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The form of the fundamental absorption spectrum is found for direct-gap cubic semiconductors in 
the region of exciton effects subject to an allowance for the valence band degeneracy. Calculations 
are made of the positions of the first few exciton peaks, their intensities, profile of the continuous 
spectrum at photon energies hv exceeding the band gap Eg , and fractions of light and heavy holes 
as a function of hv - Eg . The absorption in the exciton peaks and in the continuous spectrum is 
higher than that predicted by the hydrogen-like model. The difference between the absorption 
calculated allowing and ignoring the Coulomb effects tends to a constant value on increase in 
hv - E, . Near the edge of the continuous spectrum the fraction of light holes (relative to the total 
number of the generated holes) is considerably less than at high values of hv - E, when the 
Coulomb effects are unimportant. A description is given of a method for numerical calculation of 
the levels and wave functions of the discrete spectrum and of the orthonormalized functions of the 
continuous spectrum of single-particle quantum systems described by partial differential equa- 
tions with nonseparable variables. 

1. INTRODUCTION 

The profile of the fundamental absorption edge of semi- 
conductors is governed by exciton effects.Iv2 The Coulomb 
interaction between a photoelectron and a photohole gives 
rise to exciton absorption peaks representing the bound 
states of an electron and hole at photon energies hv smaller 
than the band gap E, , and at hv = Eg the absorption coeffi- 
cient does not yet vanish (as would be expected in the ab- 
sence of the Coulomb effects). The absorption spectrum has 
been calculated by Elliott' allowing for the exciton effects in 
the simplest hydrogen-like model of an exciton in which 
both the conduction and valence bands are nondegenerate 
and isotropic. In this case the positions of the exciton peaks 
relative to the edge of the continuous spectrum are the same 
as the positions of levels of a hydrogen-like atom, the intensi- 
ties of the peaks decrease on increase in the number n as n -3 ,  

and in the range hv > E, the absorption spectrum can be 
determined from the known wave functions of the contin- 
uous spectrum of the hydrogen atom. The imaginary part of 
the optical permittivity is 

Here, d is the matrix element of the dipole moment of a 
transition between the bands; Eex and a,, is the doubled 
ionization energy and the effective Bohr radius of an exciton. 
In the simple model of Elliott the ratio of the absorption with 
allowance for Coulomb interaction to the absorption calcu- 
lated ignoring this interaction is equal to the familiar Som- 
merfeld factor 

(2) 

which tends to unity on increase in the energy hv - E,. 

The valence band of all cubic semiconductors is degen- 
erate even in the relatively simple case when the spin-orbit 
splitting A of the valence bands is large compared with the 
exciton energies, and the Hamiltonian is a 4 X  4 matrix. We 
shall consider direct-gap semiconductors. In these materials 
the effective mass of an electron is isotropic and the valence 
band nonsphericity is usually slight, i.e., we have 
S = (y, - y2)/y,(1, where yi are the valence band param- 
eters introduced by Luttinger. In this spherical approxima- 
tion the Hamiltonian of an exciton with zero total quasimo- 
mentum can be represented in the form analogous to the 
Hamiltonian of an acceptor in the spherical approximation3: 

Here i is a unit 4 x 4 matrix; ( P'2'.~'2') is a scalar product of 
irreducible tensors of the second rank, derived in the usual 
way from the components of the momentum p and quasispin 
matrices J with J=  3/2;pex = [y,/(y, + ye )]p;  ye = md 
me is the ratio of the masses of a free electron and of a con- 
duction  electron;^ = 2(2y2 + 3y3)/Sy,. The units of length 
and energy in Eq. (3) are 

where E,, is the static permittivity. 
It is known from the solution of the problem of a shal- 

