averaged over the orientations 
UI and U K ,  which we denote by & ( p ) .   or TI, ( p )  we can 
also write a closed system of equations, found from ( 13 ) and 
( 14) by taking an average over U, and U, . The integration 
J d U , , ,  over the Haar measure is easily carried out by mak- 
ing use of property [ 1, ( 2 3 ) ,  ( 2 4 )  1 .  We find a system of alge- 
braic equations for the quantities SIK : 

where G and H ( p )  are dimensionless functions which are 
closed loops of the exact quark propagators D  and F, given 
by 

4NcV j M12Mz2 
G ( P )  = (dkl d k z )  7 

( k ,  +1V12) (k ,Z+M22)  ' 

We write a solution of system ( 15) in the form 

I L K 

P' I /  11  + 1 II II II I I  + FIG. 5. Ladder diagrams for an s-channel four-tail func- 

K "' tion. 
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We can show that R - (p) has, in the case of a zero quark 
mass, a zero atp2 = 0 corresponding to a Goldstone particle, 
i.e., a T meson. For this purpose we recall the self-consisten- 

K cy condition [ 1, (52) 1 which determines the value of E or, 
equivalently, the value of the effective mass M(p  = 0) :  

FIG. 6. Some nonplanar diagrams. 
d 4 k  M Z ( k )  - N 

-- (21) 
It remains to substitute these expressions and also the k z + l 2  ( k )  4VN.  ' 

vertex functions y, (p) found above [see ( 10) ] into general 
expression (12) for II,(p). Here it turns out to be conven- Using this condition, we write the 1 in expression (20) 

ient to combine II,(p) with the Born contribution II , (p )  in for R + (p) as 

( 11 ). We call the s k i  of n, and 112 the "coupled" of the 4VN, 1 M i Z  
polarization operator II,,, (p),  in contrast with the uncou- 1 = - j ( d k ,  d k , )  [ ----- + -- 

N 2  k 1 2 i - M I Z  2 kz2+MZ2 
pled part (PI l see ( ) I The for the Po- Substituting this expression into (20), and carrying out 
larization operator in (2)  is some simple identity transformations, we find 

n ( p )  = I I , ( P )  + n C o n ( p ) ,  (18) 2 V N ,  
R* ( P I  = - (22) 

N 
n,,, ( p )  =N.Ec {L  1., ( p )  +ri ( P )  1 

N Using the parametrization 
1 

X- [ r 1 ( - p )  + ~ T ( - P )  I k l ,  2,=k,*p,/2, ( d k i d k 2 )  = d b k /  ( 2 n )  ', 
R,. ( P I  

we find 
1 + -  1 - - I  (19) 

R- ( p )  
(M,k, ,-Mzki,)  

where the functions r,-, (p) are the reduced vertex functions + ( M ~ + M ~ )  = [ ( M , - M ~ ) ~  

defined in ( lo) ,  and R * (p)  is, according to ( 16) and ( 171, 
Mi+M2 

4VNc M i M ,  [ M , M z F  ( k i ,  kz)  I = [ ( M i - Y 2 )  k p  - ---- PW ] 
R * ( ~ ) = '  j ( d k i  d k 2 )  ( k i 2 + M l i )  (k22+M2Z) ' 2 

(20) 
dM ( p k )  

k , )  . 

Equations ( 18)-(20) and ( lo) ,  along with the defini- 
tion of the effective mass M ( k )  [ 1, (50) 1,  solve the problem 
of calculating the polarization operator of meson currents in 
the instanton vacuum. The expressions derived here are fin- 
ite in the chiral limit m-+O. 

Remarkably, the coupled part of polarization operator 
( 19) is of resonant form. The zeros of R * (p)  determine the 
poles in some channel or other, while the reduced vertex 
functions r ( p )  determine the residues at the poles. 

4. GOLDSTONE PARTICLES IN THE INSTANTON VACUUM 

Using the explicit expression in (10) for the reduced 
vertex functions r,,-,, (p) , we easily see that ( 1 ) in the vector 
and tensor channels ( r = y, ,a,, ) the vertex functions rI,? 
are zero [so that only the uncoupled part II,(p) acts in these 
channels in our approximation], (2 )  in the scalar channel 
we have r, = ri [so that there is a pole associated with a 
zero of R + (p) in the scalar channel], and (3)  we have 
r, = - Ti in the axial and pseudoscalar channels, so that a 
pole associated with a zero of R - (p)  appears in these chan- 
nels. 

We thus see that R - (p) vanishes at p = 0, and at small Val- 
ues of p we have 

We note that R + (p),  which determines the spectrum of 
hadrons in the scalar channel, does not vanish a tp  = 0. Sub- 
stituting (24) into ( 19 ), we have a massless pole corre- 
sponding to a T meson in the coupled part of the correlation 
function II (p) in the pseudoscalar channel. 

