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An inelastic-channel suppression mechanism not connected with Bragg diffraction in a three- 
dimensional lattice is investigated using a two-dimensional model. To this end, coherent scatter- 
ing by a monatomic crystalline film is considered, with account taken of the mutual irradiation of 
its sites by scattered radiation. The same problem is considered simultaneously on the basis of a 
modification, formulated in the paper, of the optical theorem for a planar lattice. The result is a 
general formula for the amplitude q, of planar scattering in terms of the individual amplitude f, of 
the free site, as well as an expression for the change f,+& of the free amplitude when the sites 
combine to form a lattice. The relations derived predict an abrupt growth of the coefficient of 
reflection from one atomic plane at incident-radiation frequencies close to the resonant atomic 
ones. If inelastic channels are present, they may be suppressed, so that the same radiation can be 
almost totally reflected backward from a two-dimensional crystal, even though it is almost com- 
pletely absorbed when scattered by an isolated site. A connection is obtained between the reso- 
nant-radiation linewidth and the band structure of a two-dimensional crystal. The possibility of 
observing the effect is discussed. 

1. INTRODUCTION 

When radiation interacts with a solid, an important role 
can be played by effects connected with coherent scattering 
by an individual atomic plane of the crystal. Besides Bragg 
diffraction,' this scattering can cause, for example, channel- 
ing between the It is also of interest for investiga- 
tion of crystalline planes of atomic thickness, which can be 
produced on the ~ u r f a c e ~ - ~  or in the interior7.' of material 
transparent to the radiation in question. 

The known description of planar scattering' is restrict- 
ed to an approximation in which the scattering is regarded as 
weak. This approximation leads to the formula 

AN, 
qo=i f,,, 

sin O 

that express the amplitude q, of elastic planar forward scat- 
tering in terms of the wavelength A, the site surface density 
No,  the glancing angle 6, and the amplitude f, of the elastic 
forward scattering by an individual site. The dimensionless 
amplitude q, is obtained by summing the scattered waves 
from all the sites of the planar lattice under the condition 
that the sites themselves are excited only by the incident 
wave. This condition means that Iq,l 41, i.e., 

I f o J  <sin O/AN,= ( a Z / L )  sin 0 ,  (1.2) 

where a is a quantity of the order of the planar-lattice con- 
stant. The approximation indicated is regarded as sufficient, 
for in contrast to a three-dimensional lattice, where a small 
scattering effect can build up over a stack of planes, there is 
here, so to speak, nothing to build up on (if the case 8 4  is 
disregarded). The problem of taking exact account of multi- 
ple scattering by sites of an isolated atomic plane has, to our 
knowledge, not even been raised. 

It is just this problem which is the subject of the present 
paper. It is shown that in a number of important cases multi- 

ple scattering by a planar lattice can play a decisive role. A 
new formula is then obtained for q,. In the weak-scattering 
limit it includes Eq. ( 1.1 ), but in the general case it describes 
qualitatively new phenomena. At resonance, in particular, 
an atomic plane becomes optically rigid, and the coefficient 
of reflection from it can reach almost unity even for certain 
x-ray frequencies at arbitrary 13. If inelastic channels are 
present, they may become suppressed, so that a system of 
atoms that absorb the particular radiation differently even in 
a three-dimensional lattice, can reflect this radiation elasti- 
cally without absorption if the atoms are ordered in a single 
plane. A simple relation is found between the linewidth of 
such resonant reflection and the lattice characteristics, so 
that information can be obtained on the energy band struc- 
ture of a two-dimensional crystal. 

2. STATEMENT OF PROBLEM 

Consider an isolated atomic plane xy constituting an 
ideal two-dimensional crystal with constant lattice vectors 
a, and a,. The properties of a single lattice site are character- 
ized by the atomic elastic-scattering amplitude f,(w), 
which, in contrast to (1.2), is not assumed to be small. The 
lattice is irradiated by a plane wave E, exp[i(k-r - wt) ] of 
frequency w that can coincide with an arbitrary resonant 
atomic frequency w,, i.e., be located inside the absorption 
band for the corresponding bulk crystal. It is required to 
determine the field coherently scattered by the atomic plane, 
and find the general form of the function go( f,) that de- 
scribes both weak and strong (including resonant) scatter- 
ing. 

