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A three-dimensional Edwards-Anderson model of spin glass with a large but finite interaction 
radius is analyzed. A phase transition completely different from that which occurs in a spin glass 
in a space of higher dimensionality (d>4) is shown to occur in this model. The hypothesis of scale 
invariance does not apply to a phase transition of this sort, so that at the phase transition the 
physical properties have singularities which are more complex than power-law singularities. The 
behavior of the nonlinear susceptibility i ( T), of the maximum relaxation time t,,, ( T), and of 
the relaxation law (Si (0)Si ( t ) )  at t(t,,, are calculated in the critical-temperature region 
above the transition point. 

1. INTRODUCTION 

The surprising spin-glass properties that stem from the 
formation of a frozen random state of the magnetic system at 
a sufficiently low temperature were discovered by Canella 
and Mydoshl (see Ref. 2 for a review of the present experi- 
mental situation). The first theory of this state was offered 
by Edwards and Anderson in Ref. 3, where it was shown that 
in the mean-field approximation a lowering of the tempera- 
ture results in a phase transition from a paramagnetic phase 
to a frozen random state (the "spin glass"). Edwards and 
Anderson3 studied a model with a random, alternating-sign 
interaction between localized magnetic moments [see 
expression (2.1 ) below]. A very simple version of the Ed- 
wards-Anderson model, with an infinite interaction radius 
(the Sherrington-Kirkpatrick model7), has by now been 
studied in detai1,4-6 but we have essentially no theory for the 
Edwards-Anderson model with a finite interaction radius in 
three dimensions. In particular, the basic theoretical ques- 
tion of whether a thermodynamic phase transition occurs at 
a finite temperature has not been resolved. The present opin- 
ion regarding this problem, based on experimental results 
and numerical simulations, is as follows: 

1. a) Precise magnetic8 and magnetocalorimetric9 mea- 
surements in the paramagnetic phase indicate a critical 
anomaly in the nonlinear magnetic susceptibility~ = d 3M / 
dh in the alloy Cu, -, Mn, (x-0.01). The critical index is 
y23.5 [X m ( T - Tf ) - 1, quite different from the predic- 
tion of the mean field theory, y,,, = 1. b) A numerical 
simulation on a two-dimensional Edwards-Anderson mod- 
ell0 demonstrates that there is no phase transition in it at a 
finite temperature [in particular, i m T -4(d = 2) 1, while a 
numerical simulation for a three-dimensional model indi- 
cates that there is a phase transition." A numerical analysis 
of the high-temperature series in an Edwards-Anderson 
model in a space of arbitrary dimensionality d indicates1' a 
phase transition only at d>4. 

2. The experimental results on a wide variety of spin 
glasses13 can be described by assigning the freezing tempera- 
ture Tf (h)  (i.e., the temperature at which an irreversibility 
of the magnetic response appears) a dependence 
Tf (h)  - Tf (0) = - Ah 'I3 on the external magnetic field h. 

The exponent 2/3 agrees with the prediction of the mean 
field theory,14 while the coefficient A is in all cases much 
greater (e.g., by an order of magnitude) than the predicted 
value and increases as the scale time of the measurements 
increases. 

3. As the temperature is lowered and approaches the 
freezing point, the spectrum g ( ~ )  of spin relaxation times, 
broadens rapidly. The maximum time t,,, can be described 
satisfactorily by a Vogel-Fulcher law t,,, -to exp [E, /  
( T - Tf ) 1, while the mean relaxation time t, has no anom- 
alies of any sort near Tf (Refs. 15-17). At T <  Tf, the time 
t,,, turns out to be comparable to the duration of the experi- 
ment, t,,,; it has not been found possible to detect a satura- 
tion in the increase in t,,, with increasing te,, (Ref. 18 ) . 

4. A spin anisotropy, even very slight, substantially in- 
creases Tf in real sub~tances.'~In numerical (Monte Carlo) 
simulations based on a model with isotropic vector spins, the 
freezing is not observed at all, while the inclusion of a slight 
dipole interaction leads to a free~ing.'~." 

In the present paper we analyze a three-dimensional 
Edwards-Anderson model with an interaction of large but 
finite radius. We show that all the facts listed above can be 
understood (at least qualitatively) on the basis of a common 
microscopic theory. In particular, the ordinary phase transi- 
tion of the type which occurs in the Sherrington-Kirkpatrick 
model7 actually occurs only at d>4, but a phase transition of 
a completely different type occurs at 2 < d  < 4. The other 
phase transition is unrelated to the macroscopic population 
of one delocalized state, and it is apparently not discernible 
by the standard analysis of high-temperature series. 

