
Kinematic resonance and memory effect in free-mass gravitational antennas 
V. B. Braginskii and L. P. Grishchuk 

M. K Lomonosov State University, Moscow 
(Submitted 19 March 1985) 
Zh. Eksp. Teor. Fiz. 89,744-750 (September 1985) 

Detailed studies are made of two effects in the motion of free masses subject to the influence of 
gravitational waves-kinematic resonance and the memory effect. In the first of these, besides the 
oscillatory motion there is a systematic change in the distance between the bodies if they become 
free in an appropriate phase of the gravitational wave. The second effect takes the form that the 
distance between a pair ofbodies will, in general, be different from the original distance after they 
have been influenced by a pulse of gravitational radiation. Possible practical applications of these 
effects in three different experimental programs are discussed. Allowance for these effects should 
lessen the requirements on the detection systems and ultimately raise the sensitivity of gravita- 
tional antennas. 

1. INTRODUCTION 

The sensitive element of a gravitational-wave antenna is 
an oscillator or a set of free test bodies. For example, in a 
laser interferometer the role of the test bodies is played by 
mirrors, the distance between which can be deduced from 
the interference pattern. Under the influence of a gravita- 
tional wave, the distance between the mirrors changes slight- 
ly, and this change is to be detected in the experiment. Be- 
sides the change in the distance between the bodies, there is a 
change in their relative velocity. Measurement of variations 
of the velocity is the basis of the proposals that use Doppler 
tracking of space probes. 

The motion of test bodies (particles) in the field of a 
gravitational wave has to a large degree been studied.' It has 
much in common with the motion of charges in the field of 
an electromagnetic wave. To describe the motion of closely 
spaced particles separated by a distance I much less than the 
length 1, of the gravitational wave, it is convenient to use a 
locally inertial frame of reference. It is the closest one can get 
to the global inertial frame of reference generally used to 
describe the motion of charges. If the gravitational wave pro- 
pagates in the direction of the x axis, the particles basically 
execute motion in the yz plane, but they also have a compo- 
nent of the motion along then axis.2 Under the influence of a 
weak gravitational wave, as under a weak electromagnetic 
wave, the amplitude of the particle oscillations along the axis 
is small compared with the amplitude of the oscillations in 
the yz plane. 

If the distance between the particles is I ?A,, then the 
use of a locally inertial frame of reference (attached to one of 
the particles) does not result in any gain and even compli- 
cates the analysis. In this case, it is necessary to work directly 
with the metric describing the given wave field. However, 
the general features of the relative motion remain un- 
changed. 

One is usually interested in the oscillatory motion of a 
test particle, it being assumed that on average it is at rest. 
However, in the case of a signal of not too long duration or in 
the case of a restricted time of observation of a monochro- 
matic signal there is also practical interest in comparing the 
positions and velocities of the particles before and after the 

action of the signal. The kinematic quantities that character- 
ize the final state are determined by the shape of the signal 
and by the initial conditions. The clarification of the details 
of this motion together with some practical recommenda- 
tions are the subject of this paper. 

2. THEORETICAL ANALYSIS OF KINEMATIC RESONANCE 
AND MEMORY EFFECT 

The gravitational field of a weak plane wave propagat- 
ing along the x1 direction is determined by the metric 

ds2=c-dtL-dxl'- ( I -a)  dl2'- ( l + a )  dxJ'+2bdx2dx3, 

a=a (u), b=b ( 1 1 )  , IL=x"-x~. (1  

For a monochromatic wave, a and b are harmonic functions 
proportional to eiqu. Since the curvature tensor can be ex- 
pressed in terms ofd 'a/du2 and d '6 /du2, the space-time re- 
gion occupied by a pulse of finite duration, u, <u<u2, is re- 
stricted to values of u for which d 'a/du2 # 0 or d '6 /du2 $0. 
Outside this region, space-time is flat. 