low acceptor in the spherical appro~imation~-~ that the 
quantum-mechanical problem with the Hamiltonian ( 1 ) re- 
duces to a solution of a system of two ordinary second-order 
differential equations for radial functions, and that in the 
general case, i.e., for an arbitrary value of pex, an analytic 
solution cannot be obtained. The energies of the first two 
lowest discrete levels of excitons are calculated in Ref. 7 for 
several direct-gap semiconductors, i.e., the positions of two 
exciton absorption peaks are found. The calculations are 
made in Ref. 7 on the basis that the approximate equality of 
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the effective masses of an electron and a light hole in direct- 
gap semiconductors ensures that the value of pex does not 
exceed -0.3 (see Table I below), i.e., this quantity is small, 
so that the energy levels are calculated from perturbation 
theory in which the zeroth approximation is the hydrogen- 
like limit ( pex = 0). The binding energies of the excitons, 
allowing for the real structure of the valence band, are calcu- 
lated by a variational method in Ref. 8. However, the prob- 
lem of the continuous spectrum in the fundamental optical 
absorption region of semiconductors (hv>Eg ) has yet to be 
tackled. 

We shall calculate the profile of the fundamental ab- 
sorption edge of direct-gap semiconductors allowing for the 
exciton effects and for the valence band degeneracy. We 
shall obtain the final (numerical) results by a numerical cal- 
culation and we shall not apply perturbation theory in pex . 
We shall adopt this approach for two reasons. Firstly, the 
parameter pex in the case under discussion is no longer that 
small and the precision of perturbation theory in respect of 
pex cannot be high. On the other hand, the exciton binding 
energies E, found by calculation can be used to find most 
accurately the band gap Eg of semiconductors by adding the 
excitation energy of an exciton peak to Eb (Ref. 9). There- 
fore, the errors in the calculation of the discrete spectrum of 
excitons should be reduced as much as possible and in any 
case below the errors associated with the inaccuracy of the 
determination of the energy band parameters. Secondly, the 
numerical method used by us is fairly general and can be (in 
contrast to perturbation theory in respect ofp,, ) applied to 
solve problems far from the hydrogen-like limit, particularly 
to calculate the exciton effects in indirect-band semiconduc- 
tors. 

In the physics of semiconductors one encounters many 
one-particle quantum systems described by partial differen- 
tial equations with nonseparable variables, viz., a hydrogen- 
like atom in a strong magnetic field, a hole in the Coulomb 
field, an electron (moving in the Coulomb field), an exciton 
in a many-valley semiconductor, etc. Expanding the re- 
quired wave function in terms of a suitable system of func- 
tions of angular and spin variables (in terms of spherical 
functions in the case of a nondegenerate energy band, in 
terms of the L-S coupling functions in the case of a degener- 
ate band, etc.), we can reduce partial differential equations 
generally to an infinite system of ordinary differential equa- 
tions for radial functions. However, in the case of states with 
a moderately high energy, the functions with fast angular 
oscillations should be negligible, which makes it possible to 
drop them and to reduce the problem to a solution of a large 
but finite number N of ordinary second-order differential 
equations.I0 The method described below is not limited to 
the N = 2 case (as is true of the spherical model of an exci- 

TABLE I. Parameters of GaAs, InP, and GaSb 

ton) and can be used to calculate not only the energies and 
wave functions of the discrete spectrum of the systems men- 
tioned above, but also to find the quantities which can be 
expressed in terms of the functions of the continuous spec- 
trum, such as photoionization cross sections of acceptors 
and donors, non-Born scattering cross sections of electrons 
and holes, scattering cross sections of electrons in a strong 
magnetic field, etc. 

This approach is completely analogous to that used in 
the quantum scattering theory, i.e., in problems which can 
be reduced to multichannel scattering with a strong coupling 
between the channels1' (scattering by a nonspherical poten- 
tial, etc.). The method which is described in the Appendix 1 
generalizes the methods from the theory of multichannel 
scattering. 

2. EXPRESSION FOR THE OPTICAL ABSORPTION AND 
INITIAL EQUATIONS 

The imaginary part of the permittivity of a cubic semi- 
conductor, which governs the absorption spectrum, is1' 

Here, $$,"'(O) is the value at the point r = 0 of the wave 
function component with M = f 1/2, f 3/2 describing the 
nth state of an exciton and representing a spinor correspond- 
ing to the total angular momentum J = 3/2; En is the energy 
of this state; a = f 1/2 is the spin quantum number of an 
electron; d & are 2 x 4 matrices given in Refs. 12 and 13. 
These matrices contain a factor d which, if we neglect the 
influence of the local field on the optical response, is equal to 
the matrix element ( S  (ezIZ ) of the dipole moment between 
the Bloch functions of the conduction and valence band 
edges. 