The basic idea of our approach is to systematically sin- 
gle out critical variables in analogy with the construction of a 
transformation of the renormalization group in the theory of 
ordinary phase transitions. Roughly speaking, we single out 
groups of variables (clusters) which are strongly correlated 
with each other, and we construct an effective free energy for 
these groups. The resulting free energy turns out to be equi- 
valent to an Edwards-Anderson model with renormalized 
parameters (the effective temperature and the number of 
neighbors, Z ) .  In contrast with the known phase transitions, 
the transformation of the renormalization group is funda- 
mentally discrete; i.e., the permissible change in scale is dic- 
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tated by the initiating parameters of the model, and for this 
reason there is a discontinuity of the scale invariance at the 
point of the transition (in 3 0  space). The apparent reason is 
that it is not possible to parametrize the spin configurations 
by a finite number of slowly varying fields (order param- 
eters). 

As the temperature is lowered, correlations of variables 
within one group appear first; then the variables correspond- 
ing to groups as a whole start to become correlated; etc. As 
the temperature is lowered, a discrete hierarchy of correla- 
tions thus arises in the system. At the transition point this 
hierarchy becomes infinite. We stipulate at the outset that 
either "group" or "cluster" is a poor word to use here, since 
it gives the incorrect impression that each variable is part of 
only a single group. Actually, these "clusters" overlap great- 
ly, so that the value of the spin at each site is determined by a 
set of a large number of variables corresponding to different 
clusters. 

In Section 2 of this paper we derive an effective Hamil- 
tonian of the slow degree of freedom (by "slow" we mean a 
slow relaxation near the transition point). In Section 3 we 
analyze the condensation of localized critical modes, and we 
derive a renormalized Hamiltonian of the same form as the 
original Hamiltonian of the Edwards-Anderson model. An 
explicit construction of the renormalization procedure al- 
lows us to determine the nature of the nonlinear susceptibil- 
ity near the transition point. This is the subject of Section 4. 
It turns out that in this case the nonlinear susceptibility be- 
comes infinite not in accordance with a power law but oscil- 
lating between two power-law envelopes. In Section 5 we use 
the same method to study the purely dissipative dynamics of 
the Edwards-Anderson model, and we derive the maximum 
relaxation time as a function of the temperature (an analog 
of the Vogel-Fulcher law) and the behavior of the correla- 
tion function (Si ( 0 ) S i  ( t ) )  near the transition. In the last 
section of this paper we discuss the results. 

2. DERIVATION OF AN EFFECTIVE INTERACTION OF THE 
SLOW DEGREES OF FREEDOM 

1. Let us put the Edwards-Anderson model in a form 
convenient for our purposes. We consider a system of classi- 
cal spins S, (i) ( a  = 1, . . . , n; St = 1 ) which are scattered 
at random with a density c in ad- dimensional space ( we will 
be concerned for the most part with the case d = 3 ) .  The 
interaction between spins is assumed isotropic and uncorre- 
lated for different pairs of spins: 

\ 

J,:=K (rt-r,) , 1 K ( r )  d3r=Ko.  

We assume that each spin interacts with a large number 
(2) of neighbors; i.e., we assume 

Z=CK,' [ J K ( r )  i d'r ] " >I. (2.2) 

Below we will express the temperature in units of KO, so 
that we have go = 1 in terms of these new units. 

In the case Z = N (where JV is the total number of 
spins in the system) we can integrate the partition function 
over all the spin configurations for the given values of the 
mean spins at each site, (S (i)  ) = mi. We derive an effective 
free energy F{m(i)); the state of the system in the limit 
Z = N - m  corresponds to the minimum of F{m) (the 
TAP eq~ation~'. '~). In this case the functional F{m) re- 
places the Ginzburg-Landau free energy. At Z<X, we need 
to consider the fluctuations of F{m) near the minimum. The 
condition Z )  1 can be used to calculate an effective Hamil- 
tonian for such fluctuations. We wish to stress that the mi 
parametrize poorly the fluctuations of F{m), i.e., they are 
not correct slow variables. We will make the transformation 
to these variables later on. The functional F{m) agrees with 
(see the Appendix) the free energy derived in Refs. 22 and 
23: 

In the last term we have retained only those terms of the 
expansion in powers of mf, assumed small, which we will be 
needing (at T- T, ). Later on we will expand mi in the ei- 
genfunctions of the matrix Ji,. , and describe therefore some 
of their properties. 