We thus see that in the approach developed here Gold- 
stone's theorem holds by virtue of the same equation which 
determines the chiral condensate. This is as it must be, since 
the existence of a massless Goldstone particle cannot depend 
on the details of the mechanism by which the chiral invar- 
iance is broken [in particular, it cannot depend on the parti- 
cular momentum dependence of the effective mass of the 
quark, M(p)  1 .  We do wish to emphasize, however, that a 
massless particle appears only if diagrams of an identical 

FIG. 7. Bethe-Salpeter equation for an s-channel four-tail func- 
tion SIK ( p )  . 
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type (in our case, these are planar diagrams) are taken into 
account for the Green's function and the coupled part of the 
correlation function Il (p) ;  there is a subtle equilibrium of 
these diagrams which maintains the Goldstone theorem. In 
particular, the corrections in l / N c  must be taken into ac- 
count simultaneously in the Green's function and in Il (p) .  

We now calculate the correlation fuccption of the pseu- 
doscalar densities, Il, (p ) ,  for small momentap2, restricting 
the discussion to the coupled pole part of ( 19). The vertex in 
( 10) takes the following form at small values o f p ( r  = y,) : 

In other words, it is expressed in terms of the chiral conden- 
sate in the instanton vacuum (here we have used [ 1, (55) ] ) . 

We thus have (we recall that we are working with a 
single quark species, but we are assuming a flavor-nonsinglet 
channel; see the Introduction) 

V N ,  ($I$) ' 1 
P = (  PP P-0. 

wherepis defined by (24).  On the other hand, we can intro- 
duce an axial constant of the n- meson in the standard way: 

0 J  n i p  JPj=$y ,y j$ .  (27) 

Saturating the polarization operator II,(p) by the con- 
tribution of the n-meson intermediate state as small values of 
p ,  we have the general relation 

Transforming to a Euclidean space in accordance with 

we find, for small values of p, 

Comparing (29) and (26),  we find the constant f,: 

x (kZsLwl )  -2. (30) 

We recall1 that the effective mass is parametrically 
small, on the order of the "packing parameter" of the instan- 
ton medium: 

( 0 )  - (Ill?) ( p l l ? ) ,  

where p is the average size, and R is the average distance 
between instantons. The scale of the change in M ( k )  is 1/p;  
dM/dk vanishes in the limit / k  1-0. The integral in (30) is 
thus determined by the broad region of parametrically small 
momenta l /R(k(l/p.  Calculating it with logarithmic ac- 
curacy, we find 

We see that f, is parametrically small in comparison 

with the hadron scale, which is determined in the instanton 
vacuum by the average size of the pseudoparticles, 1/ 
p z 600 MeV. Furthermore, f, is small even in comparison 
with - the gluon condensate, (Fp,  2/32n-2) - X / V =  1/ 
R 4=. (200 MeV)4: 

1, ',I(F,,,','32x2> -rr /Ri .  
Consequently, the small value of the constant f, which is 
found experimentally (and which is frequently perplexing) 
finds a natural explanation in the instanton vacuum. Con- 
versely, the small value off, may serve as an argument for a 
sparse instanton vacuum in 9CD.  

F?umerically, for 1/R = 200 MeV and l / p  = 600 MeV 
whence1 M ( 0 )  = 345 MeV, the value off, calculated from 
(30) is 138 MeV, in excellent with the experimental value 
f, z 132 MeV [approximation ( 3  1 ) yields f, =: 142 MeV]. 
We also note that we find f, a N,,  as is required by general 
considerations. 

The pole corresponding to the n meson can be found 
even away from the chiral limit, when there is a nonvanish- 
ing quark mass m (we assume mu = m, = m )  . It is not suf- 
ficient to simply repeat the calculations above for the case 
m#O; it is necessary to modify the overlap integral TIJ in 
(41, replacing it by 

TI, = j d 4 x ~ , +  ( x )  (iz.+im) I$, ( x )  , (32) 

so that T, becomes nonzero not only for unlike pseudopar- 
ticles but also for like pseudoparticles. We give without deri- 
vation the results of the corresponding calculation for the 
denominator R -  (p)  in the linear approximation in p at 
small values ofp: 

R. (1)) =- ( V m / N )  <$$>4-Pp2. (33) 

From this expression we can determine the mass of the 
n meson: 

mn2=- (m(iJ$>/p) (VIA'). (34) 

Combining this result with (30),  we find the well-known 
relation 

m~2=-4m($$)/fz ' ,  (35) 

which follows from current algebra. Finally, using (33),  we 
find the value of the correlation function H,(p )  withp2 = 0 
but m #O: 

VN,  (I$$> N 1 ($I$) 
~ s ( P ' )  1 p l - o = ~ c - ( - )  N N ,  - V -m(ijg> 

=-- 
m 

( 3 6 )  
This is the well-known Ward identity in the pseudoscalar 
channel.' Expressions (34)-(36) demonstrate the complete 
consistency of the description of the n- meson as a (pseudo-) 
Goldstone excitation which arises in the instanton vacuum 
as a result of the spotaneous breaking of chiral symmetry. 