The eigenstates $'"' of the Hamiltonian (3)  may be 
selected to be the states with a specific parity P, a total angu- 
lar momentum F, and its projection F, . We then find that3" 

( r )  = R I ~ ~ ~ '  ( r )  I L J F F , ) + R K )  ( r )  I L+2, JFF,). ( 6 )  

where ILJFF, ) are the familiar L-S coupling functions; R, 
are radial functions; L = F - 3/2 or L = F - 1/2, depend- 
ing on the parity P (the parity ofL is the same as the parity of 
the state). In a discrete spectrum the radial functions are 
normalized by the condition 

m 

In the case of a continuous spectrum we shall show that 
there are N (in our case N = 2) different solutions satisfying 
the condition that they be finite at r = 0. We shall label these 

Semi- 
conductor 

GaAs 6.85 [I71 2,10 1171 2,90 [ I71 0,0665 12.56 0,236 7,88 
InP 4.95 1181 1,65 [ I81 2,35 [18] 0,0803 
GaSb 1 I [ I  1 4 ,  [ I  1 5 6  1 I 0,040 1 I:" 1 2;; 1 '2W 
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solutions by the index s: 
w 

d r  ,2[~1y' ( r ) ~ ( ~ p ~ s r )  ( r )  +R(fy iS)  ( r )  RE?') 
L ( r )  1 

=6,,,6 (E-E ' ) .  (8) 
(EPF,) If r = 0, then only the functions R with P = 1 ,  

F = 3 / 2 ,  and L = 0 differ from zero. Consequently, the in- 
tensities of the exciton lines at hv = E, - \En I [with areas 
E" (hv) under the peaks] are 

In the continuous spectrum at hv>E,, we have 

The radial functions in Eqs. (7)-( 10) are dimensionless. 
The system of equations for R ,  and RL + , is given in 

Refs. 3-6. We can go over to the functions f, and fh , the 
asymptotes of which are (in contrast to the asymptotes of 
R,  and RL + , ) sinusoida16: 

I fF  = 3 / 2  and P = 1  ( L  = O ) ,  one of the equations forf, and 
fh is 

and the second is obtained by the substitutions Z u  h, 
P e x  + - P e x .  

The asymptote of the normalized solutions of the sys- 
tem obtained for the case k ,,, r> 1 is (for energies E > 0) 

Here, Iml = 1 / 2  refers to a light hole (I)  and Iml = 3 / 2  to a 
heavy hole (h ), 

k, , ,  $I:= [2E/ ( I * P ~ , ~ )  ] '", 
are the amplitudes and S(zI are the phases of the solu- 

tions which are bounded at zero (s = 1 and s = 2 ) ,  and 

6clm1= [ k l m i ( l - t p ~ ~ z ) ]  -' In (2k1,,,r) (14) 
is the Coulomb phase which is the same for both solutions. 

Let us assume that 
( 3 )  A,i,l=a,ml esp (is,':; ) 

is a matrix of complex amplitudes. It follows from Eqs. ( 8 )  
and ( 1 3 )  that the condition of orthonormalization of solu- 
tions of the system ( 1 2 )  can be expressed in the form (A  + is 
the Hermitian conjugate matrix) 

It is shown in the Appendix 2  that the amplitudes AsIml  of the 
solutions of the system ( 1 2 )  which are finite at zero satisfy 
the additional condition 

Together with Eq. ( 1 5 )  this condition means that the matrix 
of complex amplitudes is unitary, i.e., 

Iml 

The method for solution of systems of ordinary differential 
equations of the ( 1 2 )  type is given in the Appendix 1. 

I fE  = 0, we have to transform (as in the hydrogen atom 
problem) to a variable x = (8r)'I2 and to the functions 
u l m l  = ~ - ~ ' 2 f i , ~ .  One of the two equations for u I m l  is 

The second equation is obtained by the substitutions 
U I  ff U h  and P e x  + - P e x  . 