To analyze the relative motion of particles separated by 
a distance 1 2  A,, it is necessary to use the metric ( 1 ) direct- 
ly. But if I-&, , a locally inertial frame of reference can be 
used, and this makes it possible to give a Newtonian inter- 
pretation of the forces which act. We begin with closely 
spaced particles considered in such a frame. We take the 
origin x = y = z = 0 of the frame at one of the test particles. 
We shall treat the motion in only the leading nonvanishing 
approximation and, in particular, ignore the motion along 
the x axis. Then the equations of motion of a nearby test 
particle reduce to the so-called geodesic deviation equa- 
t i ons '~~  and take the form 

j.'=o, i j = - l /  ( a y f b z )  , t'=--'lz (Liy-az) ,  ( 2 )  

where the dot denotes differentiation with respect to the 
time. The quantities ii and b are taken along the world line of 
the originx = y = z = 0. In other words, we obtain the equa- 
tion of motion 

mx=F, 

where F is determined by the values of the curvature tensor 
at the origin and by the position of the particle under study. 
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The force F can also be expressed in terms of an ordinary 
Newtonian potential g, (see, for example, Ref. 4) : 

F=-m grad c p ,  c p = - ' / , a ( ~ ~ - ~ ~ )  + ' / ,byz .  

If the initial coordinates of the particle are 
(x,y,z) = (I ',I ',I 3, and its initial velocity so small that over 
the whole time of action of the wave the displacement satis- 
fies A141 = (I  l 2  + 1 22 + 1 32) 'I2, then in the expression for F 
we can replacex,y,z by I ',I 2,1 3. In other words, if this condi- 
tion is satisfied, a force that depends only on the time acts on 
each particle. We assume that the force is nonzero in the 
interval t,(t<t2. 

Qualitatively, the problem reduces to one of ordinary 
mechanics and the very simple equation mi = F( t ) .  It fol- 
lows from this equation that for the given particle the final 
velocity v, and the initial velocity v,  are related by 

lz 

1 
v2-v, = - j F  ( t )  df ( 3  

1, 

and, accordingly, for the coordinates 
fr f 

1 
b-I, = - j ( j ~ ( r )  dr )  dt+u, (t2-ti). m 

1, *, 

Thus, a particle initially at rest (v ,  = 0)  is displaced in the 
general case by the force during the time t, - t, to a new 
position and acquires a certain velocity. 

To be specific, we take 

1 A 1 
- F ( t )  =l/,ho21 sin (at+$), 
rn 04t4i.~ 

Then 

Since we are interested in the displacement caused by the 
wave, and not the initial velocity, it is necessary to assume 
v,/c(hl/il, or, simply, v, = 0. 

As can be seen from the expression ( 5 ) , the final veloc- 
ity of the particle does not differ from the initial velocity if 
the force acts for an integral number of periods (a? = 2n77) 
for arbitrary phase $ or has a definite initial phase 
$ = n.n - w?/2 for fixed duration ?. There is certainly no 
systematic change in the velocity proportional to ?. How- 
ever, such a change is possible for the coordinate of the parti- 
cle through the first term in the expression (5 )  for g2 - g,. 
This term leads to the relative displacement 

I A1 1 
= _ = _  

1 1 2  
hoz cos I#. 

The expression (6)  has the same form as the expression for 
the amplitude of an oscillator on which a monochromatic 
resonant force acts. In a steady regime, it is well known that 
A1 /I z hQ, where Q is the quality of the oscillator. In our case 
accumulation of a response is limited, not by the Q of the 
oscillator, but by the duration of the signal that acts on the 

free particle. We call this effect kinematic resonance. 
Such effects are also encountered in a different formula- 

tion of the problem. For example, the systematic displace- 
ment along the x axis of the position of a particle released in 
the plane yz of the wave front (so-called drift of particles in 
the field of a gravitational wave, see Ref. 5)  is also deter- 
mined by the duration of the applied force and its phase. The 
resultant displacement of the particle can in this case be mea- 
sured near the point of its release, and not far from it, if the 
particle is forced to reflect between a pair of mirrors. 