This massless n- pole must be manifested in not only the 
pseudoscalar channel but also the axial channel. The corre- 
lation function of the axial currents, IlE' (p) ,  must have the 
following form for small momenta in the chiral limit: 

nLVA' ( p )  =- ( fn2/p2)  [p2GpV-pllpv1 . (37) 

This expression gives us a new and independent determina- 
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tion of the constant f,. A test of expression (37) is made 
even more interesting by the fact that the first term here 
should arise from the uncoupled diagram IIo(p) in (5),  
while the second should arise from the sum of the latter dia- 
grams for II,,, ( p )  in ( 19 ) . There is no difficulty in calculat- 
ing the correlation function IIK' from ( 5 ) and ( 19). The 
function IIK' diverges quadratically, of course, reflecting 
the divergence of the free quark loop. We can regularize it by 
subtracting the contribution of free quarks; we find that at 
small momenta we have 

d'k MZ ( k )  -I/' 1 k  1 d M / d  1 k  I 
f,'=8Nc 5-- (40) 

(2n)' (kZ+MZ) 

Consequently, IIZ' is nontransverse (this is also true of the 
correlation function in the vector channel), and its value at 
the origin is not equal to the constant f, calculated for the 
pseudoscalar channel. 

The origin of this deviation from consistency can be 
seen in the following way. In this paper we are calculating 
the polarization operator by making use of the interpolation 
model [ 1, (38) ] for the Green's function of a quark in the 
field of a single instanton. Although this approach simplifies 
the calculations to a great extent, it does make all our equa- 
tions inexact at intemediate momenta, p - l / j i .  The system 
of wave functions of the zero modes in the field of each in- 
stanton is incomplete, so in restricting the discussion to a 
rediagonalization of only the zero modes we are violating 
certain general relations underlying the transition from 
channel to channel. 

The quantities in which momenta p- l / j i  are impor- 
tant are determined by not only the collective effects asso- 
ciated with the zero modes but also the specific form of the 
Green's function in the field of a single instanton. Incidental- 
ly, we recall that the main contribution to f, arises in the 
logarithmic approximation from momenta l/R(p< l / p .  In 
this approximation, all three expressions for f, [ (30), ( 39), 
and (40) ] are the same, as would be expected. Numerically, 
the results are also in fairly good agreement: f, = 138 MeV, 
f, = 110 MeV, and f, = 100 MeV. 

5. DISCUSSION 

We have shown that there is necessarily a spontaneous 
breaking of chiral invariance in the instanton vacuum, so 
that a pole corresponding to a (pseudo-) Goldstone excita- 

tion-a .rr meson-arises in the correlation functions of pseu- 
doscalar densities and axial currents. The initial massless 
(or nearly massless) quarks disappear from the theory: The 
lowest state of the theory is a colorless hadron. In the other 
hadron channels, the correlation functions exhibit an expo- 
nential (not power-law) behavior at large distances. 

This result does not, of course, mean that this theory 
demonstrates confinement. For example, in the uncoupled 
part of the polarization operator, IIo(p) in (5) ,  there is un- 
doubtedly a threshold corresponding to the production of a 
quark and an antiquark with effective masses M(0) ~ 3 4 5  
MeV. Unfortunately, it is not clear at this point whether this 
result is a defect of the approximations used in our calcula- 
tions or a fundamental flaw of the instanton vacuum. 

We believe that the influence of confinement effects (if 
there are such effects and if they differ from instanton ef- 
fects) on the properties of hadrons may turn out to be some- 
what less dramatic. We believe that a second qualitative phe- 
nomenon which arises in QCD is far more important: the 
spontaneous breaking of chiral symmetry. In any case, we 
need a theory in which the breaking of chiral symmetry is 
reproduced automatically, so that confinement effects can 
be distinguished. 

In analyzing the correlation functions of the meson cur- 
rents we have found that the instanton vacuum leads to a 
qualitative (and, in many regards, quantitative) agreement 
with the phenomenological results in low-energy meson 
physics. The next step in this direction would apparently be 
to study the properties of baryons, in whose physics an ex- 
ceedingly important role is undoubtedly also played by the 
spontaneous breaking of chiral invariance. 

We wish to thank L. N. Lipatov, N. G. Ural'tsev, E. V. 
Shuryak, and M. I. ~ ~ d e s  for useful discussions. 

"[I ( n ) ]  means Eq. (n)  of Ref. 1. 
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