The asymptote of the solutions of Eqs. ( 1 8 )  has the 
following form when x> 1 : 

The amplitudes and phases of the asymptotes u l m l  can be 
related to the amplitudes and phases of the asymptotes f 
in the limit E + 0 if we bear in mind that for r% 1  the asymp- 
tote f is a combination of Whittaker functions 

where 

In the limit E + 0 the combination of Whittaker functions, 
which for k r> 1  reduces to Eq. ( 1 3 ) ,  has the following 
asymptote of u,,, in the case when r> 1: 

where the phase shift is A;:! - A:$ = 8;:'; - 6;::. This re- 
lationship between the asymptotes of u l m I  and f allows us 
to find the orthonormalized radial functions for E = 0 by 
solving Eq. ( 1 8 )  subject to Eq. ( 1 9 ) .  

3. DISTRIBUTION OF PHOTOHOLES BETWEEN BRANCHES 
OF THE SPECTRUM AND OF PHOTOELECTRONS BETWEEN 
ENERGIES 

Radiation of photon energy hv > E, generates light 
holes with a quasimomentum k, and heavy holes with the 
quasimomentum kh , as well as two groups of electrons with 
the same quasimomenta. In the limiting case k ,,, $1 ,  when 
the exciton effects are weak, the ratio of the numbers of light 
and heavy holes is [ ( 1  - p,, )/( 1 + p,, ) ] 312. It would be of 
interest to determine how this ratio is affected by the exciton 
effects. 

We can tackle this problem by selecting in Eq. (5)  for 
&"(a) the functions Jt'"' in the form Jt:,', each of them 
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representing a superposition of a plane wave of given mo- 
mentum k and given helicity m = + 1/2 and f 3/2 with 
waves which are purely converging at infinity. This ap- 
proach is a direct generalization of that employed in dealing 
with the photoelectric effect of atoms. The function $:; ' is 
related to the function $:,+ ', which is a plane wave with a 
given helicity plus a function which has only diverging 
waves at infinity. The function $;,+ ' is calculated in Refs. 5 
and 14 using the theory of scattering of a hole by a defect. 
However, the problem of the scattering of a hole in a Cou- 
lomb field has not yet been solved. Formulation of this prob- 
lem requires additional analysis. In view of the slow fall of 
the Coulomb potential the Schrodinger equation has no so- 
lutions in the form of a pure plane wave together with a 
converging or a diverging purely spherical wave (in contrast 
to the potentials that decrease more rapidly than l/r). There 
are two ways of overcoming this difficulty 15: 1 ) the use in the 
derivation of $;; ' of a suitably deformed plane wave (with a 
given helicity) so that the asymptote $:;' satisfies the 
Schrodinger equation with the Coulomb field; 2) the trunca- 
tion of the Coulomb potential at a sufficiently distant point 
R. We shall adopt the second method. 

We shall assume that solutions of the system ( 12) in the 
region r < R, which are linearly independent and finite at 
zero, are the functions ( 13) with the same amplitudes and 
phases. If r  > R, i.e., in the region where the potential vanish- 
es, we find that, to within (k  R )  - 'g l ,  

f,:; (2 /n) '1z (dk lml /dE)  '" sin ( k l m l r + 8 ~ ~  ) . (20) 

From the condition of matching of the solutions (13) and 
(20) at the point r  = R it follows that, with the same accura- 
cy ( k l m l R ) - l < l ,  

Strictly speaking, the orthonormalization condition ( 15) 
applies to complex amplitudes 

;r -- (*) , lml -a lml  exp (2:; ). 

However, when the point of truncation of the Coulomb po- 
tential R is sufficiently far, the complex amplitudes ASImI 
differ from ~,, ,1 only by the constant phase 6,,,, (R).  

In the field with the truncated potential the asymptote 
of the function $:; ) is a combination of a plane wave of 
given helicity and converging spherical waves. We shall seek 
$;; ) in the form of a superposition of states with given val- 
ues of E, P, F, and F,. We must include in the expansion all N 
solutions with given quantum numbers. Using Eqs. (6) and 
( l l ) ,  we obtain 

is only one term in square brackets: L = 1 for P = - 1 and 
L = 2 f o r P =  1. 