In order to distinguish under experimental conditions 
displacement due to the kinematic resonance from the ne- 
glected influence of the initial velocity, it is helpful to have, 
say, two particles released into free motion at times differing 
by a half-period. Then in accordance with (6)  the systematic 
displacement of these particles must have opposite signs. 
Particularly favorable are the phases $ = 0 and $ = v. 

It is important that if a short signal with a definite time 
shape is applied the resulting displacement between the par- 
ticles can be "remembered." This means that a particle at 
rest before the arrival of the signal is still in a state of rest 
relative to the locally inertial frame of reference after the 
action of the force has ceased but, in general, in a different 
position and at a different distance from the origin. For this, 
it is necessary that the integral on the right-hand side of (4) ,  
extended to the complete time of action of the force, be non- 
zero. This effect, which we call the memory effect, was point- 
ed out for the first time in Ref. 6 in connection with the 
analysis of the gravitational radiation that arises from close 
encounters of gravitating bodies. From the practical point of 
view, this effect is important because it permits a measure- 
ment to be made, not during a short burst of gravitational 
radiation, but over a much longer time, during which the 
particles can still be assumed to be free. Specifically, in a 
program looking for bursts of duration sec by means of 
a laser interferometer the time of measurement of the result- 
ing displacement can be lo-' sec, which promises practical 
advantages. 

These results can be readily generalized in accordance 
with Eqs. (2)  to the case of arbitrary polarization of the 
wave and an arbitrary initial position of the particle being 
studied. Suppose that at the initial time t = 0 the particle is 
at rest in the locally inertial frame and has coordinates 
1 ',I ',I 3. Then subsequently, as follows from (2) ,  its instan- 
taneous coordinates are 

.(t) =11, ( t )  = L ~ - ' / ~  [a  ( t )  -a(O)  I L2-'l, [ b  ( t )  -b ( 0 )  I l3 
+li2t [ d  ( 0 )  12+6(0) P I ,  

z ( t )  =13-1/2 [ I )  ( t )  - b ( 0 )  I l Z f 1 l L  [ a  ( t )  -a ( 0 )  11" 

If moreover a ( t )  SO, b ( t )  0 before the arrival of the wave, 
then 

( t )  =L2-'/,a ( t )  12-'/,b ( t )  1" z ( t )  =13-'/,b ( t )  12+'/,a ( t )  l3 

The position and velocity of the particle when the force 
ceases to act are determined by the values of the functions 
a ( t )  and b(t)  and their derivatives at this time. 

428 Sov. Phys. JETP 62 (3), September 1985 V. B. Braginskiland L. P. Grishchuk 428 



The actual dependence of the force on the time is deter- 
mined by the physical nature of the radiation source. In the 
quadrupole approximation, the wave correction to the met- 
ric far from the source has the form 

where D, is the reduced quadrupole moment of the source 
(see, for example, Refs. 1, 3, 7) .  The force F ( t )  can be ex- 
pressed in terms of j;, . Thus, the integrals in (3)  and (4)  are 
determined by the difference between the initial and final 
values  of^, and D ~ ~ ,  respectively. For a system nonstation- 
ary in time that executes a finite motion, these quantities are 
equal to zero. Radiation pulses from such sources leave test 
particles in the same position and with the same velocity as 
before the arrival of the pulse. However, the pulses that 
arise, for example, from a close encounter of gravitating bo- 
dies (gravitational Bremsstrahlung) lead to g, - l l # O  al- 
though v, - v1 = 0 (Ref. 6 ) .  " To see this, let us consider in 
somewhat more detail the collision of two attracting bodies 
moving in theyz plane.3 For the wave radiated in thex direc- 
tion the important components of Dik are D,, - D3, and 
D,,. Their asymptotic values are 

where e depends on the impact parameter; e = 1 in the case 
of a head-on collision. It follows from the expressions (7)  
that the force due to the metric component hZ3 (for e #  1) 
gives rise to a nonzero resultant displacement 5, - cl. (The 
time dependence of pulses of gravitational Bremsstrahlung 
was considered in Refs. 6,  9, and 10.) 