To solve this problem, exact account must be taken of 
the effect of mutual irradiation of the lattice sites by the 
scattered radiation. This is done for the case when the atomic 
dimension a, and the atom-oscillation frequency amplitude 
are small compared with a,,  a,, and the wavelength A. The 
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scattering site can then be regarded as pointlike, and the 
scattering itself as dipolar. 

We derive an expression for the total field E "(r, t )  at an 
arbitrary point of space r = ( x ,  y, z )  = ( p, z )  

where E "(r, t )  is the sum of the incident and all scattered 
waves. Each of the latter depends in turn on the total field 
E( p,, , t ') at the corresponding site (the scatterer) . The 
coordinates p,, = ma, + na, with integer m and n number 
the sites, and the origin is at the site with (m, n )  = (0,O). 
The indices a andP (for which the Einstein summation rule 
is assumed) number the wave-function components of the 
scattering particles (in our case-the components of the 
electric vector E) .  The quantities Qg (p,, - r )  describe 
the contribution of the component of the total field at the 
(m, n)  site to the a component of the scattered radiation at 
the point r. Given the frequency w, this contribution is pro- 
portional to the amplitudefo(w) of the elastic scattering of 
this frequency by the bound site. In fact, the field Em ( p,, ) 

X e '"' induces at the site (m, n ) a dipole moment 

where M is the mass, w, is the natural frequency, and w, is 
the width of the resonant line of the corresponding bound 
oscillator. It is assumed for simplicity that the atomic-polar- 
izability tensor of the lattice material reduces to a scalar, and 
that the elementary scatterer is two-level, i.e., equivalent to 
one oscillator. Using the expression for the amplitude of for- 
ward scattering by an isotropic oscillator 

we rewrite (2.2) in the form 

Substituting this in the known equation9 for the field pro- 
duced at the point r by the oscillating dipole moment 
dm, ( p,, ) , we obtain 

where 

n,, is the unit vector in the direction from the site (m, n)  to 
the point r, and k = w/c. At I p,, - r l <  a,, allowance for 
the finite dimensions of the site leads to the substitution 
I p,, - rl-, in the denominators of (2.6). 

The elastic scattering is described by a Fourier ampli- 
tude E, (r)exp( - iwt), for which (2.1 ) with allowance for 

(2.5) takes the form (we omit the index w) 

We use (2.7) to calculate the fields at the lattice sites. Since 
each site (m', n') is acted upon by an external field produced 
by all sites except by itself, the sums of the right-hand side of 
(2.7) are taken at p = p,,,, without the term with 
(m, n )  = (m', n'). In the upshot we obtain for the values of 
E ( p,, ) a system of inhomogeneous equations with a speci- 
fied external "source" 

where 

m', n'=0, +I, t 2 ,  . . . . 
The scattering effect of interest to us is described by a parti- 
cular solution of the system (2.8); this solution enables us to 
express the values of E (  p,, ), and by the same token also 
the amplitudes 9,- IE - E,I/IE,I of the waves scattered by 
the lattice, in terms of the atomic amplitude f,. 

3. SOLUTION 

When a transition is made from a three-dimensional to 
a planar crystal, the translational symmetry is preserved in 
the planes z = const. The field of a two-dimensional crystal 
is such a plane should therefore have the form of a Bloch 
wave 

with a doubly periodic function 

=EOe'hz+ Y,E,, ( z )  exp {2i (jk,+ik,)p}. (3.2) 
j I 

Here k, and k, are the k components parallel and perpen- 
dicular to the lattice, respectively, while k, and k, are the 
reciprocal-lattice vectors of the two-dimensional crystal. 
The amplitudes Ej, ( z )  are determined by the inverse Fourier 
transform of the scattered field E, ( r )  = E(r )  - E, 
x exp(ikr) in the plane z = const: 

where the integral is taken over the area u, of the two-di- 
mensional unit cell. 