We shall determine the coefficient C in Eq. (22) by 
exanding a plane wave $,, with a given helicity m in terms 
of the L-S coupling functions. We readily obtain5.I4 

L J F  
X[ 

m ] j L ( k r ) ~ F : ?  ($ ) I L J F F , ) .  (23) 

The matrix in brackets is the Clebsch-Gordan coefficient16 
and D ;$ (k/k) is a finite-rotations matrix of rank 2F + 1. 

We shall use 

and reduce Eq. (23) to 

Comparing the asymptote (22) [subject to Eq. (20) 1 
with the asymptote (25), we obtain the required expression 
for the coefficients in Eq. (22) from the N conditions that 
the amplitudes of diverging waves should vanish: 

Here, the matrix 2 -' is the inverse of 2 .  In view of the uni- 
tary nature of the matrix 2 [see Eqs. ( 17) and (21 ) 1 the 
functions $;; ' are orthonormalized: 

(-) ) d3r$l i )*  (r)Ibk,,,,, (r) = (2n)36mm,6 ( k - k t )  . (27) 

We shall substitute in Eq. (5)  the functions $:; '. Since 

it follows that in the case of radiation polarized along the Z 
axis we have 

[I+ (4 d )  ~ ~ ( c o s f i ~ ) ]  6  [Elm, ( k )  E l .  (29) 

It is clear from Eq. (29) that the fractions of light holes 
( Iml = 1/2) and of heavy holes ( Iml = 3/2) in the total 
number of photoholes are given by 

A prime of the summation sign means that for F = 1/2 there 
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TABLE 11. Energy levels of s states of discrete exciton spectrum and corresponding 
intensities of exciton peaks in units of (4?r/3) Id /'/a:, . 

It therefore follows that the exciton effects do not affect 
the distribution of the directions of the momenta of photo- 
electrons and photoholes, but they do affect the distribution 
of holes between the branches of the spectrum and, conse- 
quently, the number of electrons with the momenta k, and 
k , .  As expected, the truncation of the Coulomb potential 
does not affect the expression fore" (w)  or the distribution of 
holes between the branches of the spectrum. 

I GrAr 1 

4. RESULTS OF CALCULATIONS 

Numerical calculations were carried out for three di- 
rect-gap semiconductors, GaAs, InP, and GaSb, for which 
the available experimental data are the most accurate. Table 
I gives the values of the parameters used in our calculations. 
Table I1 lists the energies of the first four exciton s levels 
found in this way. We can see that the exciton binding energy 
E, = IE(ls)l is higher than in the hydrogen-like limit 
( pex = 0) and also that the levels 2s and 3s are deeper than 
in this limit. The levels of thes and d type, which are degen- 
erate for pex = 0, split for pex # O  and this is manifested by 
the appearance of a doublet (levels 3s and 3s'). 

The separations between the exciton peaks can be com- 
pared directly with the experimental results. Table I1 gives 
the calculated and experimental values of the difference 
E(2s)-E( Is). The discrepancy between them ( ~ 2 %  in the 
case of GaAs and -- 4% in the case of InP) may be attributed 
to errors in the determination of the energy band param- 
eters. In fact, the Hamiltonian ( 1) of the spherical approxi- 
mation is simplified by dropping terms of the cubic symme- 
try, the magnitude of which is governed by the dimensionless 
parameter Sex = ( y3 - y2)/( y, + ye ). In the case of GaAs, 
this parameter is Sex = 3.66x 10W2. It is known2' that the 
cubic symmetry terms affect the levels with F = 3/2 only in 
the second order, so that we can expect the inaccuracy of the 
spherical approximation to be - 10W3. The numerical calcu- 
lations of the energy levels are accurate to within - 
Hence, it follows that the - discrepancy between the 
calculated and experimental values of E(2s)-E( 1s) is most 
probably due to inaccuracy of the determination of the ener- 
gy band parameters, and more specifically of the Luttinger 
parameters. 