2. At Z = m all the eigenfunctions of the matrix Jg are 
delocalized; the magnitude of (i)  is completely random, 
with a Gaussian distribution. The different (it) ,  $A (i)  
are not correlated with each other, simply satisfying norma- 
lization and orthogonality conditions: 

The eigenvalues EA corresponding to these eigenfunctions 
are distributed over the interval ( - 2, 2) with a density 
p (E)  = ( 2 ~ )  - ' (4  - E 2)"2 (see Refs. 24 and 25, for exam- 
ple). 

At a finite Z s  1, the spectrum of eigenvalues is not re- 
stricted to the interval ( - 2, 2); there are "tails" with 
IEA I > 2. The states in the tail are localized, while the states 
with eigenvalues in the interior of the interval ( - 2,2) are 
delocalized. Everything we said above about the case Z = m 
applies to the latter states. The width of the transition region 
between these two regimes decreases with increasing Z. The 
events which unfold in this region are studied in localization 
theory, and we will need to draw on the results and represen- 
tations of that theory. We first examine the properties of 
delocalized wave functions far from the localization thresh- 
old. 

We use the replica method, which reduces the problem 
of the behavior of an eigenfunction of a random matrix to 
problems of field theory. For example, the state density is 
expressed in terms of the field correlation functionsz6: 
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1 
p ( E )  =- - Imlim i  J rpi1rp; e ip{-  +E [I. ,-  ( ~ + i 6 ) 6 ~ ~ r p . ~ r p , ~ } ~ r p ~  

n I ,o  
(2.4) 

',I.'' 

where I is the number of replicas, i.e., the number of compo- 
nents of the field p. After taking an average over the random 
components, we can conveniently write the functional inte- 
gral as 

1 
p(E)=- - Imlim i Jrp;q+' exp{+ +E (E+iS)  (rp;)' 

n r + o  

1 
=-- Im lirn i  J rp,'q,: exp {LC (Et i s )  (q~;)' 

n 1 - * o  i,o 

1 
--- - Im lim j [ ( E + ~ B )  6.b+~,.b]1;6i 

;I. t - 0  

As we will see below, the characteristic values of pb vary 
only slightly from point to point, so we can take the contin- 
uum limit and use the replacement 

where x is the reciprocal interaction radius: 4 ~ x - ~ s Z .  In 
the region of eigenvalues corresponding to delocalized states 
in the interior of the intepal ( - 2, 2), we can completely 
ignore the xariations of Qi from point to point, and we can 
determine Q from the condition for a minimum of the argu- 
ment of the exponential function in (2.5) : 

We find 

P b = P b Q o ,  

Qo=-E/2+i( l -E2/4) '",  IE1<2, 
(2.7) 

Qo=-E/2+sgn E (E2/4 - I )" ,  IE122.  (2.8) 

Substituting solutions (2.7) and (2.8) into (2.5), we 
find the result mentioned above for the state density: 

p ( E )  = (4 -E2)  '" (2n) - '0  ( 4 - E 2 ) .  (2.9 1 

At Z> 1, expression (2.9) for the state density is inap- 
plicable near the ends of the energy interval ( - 2, 2). To 
determine the range over which it is applicable, we will cal- 

h 

culate the correction to it from the spatial fluctuations Q. 
Expanding ihe argument of the exponentialAfunGion in 
(2.5) for S{Q> near the maximum Qo in (2.8), Q = Q, + Q, 
we fiad the following expression, which is accurate enough 
for our purposes near the ends of the energy interval 
(E = IE I - 2(1): 

Let us determine the first correction 6 2  to the Green's 
function (@ = Go. This correction arises in second-order 
perturbation theory in the interaction spO and is small ex- 
cept in the region E( 1: 

Comparision of (2.10) and (2.11) shows that the correction 
6 2  becomes comparable to G; ' at 

E ~ X 4 /  (4n)  '/J%Z-"~. (2.12) 

The characteristic width of the transition region must there- 
fore be on the order of e o s Z  -4/3. We can now show that in 
the tail, (E I - 2,.cO, the state density falls off exponentially. 
The state density calculated by perturbation theory is zero in 
this region, so that we need to take into account nontrivial 
extrema of the action S (see Ref. 27, for example), which is 
given at E > 0, I & ( (  1 by 

We seeka solution by the method of steepest descent for the 
matrix Q in a form which is symmetric with respect to repli- 
cas: 

p.6 ( x )  =q ( x )  eUeb, 

where eO is a unit vector in replica space. For q(x) we have a 
radially symmetric equation of an extremal: 