Since the periodic function E, ( p ,  0)  assumes the same 
value 

at the sites p = p,,, we can seek the particular solution of 
(2.8) in the form 
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E (p,,) =EfeikPmn (3.5) 

with a specified k and an unknown "amplitude" E,. Substi- 
tuting this in ( 2.8 ) we get 

By virtue of the same lattice periodicity that leads to the 
Bloch function, the sum 

( m , n ) f  (m',n') 

(3.7) 

is independent of the number (m', n') of the site for which it 
is calculated. The infinite system (3.6) degenerates then into 
the finite (three-dimensional for photons) 

E f a + i f o ~ B a E f ~ = ~ o a .  

Hence 

where A is the determinant of the system (3.8) 

A 1 1  6Ba+ifoEsa(, (3.10) 

and A; are the corresponding algebraic components. The 
tensor factors A;/A in (3.9), because of which the ampli- 
tude E, of the field acting on the sites can differ greatly from 
E,, describe the result of the multiple scattering. 

Substituting the obtained values Ea( p,, ) in the right- 
hand side we obtain an explicit expression for the field at any 
point r: 

It is easy to verify that the right-hand side of (3.11 ), multi- 
plied by exp( - rk, p),  satisfies the condition (3.2). We ob- 
tain then Eiq (z) from (3.3). Inasmuch as the field scattered 
by the lattice is described at Izl+m by a discrete set of plane 
waves, the coefficients Ej, (z) take the asymptotic form 

Ejl(z+*oo) -Ejlf exp(*ik,, ,rz), (3.12) 

where 

At sufficiently large j and I the harmonics (3.12) describe 
surface waves, with imaginary k,, j , ,  which travel over the 
lattice. 

Taking (3.3), (3.11), and (3.12) into account we ob- 
tain general equations for the amplitudes of any order of 
diffraction 

where as Iz 1 + m we have 

and the signs + and - correspond to scattering into the 
half-spaces z  > 0 and z  < 0. These relations can be simplified, 
since the tensor {; has a symmetry that permits it to be 
diagonalized by an appropriate choice of the axes 
(x, y)  t, ( 1,2)  in the lattice plane. The tensor AE/A is dia- 
gonalized simultaneously with f ; . As a result, the system 
(3.8) breaks up into three independent equations: 

E ~+ifO~,"Efa=Eoa,  a=l, 2, 3, 

so that 

It follows in this case from (3.14) that 

~ ~ ~ * ~ = i q ~ , ~ f ; ~ , ~ /  (l+iE,pf,). (3.14a) 

Let the incidence plane pass through one of the principal 
axes (the 2 axis) of the lattice, and let the incident photon be 
polarized in the direction of the 1 axis, so that E{ = EoSf 
and 

(l+iEllfo). (3.16) 

For photons that are scattered forward or are scattered in 
accordance with the usual law [ j = I = 0 in (3.12) ] we have 
a = 1 and it follows from (3.16) that 

where f ={ : is the corresponding principal value of the ten- 
sor{;, whilev=v;f$ = v&. 

Let us calculate the parameter v for the case Ass. As 
I z l - ~  and a t j  = I = 0 the value ofthe double sum in (3.15) 
averaged over the area a, can be replaced by its value on the 
site (0,O) i.e., a t p  = 0 and as Izl--+m we have 

We replace the remaining summation over the sites by inte- 
gration over the lattice plane, lettingp,, +p and introduc- 
ing the integration element 

dN,=N,pdpdcp=N,Pdr"dq, 

where p and e, are polar coordinates in the xy plane with 
center opposite the observation point P, and 
i = ( P2 + 2) 'I2.   hen 

m 211 

iq == N o  1 El1 (i) e'*i 5 e rp  {ik (r2 - 9)'" cos 0 cos rp 
141 o 

As Izl-m we can confine ourselves to the first term of { : in 
(2.6) 

El' (F) =F-I (I-n12) =r"-'. 
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Substituting this in (3.19) and recognizing that integration 
with respect to p yields the zeroth-order Bessel function 
I,(k(? - z2)"' cos 8), we obtain1' 

iq = 2nN, exp (ik I z I sin 0) et" J o  ( k  ( F 2  - z2)'/' C 

The result (3.20) coincides with the coefficient in ( 1.1 ). 
Therefore in the weak-scattering limit ( f04) Eq. (3.17) 
goes over into ( 1.1 ), as it should. 