0,534 
1,575 
4,96 
0,138 
0,407 
0,618 
0,0651 
0,192 
0,179 

0,0519 
0,153 
0,0100 

1,168 
- 

It should also be pointed out that the value E(3s)- 
E(2s) = 0.565 meV found for GaSs is close to the experi- 
mental 0.6 meV (Ref. 2 1 ) . 

The exciton binding energies IE( Is) I were calculated in 
Refs. 17- 19 using the second order of perturbation theory in 
p,, (Ref. 7). These energies agree with those found by us 
within the limits of the error given in the cited papers 
( -  lo-2). 

Table I1 lists also the values of R (0), i.e., the intensi- 
ties of the exciton lines in units of (4?r/3)ld I'/U:~. If 
p,, = 0, this quantity is equal to 4/n2, where n is the level 
number. We can see that the intensities of the 1s - 3s peaks 
increase on increase in p,, . The 3s' line, which appears be- 
cause of the s-d splitting, is very weak and very close to 3s 
and, therefore, it is difficult to resolve. 

We shall now consider the continuous spectrum. If 
el'(hv) is plotted in the range hv>Eg in units of (4?r/ 
3) Id 1 '/a:, E,, and the difference hv - Eg in units of Ee, , 
then similar curves are obtained for GaAs, InP, and GaSb 
because of the similarity of the corresponding values of pex . 
Figure 1 shows the dependence e" (hv) for GaAs. It is qual- 
itatively the same as in the hydrogen-like limit: we have 
ef'(Ep ) # O  and the difference E" (hv) - [E" (hv)],, where 
[E" (hv) l o  is the value of E '  (hv) obtained ignoring the exci- 
ton effects, tends to a constant value on increase in hv - ITg. 

0,527 
5,386 
4,73 

0,135 
1,380 
0,590 
0,0634 
0,648 
0,166 

0,0523 
0,534 
0,0130 

4,006 

3,84(4) [221 

E /E,z 

2s [!:Idlev 
3. [E;,EG" 

3s. [E21;;+ 
E(2s) -E ( i s ) ,  meV, calculation 
E(2s) - E ( i s ) ,  meV, experiment 

FIG. 1.  Frequency dependences of the imaginary part of the permittivity 
calculated forp,, = 0.236 ( GaAs): 1 ) allowing for the exciton effects and 
the valence band degeneracy; 2 )  ignoring the exciton effects; 3) curve 2 
shifted by the asymptotic difference E" - [E" 1, (see Table 111). 

0,526 
4,145 
4,72 
0,135 
1,064 
0,588 
0,063'3 
0,499 
0,265 
0,0523 
0,412 
0,0132 
3,081 

3,15 [21] 
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TABLE 111. Parameters of optical absorption spectra at photon energies hv> E,: E" (E,), 
asymptoticvalue ofdifference~" (hv) - [E" (hv)],at hv - Eg>E,, in units (4?r/3) Id IZ/o%,Ee, 
(see text), and fraction of light holes c,,, for hv = E, and hv - E, >E,, 

Table I11 lists both the values of a" (E, ) and the asymptotic 
values of the difference a" - [a" ] ,. If p,, = 0, these quanti- 
ties amount to (in the units given above) 4 and 2, respective- 
ly. We can see that whenp,, is increased, both quantities rise 
and their ratio changes. 

Comparison of the calculated value of E" (E, ) with that 
deduced from the measured absorption coefficient, 

79 a(E,)  =E" ( E g )  E g / f i ~ ~ o p t  

allows us to find Id I. In the case of GaAs, InP, and GaSb, we 
have a(E,) = 9 . 3 ~  lo3 cm-' (Ref. 23), 1 0 . 7 ~  lo3 cm-' 
(Ref. 24), and 4 . 0 ~  lo3 cm-' (Ref. 25). This comparison 
shows that the value of Id I for these semiconductors is, re- 
spectively, 16.7, 13.3, and 16.2 (in atomic units of @/m,e).  