As was shown in Ref. 28, Eq. (2.14) has a solution with a 
finite action So. To find So, we put Eqs. (2.13) and (2.14) in 
dimensionless form: 

q ( r )  = ~ ' ~ f  ( x ~ " . r ) ,  

where f(y) is the solution of the dimensionless equation 

The state density is given with exponential accuracy by 
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It follows from (2.17) that the state density falls off 
rapidly with increasing E far from the transition region. The 
magnitude of the state density in the transition region [the 
coefficient of the exponential function in (2.17) 1 can be 
found most simply from the condition for the joining of 
(2.17) and (2.9): 

The scale dimension of the localized states in the region 
E)E ,  is the same as that of the classical solution, (2.15); i.e., 

As E decreases, the dimension I(&) increases, and it be- 
comes infinite at E = E, (the localization threshold). The 
dimension I(&) can be expressed in terms of the field correla- 
tion functions. Let us consider the density-density correla- 
tion function 

For values of E in the region of localized states, this 
correlation function is dominated by terms with n = m: 

The scale distance over which RE (x) decreases is thus 
the same as I(&) ( E  > E, ). The quantity RE (x) could be ex- 
pressed directly in terms of the field correlation functions, in 
the same manner asp  ( s )  (Ref. 29) : 

RE(x)  =- lim c p i l ' ~ ~ i q ~ l q ~ ~  
1-0 

After some calculations analogous to the derivation of 
(2. lo), and after the introduction of Qi,b (x )  (p, r = 1, 2), 
we find the effective action 

1 + - Sp ln (k+ii6+())} d3z. 
2 

(2.23 1. 
A=iYb ((a,) ,,, f=6"tiPr. 

h 

Deep in the region of delocalized states, Q is given by 
the solution of the equation for an extremum of S in (2.23): 

h h 

As E is increased, fluctuations of Q around Q, arise at 
(&I-Z -4/3. A distinction must be made between fluctu- 

h h h h h  

ations of two types: Goldstone modes, Q = U - 'Q,U ( Uis a 
unitary matrix), and longitudinal fluctuations, which have a 
gap The longitudinal fluctuations, in contrast with an 
ordinary phase transition, smear the singularity in p(c)  at 
E = 0, SO that the singularity [i.e., the point at which I ( & )  
becomes infinite] is related only to the Goldstone modes, for 
which we can find an effective action: 

A 
S ( 0 )  = -- J (a,b-l) ( a P i ) ) d 3 ~ ,  A=x-'(-6). 

2 (2.25) 

0=0-'AO. 

We have ignored the longitudinal fluctuations, so that 
expression (2.25) is valid only over scale distances greater 
than L -x- over which we can separate longitudinal 
and transverse fluctuations. We can estimate the width of 
the fluctuation region for interaction (2.25) by using a crite- 
rion of the Ginzburg type. We find AL- 1, i.e., E,-Z -413, 
telling us that the width of the fluctuation region agrees with 
the region over which the state-density edge is blurred. In 
this region we use the scaling assumption, i.e., 

E o  + 
( 8 )  = ( )  l o .  (2.26) 

E - F ,  

We can determine I, from the condition of the joining of 
(2.26) and expression (2.19) for I(&) at E>E,; this yields 
I , z z ~ / ~  (ford = 3). With regard to the index v we assume, 
following Ref. 30, v = (d  - 2) -', where d is the dimension- 
ality of the space. The quantity E, -&,, the first-order per- 
turbation-theory correction to &,, is positive, so below we 
will also assume E, > 0. 

Below we will need averages of the type , where 

in the region of localized states, E > E, (the average is calcu- 
lated over different states with a given energy E = E, ). For 
states in the tail, - E, 2 E,, the value of AA is determined 
unambiguously by the steepest-descent solution of (2.15) : 

In the region of localized scaling - E, ( E , )  the eigen- 
functions $A ( i )  may have a fractal s t r~c ture ,~ '  which 
should lead to a wide distribution of AA for a given In - 
particular, the mean value A , ' can be described by a non- 
trivial index: A- 1 -d ) >I -d (2 < d; see Refs. 3 1 and 
32). For AA , the estimate An -Id given above is an upper 
limit, and we will assume that the mean value zA is deter- 
mined by precisely this edge of the distribution, so that at 
E - E, ( E ,  we have 

E - E ,  -dv 
~ & = l : ( ~ )  

In addition to we will need sums of the type 

ij 

At Z = a, the distribution of components $A (i) is Gaus- 
sian, so that 
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z $ : ( i )  =3 C $ 2 ( i ) ~ , ; $ i ' ( j ) .  
fourth order in the slow variables. In the theory of spin 

7 J 
glasses, as we will see presently, the coefficient of the terms 
of fourth order in a, is small, so we will retain terms of up to 