Thus far we have considered closely spaced particles, 
and we have described the motion of one of them relative to a 
locally inertial frame of reference attached to the other parti- 
cle. 

If the distance between the particles satisfies Ikil,, 
then, as already noted, it is more convenient to work directly 
with the metric ( 1 ) . It is well known that the world lines of 
free particles are space-time geodesics. Numbered among 
these are the lines x1 = const, x2 = const, x3 = const, i.e., 
the world lines of the particles that realize the synchronous 
coordinate system in which the metric ( 1 ) is specified. The 
fate of these particles before the arrival of the pulse (u < ul )  
and after it has passed (u > u,) is determined by the func- 
tions a (u ) and b (u ) in these regions. Since space-time is flat 
outside the pulse, a (u)  and b (u )  can have only the form of 
linear functions of u there: 

where al,a,,bl,b2 are arbitrary constants. On the boundary 
hypersurfaces u = u,, u = u, the functions a, b themselves 
and their first derivatives must be continuous. The second 
derivatives i.e., the components of the curvature tensor, can 
have discontinuities. If we were to assume that a ( u )  = 0 and 
b(u) = 0 for u < u1 and u > u,, we should overdetermine the 
physical properties of the gravitational-wave pulse. In this 
case, particles at rest before the arrival of the wave (xi 

= const) remain in a state of rest and at the same separation 
as they had initially after the wave has passed. However, this 
is not always so. 

Suppose these particles with world linesxi = const are at 
rest before the arrival of the wave, i.e., a (u )  and b(u) are 
equal to zero for u < ul. The behavior of these particles after 
the wave has passed depends on the values of the functions 
a (u )  and b(u) and their first derivatives at u = u,. These 
values determine the constants in the expressions (8) and 
thus the further behavior of the particles carrying the coordi- 
natesxi = const. As we have already noted, for a real pulse of 
gravitational radiation the constants a, and b, may be non- 
zero. The resulting displacement, being proportional to the 
distance I between the particles (we recall that it is perfectly 
permissible to have />A, ), can reach appreciable values (see 
the definite estimates below). For example, the distance 
between particles situated on the x2 axis after the passage of 
the pulse, i.e., for u)u2 = ct,, is 1 = 1,(1 - a,), where I,, is 
the distance before the arrival of the pulse. 

Distant particles for which 1 is of the order ofil, or much 
greater than A, can also be subject to kinematic resonance. 
For them, it is first of all necessary to make more precise the 
concept of zero velocity at the initial time. For closely spaced 
particles considered in a locally inertial frame of reference, the 
condition v ,  = 0 meant a zero initial velocity with respect to 
the "rigid frame" attached to one of the particles that realized 
the locally inertial frame. (We shall not dwell on the well- 
known conditions of applicability of the concept of a rigid 
frame.) Such a construction is impossible for a distant parti- 
cle. However, for both close and distant particles it is possible 
to introduce a universal concept of a vanishing initial velocity 
based on the requirement that the frequencies of a light signal 
emitted from one particle and received by the other be equal. 
For closely spaced particles, such a definition is equivalent to 
the condition v ,  = 0 with respect to a locally inertial frame. 
Since the frequency of a light signal measured with respect to 
the synchronous coordinate system ( 1 ) varies periodically 
along the path of a ray propagating in the field of a monochro- 
matic gravitational wave,5 free particles whose world lines 
differ somewhat from xi = const will have vanishing initial 
velocity. The tangent 4-vector ua to the geodesics in which we 
are interested has small (of order h )  nonvanishing spatial 
components. As a result, the distance to a distant free particle 
released with zero initial velocity will have a resonance (pro- 
portional to t )  component besides the ordinary periodic term. 
For closely spaced particles, the resonance contribution (6) 
can be rewritten in the form 

Al=xh(llh,) c-r cos $. 

For distant particles, the factor //A, is replaced by a quantity 
of order unity, so that the resonance term takes the form 
A1 z rhc? cos*. 