The calculation of the parameter 6 is much more com- 
plicated, inasmuch as an essential role is played in (3.7) at 
z = 0 by the interaction described by the second and third 
terms of (2.6), and the dependence on p is significant in each 
term. Therefore depends strongly on the actual geometry of 
the lattice. 

The obtained relations (3.14)-(3.17) connect the pic- 
ture of the diffraction by a two-dimensional crystal with the 
geometric (vectors a, and a,) and physical (amplitudefo) 
properties of the crystal. They are valid also if the atomic 
scattering includes inelastic processes with change of fre- 
quency or with photon absorption, since the summary con- 
tribution made to (2.8) by the corresponding inelastic am- 
plitudes is zero. Substitution of these amplitudes in 
(2.1 ) yields an independent system of homogeneous equa- 
tions, that leads to a dispersion relation between the natural 
frequency w' and the quasimomentum +ik of the "photons" 
in the plane lattice. Therefore the form, specified by the sys- 
tem (2.8), of the connection between q, and?, is insensitive 
to the presence of inelastic channels in the atomic scattering: 
information on these channels is contained in the amplitude 

sumption that the lattice thermal vibrations are small, we 
neglect the possible dissipation of the incident energy into 
the additional inelastic channels that are produced when in- 
dividual sites in the lattice are combined to form a lattice, 
and are connected, for example, with photon production. 

Scattering by such a two-dimensional crystal results in 
a finite number of plane waves departing from the crystal 
and having amplitudes q,? = E ,f /Eo. The amplitude of the 
transmitted (incident + forward-scattered) wave is equal 
to 1 + q,. In the case of pure elastic scattering we have 

The summation in (4.2) is bounded by the values j and I for 
which the component k,, j,  in (3.13) in real, inasmuch as in 
the steady state the surface waves add nothing to the energy 
balance. 

Introducing the relative intensities 

we write for the left-hand side of (4.2) 

after which, assuming 

we rewrite (4.2) in the form 

(Re qo)  Re q0+ (Im qo)'=O. (4.4b) 

Y O  itself, but not in the expression that connects q0 with?Oib. This is lattice analog of the optical theorem: the scattered 
The method developed here determines q0 via the am- energy fraction Q --2& jqo12plays the role ofthe (dimension- 

plitudeyo of the bound site. This amplitude, generally 'peak- less) total cross section and is enpressed in terms of the real 
ing, differs from the amplitude f, of the scattering by an part of the lattice amplitude qo. 
isolated site. To determineyo we must take into account the According to (4.4), all the nonzero values of qo(w) lie 
influence of the lattice on the individual properties of each in the left complex half-plane of qo = qo, + iqoi. The maxi- 
site taken separately. mum values of Jq,J are bounded by the condition I 1 + qolz< 1 

4. OPTICAL THEOREM FOR TWO-DIMENSIONAL CRYSTAL 
that follows frdi ' (4 .2) ,  so that 

We solve this problem by a new method that gets lq01G2. (4.5) 

around the computational difficulties in a number of prob- Figure 1 shows plots of foi (for and qOi (qO, ) (at 
lems, since it takes into account the interactions between 
sites automatically. The gist of the new approach is that the 
entire lattice is regarded as one compound scatterer, for 
which is formulated an analog of the optical theorem known ) Im go 
for quasipointlike scatterer. 

For the amplitude f, of scattering by an isolated site, the 
optical theorem can be written in the form 

Im fo=k@Ifo12, (4.1) 

with @ = const = 2/3 in the case of pure elastic dipole scat- Re 6 Keg, 
tering. Relation (4.1) yields for each w a connection 
between Let us Im formulate f, and Ref,. the analog of the optical theorem for a 9 d b 

two-dimensional crystal. In accordance with the initial as- FIG. 1. 
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& = 1) corresponding to pure elastic scattering, with the 
values off, determined from an expression of the type (2.3) 
with or = w, = re 02/c (Ref. 9), where w, is the elastic- 
scattering width. 