On the other hand, the value of d found by the one- 
electron theory ignoring the correction for the local field is 
equal to the matrix element of the dipole moment between 
the Bloch functions of the energy band edges (see Sec. 2 
above). In this case we have d=dP/E, ,  where 
P = fi(S [p, IZ )/m,. The value of P is known from the k . p 
variant of perturbation theory and, according to Ref. 26, it 
amounts to 0.73, 0.62, and 0.71 for GaAs, InP, and GaSb, 
respectively (in atomic units of e2). The corresponding val- 
ues of Id I expressed in atomic units are 13.0, 11.8 and 24.0. 
We can see that the values of Id I found from the optical 
absorption spectra and from the k p perturbation theory do 
not agree. The difference is due to the fact that the optical 
response includes a contribution not only of the macroscopic 
field, but also of the local field with wave vectors close to the 
reciprocal lattice vectors (for a discussion of this point see 
Ref. 27). 

It is interesting to consider the spectral dependence of 
the fraction of light cl12 and heavy c,,, = 1 - cl12 holes in 
the total number of holes generated by light of h v  > E, pho- 
ton energy. It is known that if hv - E, )E,, , when the Cou- 
lomb effects are negligible, we find that 

Lowering of the photon energy hv reduces rapidly the frac- 
tion of light holes and increases that of heavy holes (Fig. 2), 
so that at h v  = E, the former is approximately a quarter of 
the value obtained from Eq. (3  1 ) (see Table 111). This effect 
becomes rapidly stronger on increase in p,, . 

The authors are grateful to B. L. Gel'mont, M. I. D'ya- 
konov, and V. I. Perel' for a valuable discussion of the re- 
sults, and to A. F. Polupanov for numerous discussions and 
his help in the numerical calculations. 

ct/,(Eg) c1l2(") 

APPENDIX 1 

We shall consider a system of N ordinary second-order 
differential equations of the ( 12) type. We shall denote the 
required functions by y,, ...,y, and we shall assume that 
yi + , = ryj. The system of equations in question assumes the 
form of a system of 2N ordinary first-order equations: 

yil=Ai, ( r )  yj, (A.l.1) 

E" (hv) - 18" ( h v )  I o Semiconductor 

where A is a square matrix of the order of 2N. 
In the problem of an exciton under consideration, as 

well as in the problems of shallow impurities or scattering in 
the Coulomb field in the absence of a magnetic field, we have 

&"(Eg) 

GaAs 4,546 0,075 
InP 0,074 
GaSb 1 0,061 

A ( r )  =r-'A,+Ai+rAZ, (A. 1.2) 

0,327 
0,326 
0,306 

h A h 

where A,, A, ,  angA, are independent of r. 
The matrix A, is Hermitian-like (all its eigenvalues are 

real) and, therefore, it can be represented in the form 

where T is a 2N x 2N transformable matrix; the index n la- 
bels the eigenvalues A, (n = 1, ..., 2N). In the case of equa- 
tions for the functions f with the sinusoidal asymptote, these 
eigenvalues areA, = ..., - L - 2, - L, L + 1, L + 3 ,... [in 
the case of the equations for the radial functions it follows 
from Eq. ( 1 1 ) that the eigenvalues A, are smaller by unity]. 

If we change over from the functions y, to z, = T ,i 'y,, 
we find that in the matrix of the coefficients on the right- 
hand side the term with the lowest degree is A, /r. Hence, it 
follows that the condition specifying finite solutions at r = 0 
represents vanishing of those N of the quantities z, (0)  
which correspond to A, < 1 [when equations for the radial 
functions RL ( r )  are solved, the condition becomes A, < 01 : 

FIG. 2. Frequency dependences of the fractions of light (curve 1 )  and 
heavy (curve 2) holes in the total number of holes generated optically for 
p,, = 0.236 (GaAs). 
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We thus have N solutions for 2N quantities. 
The condition that (A. 1.4) be bounded at the point 

r = 0 can be applied at a finite point r (such transfer of the 
boundary conditions is discussed in the review in Ref. 28 and 
also in Refs. 29 and 30), where it becomes 

~ r t j  ( r )  ~2 ( r )  =O. (A.1.5) 

The matrix p ( r ) ,  which in our case has N rows and 2N col- 
umns, satisfies the matrix system of equations28 

cp'+cpil-cpAcp+ (cpcp+)  -'cp=O (A. 1.6) 

and the initial condition (A. 1.4) : 