The simple arguments put forward in Sec. 2 lead to some 
practical recommendations. 

3. PROPOSALS FOR EXPERIMENTS 

1. In the designs of the two large laser gravitational an- 
tennas currently created"~'~ with I=: 5 X lo5 cm it is assumed 
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that the response detection time r,,, must be less than the 
duration rg z lop3 sec of the gravitational burst. However, as 
was shown above, antennas "remember" the effect of a gravi- 
tational burst from a source of gravitational Bremsstrahlung. 
Since in these antennas the mirrors are pendulums (oscilla- 
tors) with a period of mechanical vibrations of about 7,- 1 
sec, they can with good accuracy be regarded as free particles 
for ~ ~ 0 . 1  rO, i.e., during this time, they keep a "memory" of 
the applied pulse. It is clear that the possibility of increasing 
the averaging time from r,,, z lop3 sec to r,,, ~ 0 . 1  sec great- 
ly lessens the requirements on the optical detection system. 

2. In the program to look for gravitational waves from 
binary stars by means of satellites13 revolving around the 
Earth with a period near 3 X lo7 sec and separated from each 
other by a distance of order 1 - 2 ~  10" cm, relative oscilla- 
tions of the satellites with amplitude of order A l z  lop9 cm 
are expected. If two satellites are in the plane of a gravitational 
wave front for the time r z  2 X lo5 sec and the conditions of 
kinematic resonance are satisfied for them, the systematic ap- 
proach (or separation) of the satellites due to the kinematic 
resonance willbe A l z ~ h ( 1  /Ag )C?= l op7  cm, i.e., two orders 
of magnitude greater. Of course, as in the other cases of the 
use of kinematic resonance, it is necessary to foresee a way of 
separating the effect due to the kinematic resonance from the 
monotonic change in the distance associated with a small ne- 
glected relative velocity. 

3. The program mentioned above13 can also be used to 
look for short bursts of gravitational radiation. According to 
the estimates of Ref. 14, there may be bursts with h -- 10-13, of 
duration rg z lo4 sec, with one event occurring about every 
lo6 sec. Such a pulse produces a A l z f  h l z  l o p 2  cm. The 
memory effect makes it possible to use a long detection time, 
which may be of order r,,, z 2 x lo5 sec. 

4. In the Precision Optical Interferometry in Space pro- 
gram (P01NTS15) it is proposed to achieve a resolution in the 
measurement of angular displacements of stars at the level 
a z 2 X 10-l2 rad (in order to measure general relativistic ef- 
fects having the order of magnitude q, 2 / ~ 4 ) .  This program can 
also be used to look for low-frequency gravitational waves. 
Suppose there are two stars in approximately the same direc- 
tion on the sky anci such that the distance 1, between the inter- 
ferometer and the first star is of the order of a few light years, 
while the distance I, to the second star is of the order of tens or 
hundreds of light years. If a pulse of gravitational radiation 
passes the interferometer and the first star, the memory effect 

must remember the change in their relative distance and, as a 
result, displace the apparent position of one star relative to the 
other by an angle a, ~ h .  This change can be detected if the 
angular position of the stars is measured at an interval of 
about one year. The expected bursts14 with h z 10- l3  lead to 
a, =. 10-13. During one year, the interferometer may detect a 
random (due to about 30 bursts) angular displacement of the 
first star relative to the second by A a ~ 3  x 10-l3 rad. Thus, a 
raising of the resolution by an order of magnitude in this pro- 
gram may lead to the possibility of detecting low-frequency 
bursts of gravitational radiation. It should be emphasized that 
at approximately the same level (h- 10-l3 for vz Hz)  
effects associated with the presence of a fossil background 
gravitational-wave noise can be e ~ p e c t e d . ~  

"In electrodynamics it is possible to have so-called strange electromagnetic 
waves, which lead to a memory effect for the velocity, i.e., to u, - v ,  #0.8 
Analogous gravitational waves probably exist. 
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