The simplest mapping go ++ f, relating the points of the 
planes fo and q,, which would reduce to ( 1.1 ) as fo+O and 
would amount to [go] (2 at 71 f o l >  1, is of the form 

qu=iqfol( l+iEfo) ,  (4.6) 

which coincides with the independently obtained relation 
(3.17). This equation, however, contains the amplitude for 
scattering not by a bound but by a free site, so that the value 
of 4 can differ from the corresponding 6. Optical theorems 
for fo and go allow us to express the real part o f t  in terms of 
v, k, @, and G. Substituting (4.6) and (4.4) and stipulating 
that the resultant relation for f, coincide with (4.1) [i.e., 
that the mapping (4.6) transform the curve (4.1) into 
(4.4) 1, we get 

Re E=@k-Sq. (4.7) 

The imaginary part Im 8 -4 remains in this case arbitrary 
in accord with the fact that the optical theorem determines 
q,(w ) only accurate to an arbitrary mapping qo(o)+q; (a) 
that transforms the curve (4.4) into itself. The uncertainty is 
eliminated by determining zi (k)  from the dispersion rela- 
tions between the real and imaginary parts of the amplitudes 
fo and go. In the present paper the exact form of 4, (k)  is 
immaterial and the expression sought for q,( f,) can be writ- 
ten as 

Qo=irlf~/{l-E,f~+i(@k-ifi~) f,). (4.8) 

Equation (4.8), just as (3.17), remains valid in the presence 
of inelastic processes in the atomic scattering. 

Comparison of (3.17) and (4.8) yields a relation 
between the free and bound amplitudes 

Thus, the lattice optical theorem, first, allows us to express 
q, and f, in terms off, and, second, leaves [recalling the 
remark concerning ii (k ) ]  only one unknown parameter 
6 ( k )  that can be frequently determined from symmetry 
considerations (see below). 

5. RESONANT SCATTERING 

We consider now the following situation: 1 ) the entire 
scattering is pure elastic, i.e., the amplitudes f,(o) and 
go(@) are mapped by points lying on the curves (4.1) and 
(4.4). 2) A>2a, so that (4.2) and (4.3) contain only the 
amplitudes q, and &. 3) the direction of the induced dipole 
moments dm, is either perpendicular to the incidence plane, 
or is the bisector of the angle between the scattering direc- 
tions n& and XI&, (the latter is possible at high polarizability 
for the given frequency".''). In this case can be easily 
determined from the symmetry of the problem. Since the 
amplitudes of scattering in directions that are symmetric 
about d are equal, it follows that q,=q,, - 
Smt2 = So,-' = 1 and @ = + ( 1 + S,-') = 1. All the val- 
ues of q,(o) that are possible in (4.4) lie an the unity-diame- 

ter circle (Fig. lb). The point of intersection of this circle 
with the real axis corresponds to the value q, = - 1 at 
which the transmitted wave q,, = 1 + q, is completely 
damped and the entire incident energy goes over into the 
reflected wave (ij, = go = - 1 ). In other words, at a cer- 
tain frequency one should observe total reflection of the radi- 
ation from one atomic plane at arbitrary 8. This effect fol- 
lows directly from the optical theorem (4.4), although it 
says nothing about the corresponding frequency. It is physi- 
cally clear, however, that this frequency should correspond 
to the resonance o = w, in scattering by a single site. In fact, 
an isolated dipole moment oscillates at resonance with a 
maximum amplitude dm, (w,) . In pure elastic scattering, the 
resonant amplitude f,(o,) = k; dm, (w,)/E, reaches its 
unitary limit i/@k,, while the corresponding cross section is 
a = (d) -' A i. Under the condition A, > 2a this cross sec- 
tion is larger than aA, and it is this which leads to total 
reflection. 