~ p n i  (0) -- (qo) ,i=Tni-'. (A. 1.7) 

It is important to note that p ( r )  can be expanded near 
the point r = 0 as a power series,28 in contrast to individual 
solutions of the system (A. 1.1). In particular, if r, is suffi- 
ciently small, then 

The matrix p, found by substituting Eq. (A.1.8) into Eq. 
(A. 1.6) and equating to zero the sum of all the terms on the 
left-hand side that do not depend on r,. The matrix p ( r )  
specified at near-zero but finite point r, can be transferred by 
means of Eq. (A. 1.6) to an arbitrary point r, 2 1. 

Let us assume that y(q) (r) (q = 1, ..., 2N) are such vec- 
tor solutions of Eq. (A. 1.1. ) for which in the limit r + w 

only one function ( f, or f, ) differs from zero and it is given 
either by 

[ (2 ln )  (dkldE) ] '" s in  (kr+bc) 

where k = k, or k,, and 8, is the Coulomb phase of Eq. 
( 14). These 2N solutions ( N  sinusoidal and N cosinusoidal) 
are orthonormalized, but they do not satisfy the condition at 
zero. 

The method of asymptotic expansions of solutions of 
ordinary differential equations (see, for example, Ref. 3 1) 
can be used readily to obtain a correction -r; ' to asympto- 
tic solutions y'q) ( r )  at a sufficiently distant point r, . This 
makes it possible to solve 2N Cauchy problems starting from 
the finite point r, and then obtain 2Nvectors yCq' (r,  ) at the 
same point r, to which the matrix p ( r )  specifying the finite 
nature of the solutions at zero is transferred. We shall seek 
solutions in the form 

4 

where a, are the amplitudes. Substituting Eq. (A. 1.9) into 
the finite solution condition (A. 1.5) taken at an intermedi- 
ate point r,, we obtain N homogeneous equations for 2N 
amplitudes a, : 

This system has N linearly independent solutions a? 
(S = 1, ..., N), which should be orthonormalized: 

9 

Knowing the amplitudes, we can find N orthonorma- 
lized solutions for the radial functions at any point r > r,,. 

We can obtain the eigenvalues of the energy E and the 
eigenfunctions of a discrete spectrum by writing down at a 
sufficiently distant point r, the condition for finite solutions 
at in fin it^^^.^' [ N  conditions for 2N quantities yi (r, ) ] and 
then use Eq. (A. 1.6) to transfer this condition from r, to an 
intermediate point r,. At this point we obtain 2N homogen- 
eous solutions for 2N quantities yi (r,) ( N  conditions for 
finite solutions at zero and N conditions for finite solutions 
at infinity). The eigenvalues are found by equating to zero 
the determinant of the system. 

APPENDIX 2. 

Unitarity of a matrix of complex amplitudes 

We shall multiply term-by-term the first equation in the 
system ( 12) for the first solution f by the function f :2'(r) 
and the second equation by f i2'. We can similarly multiply 
equations for f ;[;{ by f jl' and f i l ' ,  and subtract from the first 
equation of the first system the first equation of the second 
system, and then from the second equation of the first system 
the second equation of the second system, and then we shall 
add the results. This shows that d W / d r  = 0, where 

For those solutions which are finite at zero, we find that 
f lml -f 0 in the limit r -+ 0 and this variation is not slower 
than r, so that W(0) = 0 and, therefore, for all values of r, we 
have 

W ( r )  =O. (A.2.2) 

Similar relationships [with W(r) without the last term] are 
well known from the quantum theory of multichannel scat- 
tering" and they follow from the Hermitian nature of the 
problem. 

Substituting in Eq. (A.2.2) the asymptotic expression 
( 13) for the functions f in the limit k ,,, r - co , we obtain 

( 1 )  (2)  a a s i  ( 6 ,  6 , . )  =O. (A.2.3) 
Iml 

This can be written in the form ( 16) and hence [allowing for 
the orthonormalization condition ( 15) 1 we find that the 
matrix of complex amplitudes (17) is unitary. 
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