The foregoing is exactly described by Eq. (4.8), but 
according to this equation the resonant value go = - 1 is 
attained by the lattice amplitude at a frequency Z, somewhat 
different from the resonant atomic frequency o,. Substitut- 
ing in the equation q,( f,) = - 1 with G = 1 the expression 
for fo (o ) near resonance 

we get 

The shift of the resonant frequency is due to the shift of the 
atomic levels of the isolated sites when the latter are com- 
bined into a lattice, and is automatically taken into account 
by the term with 4, (k)  in (4.8). 

It is possible, without calculating gi (k),  to estimate the 
order of magnitude of S o  by using for l ( k )  Eqs. (2.6) and 
(3.7), in which the main contribution to Im 6 is made at 
A> 2a by the terms A '/a3 from the nearest sites. Therefore 

Equation (4.8) contains as a particular case the known 
effect of total reflection of light and radiowaves form an 
ideally conducting surface. In (4.8) this effect corresponds 
to scattering near the "resonance" o, = 0 (scattering by the 
free electrons of the metal). In the general case, however, 
(4.8) describes the possibility of total reflection from a sys- 
tem of bound electrons. This reflection can be observed all 
the way to the x-ray band. It is effected not by the interface 
between two media and not by a stack of planes, as in the 
Bragg mechanism, but by a single atomic plane. Thus, we are 
dealing in fact with a new modification of total reflection, 
connected with purely elastic atomic resonance with sites of 
a two-dimensional crystal. This effect can be called total res- 
onant reflection. 
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6. SUPPRESSION OF INELASTIC CHANNELS 

We proceed now to the general case, when inelastic 
channels exist in atomic scattering. The corresponding 
expression for f,(w ) near an isolated resonance is 

where w, = o, + w, is the total width, and o, and w, are 
the width of the elastic and inelastic scattering. Substituting 
this in (4.8) at 6 = 1, we get 

where 

&j r = -=Or* ' iur=o,-( 1- &) o , = ~ .  +-or. (6.3) 
(Ilk 

and 5, is determined by (5.2). 
Expression (6.2) has the same form as (6.1 ) and de- 

scribes resonance with a scatterer having a natural frequen- 
cy 6, and effective widths 6, and 6,; these widths play the 
role of the elastic and total width of the planar-scattering 
resonance line. Inasmuch as at A, > 2a we have 

~ , / ( , , , = ~ / @ k =  (2nm sin 0 ) - '  (Lola) "1. (6.4) 

Equation (6.3) describes the broadening of the scattering 
line. This broadening corresponds to merging of the reso- 
nant levels of individual sites into a band when the two-di- 
mensional crystal is formed. The width of the produced band 
is proportional, in accord with the band theory, to N,  and 
increases together with A,. The last circumstance is due to 
the fact that the low transition frequency w, couples close 
atomic levels, meaning high-lying atomic levels that are sub- 
ject to large broadening. 

Since lattic formation results not only in broadening but 
also in a shift of the atomic levels, the center of the resultant 
band is shifted relative to the initial level En.  This leads to a 
resonant-frequency change w 0 4 , ,  the value of which is the 
same for pure elastic as well as for inelsstic scattering, and 
the relative shift Sw/w, depends on A, in the same manner as 
the broadening G,/w,. 

Thus, the relations obtained connect the scattering pic- 
ture with the energy band structure of a monatomic layer. 

According to (6.3), the elastic and inelastic elementary 
widths enter in 63, with different weight factors. This can 
lead to a unique effect of suppression of the inelastic chan- 
nels in planar scattering. In fact, assume that for an isolated 
site we have 

i.e., only one particle out ofN = b-  ' is elastically scattered. 
Nonetheless, under the condition 

we obtain 5, zG,, and for a two-dimensional crystal almost 
the entire resonant scattering turns out to be elastic with 
amplitude q, = g, = - 1. If (6.6) is satisfied for 8 = r/2, 
almost total reflection from the atomic plane will be ob- 
served at resonance for arbitrary 8, although the same radi- 

ation is almost totally absorbed in the case of scattering by 
free sites. The physical reason is that in strong scattering and 
when condition (6.6) is satisfied the resultant field at the 
lattice sites becomes weak. Indeed, at resonance expression 
(3.8) for the field E ,  takes, if (2.6), (3.7), and (6.6) are 
taken into account, the form 

This restructuring of the field prevents the appearance of 
inelastic channels. 

The optical theorem provides a geometrically lucid in- 
terpretation of this effect. According to (4.1) and (6.1 ), the 
total cross section in the presence of inelastic channels is a 
fractionb of the unitary limit A @Dr. The elastic cross sec- 
tion, on the other hand, is a fraction B of the total cross 
section, i.e., it is equal toB2(A ?@r) (Ref. 13). Under con- 
dition (6.6) even these small fractions become comparable 
with the area a, of the unit cell and "overlap" the lattice. 

We note that suppression of inelastic channels is a 
known effect in diffraction by a three-dimensional lat- 
tice.14," The process considered here pertains to one atomic 
plane and is brought about by an entirely different mecha- 
nism. The wave-field redistribution, which causes the field at 
the sites to be weak, is due here to the resonant growth of the 
elastic cross section at the individual site. Therefore the en- 
tire effect is connected with the discrete atomic frequencies 
and can be observed at any value of 0. 

To observe the effect in experiment it suffices to have a 
perfect lattice of monatomic thickness on a substrate trans- 
parent to the radiation in the given band. We consider by 
way of example a monatomic Li film on the surface of a 
suitable sample. Let the incident particles be photons that 
are resonably scattered by the 1s u 2p transition of the Li 
atom, and resonant wavelengths A, = 220 A for the unexcit- 
ed atom and 200 A for an atom with an excited 2s electron." 
The probability of the radiative 2p u 1s transition in Li with 
elastic scattering of the photon is w,-(e2/K3)a: wi 
--2.5.10" s- '. The probability of the main inelastic process, 
viz., emission of an Auger electron from the L shell, is 
w, =: 1.86 X 1014 s- ' (Ref. 19). Allowance for the fact that 
the Li outer electron is strongly shifted to the substrate 
yields w, z 1013 s-'. Using by way of estimate the intermedi- 
ate value w, --2.5.1013 s-', we obtainp = (one photon 
out of 100 is scattered elastically). In scattering by a two- 
dimensional crystal with a = 3 A we have (A0/al2 = 5.103, 
and the condition (6.6) is satisfied for all 8. Equation (6.2) 
yields for the parameters considered q, = q , ~  - 0.9, so 
that the reflection coefficient at normal incidence is ~ 0 . 8 ,  
and the transmission coefficient is (1  + go)2=: lop2. Ap- 
proximately 20% of the total radiation is dissipated at the 
lattice sites. 

7. CONCLUSION 

The method used in the paper can be generalized to take 
into account the possible transfer of energy to collective exci- 
tations. For the case of phonon excitations this allowance 
should lead to the appearance, in (3.14), of factors of the 
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type exp( - ?/U '1, where ilZ is the mean squared site 
displacement from the equilibrium position. 

The problem considered and the main results pertain in 
principle to scattering of particles of all kinds. The main 
equation (4.6) can be used not only for an individual plane, 
but also to a layer of a substance. In this case, however, ac- 
count must be taken of the effects of damping and phase shift 
between the oscillations of the induced dipoles at different 
depths of the layer. Owing to these effects, elementary radia- 
tors on opposite faces of the layer cannot be regarded on a 
par, and the symmetry considerations used in Sec. 5, which - 
lead to the equalities goo+ = q,, @ = 1 and by the same to- 
ken to the possibility of total reflection, are no longer valid. 
Therefore an individual atomic plane can, under certain con- 
ditions, reflect radiation better than a whole crystal. This 
can be used, for example, to develop frequency-selective ra- ' 

diation reflectors, and to investigate a number of surface ef- 
fects. 

In conclusion, I am deeply grateful to B. M. Bolo- 
tovskii, V. L. Vinetskii, V. L. Indenbom, and V. Kaganer for 
a discussion of the work and for helpful remarks. 
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