This relation also holds at a finite Z for states in the sixth in a, 
region of energies E far from the ends of the interval ( - 2, 
2). For states in the scaling region, I &  - EC I (Eo?  it can be 3. CONDENSATION AND INTERACTION OF LOCALIZED 
shown that an analogous equation holds: MODES 

1. Let us consider interaction (2.3 1 ) . The coefficients of 

x ~ ' ( i )  -a h 2 ( i )  $2 ( j )  l.;, 1 a-3 1 GZ-". (2.28 the powers of the variables a, in this expression are terms of 
I the type 

3. Let us pursue the derivation of an effective Hamilton- 
ian for the slow degrees of freedom. We write mi as a sum 
over the eigenfunctions of the matrix Ju . We single out the 
contribution from the eigenfunctions $ near the upper edge 
of the spectrum and from the functions for which the eigen- 
values lie in the interior of the interval ( - 2, 2): 

The first sum covers the interval IE, - 21 < c d ,  and the sec- 
ond the interval 2 - cP >cd .  The separation parameter c ,  
can be chosen at any point in the region 1 % ~ ~  $2 -4'3: The 
results will not depend on the choice of cd . 

The vectors a, are the correct "slow" variables. To find 
an effective Hamiltonian which depends on a,, we substitute 
(2.29) into (2.3) and eliminate the variables b, . In deriving 
(2.3) we already integrated over the fluctuations of the fast 
degrees of freedom, so that the b, have the meaning of mean 
values (at fixed values of a, and are determined by the 
condition aF/db, = 0. Substituting in expression (2.3) for 
F, we find 

Here we have retained only the lowest order in a,. Substitut- 
ing expression (2.30) into (2.29) and (2.3), we find the ef- 
fective Hamiltonian as a function of the slow variables a, : 

The functions tC., (i) are random and independent, so that a 
sum of this sort with A, = A,, A, = A, is much larger than a 
sum with indices which are not equal in pairs. We therefore 
single out the part of the Hamiltonian, Ho, in which all the 
coefficients have indices which are equal in pairs; alternati- 
vely, and equivalently, we single out that part of the Hamil- 
tonian which does not depend on the signs of a,: 
H = Ho + H I .  As we have already explained, and as we will 
verify by calculations below, the condition Ho%H, holds. To 
determine a: it is sufficient to analyze H,,: 

1 Tn" 
- (=)' h : h , g ( i ,  ~)G,G;, (2.31) - L ( 1 )  ' [ 2  (a,a,,)'a,'+~ (a,a,) (a,,a,) (anax) 1 

' , J  2 n+2 A p p  

( i ,  j )  =z gw(i)?'(i) 0 (2-c1- I EV I ) . 
2-E, 

P 

The last term in (2.3 1 ) arises from the elimination of Here C ,  - 1 is a combinatorial numerical factor, whose exact 
the variables b, ; it is of sixth order in a,. In the derivation of value will not be needed here. In deriving (3.1 ) we made use 
an effective interaction (the Landau theory) for an ordinary of the circumstance that the temperature is near the transi- 
ferromagnet it is sufficient to consider only the terms of tion point, and we retained only the second order in T in the 
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term quadratic in the amplitudes and the first order in the 
term of fourth order. We also made use of the orthogonality 
ofg(i, j) and IC;, (i), i.e., the relation 

which follows from the orthogonality of IC., (i)  , @, (i) . This 
circumstance allowed us to discard terms of the type 

since, as we will see below, we have 

where B is independent of i, and terms of this sort can be 
ignored in comparison with those retained in the last term in 

the energy in (3.1). 
The functions @, ( i )  in the definition ofg(i, j )  are deep 

in the region of delocalized states, so that we can use the 
approximation Z = w in calculating g(i, j) . We find 

Substituting (3.3) into (3.1 ), we can put Ho in a more con- 
venient form. Before we proceed with the calculations, we 
would like to discuss the qualitative behavior of (a: ) which 
follows from the form of H,. 

At high temperatures (?>E,) the coefficient of a: in 
the first term in the energy in (3.1) it is positive for nearly all 
states A except for an exponentially small term in the state- 
density tail. Only these states acquire (a: ) #O in the mean 
field approximation (i.e., when the thermal fluctuations of 
a, near the solution of the equation SH/Ga, = 0 are ig- 
nored). In this temperature region, it is of course improper 
to ignore these fluctuations, but we will show below that in 
the "critical"region, - TSE:'', the thermal fluctuations of 
a: can indeed be ignored, so we will study the equation 
GHdSa: = 0. As the temperature is lowered, and ? ap- 
proaches E,, the number of states with a: #O (which we will 
call "filled") increases, and at ? W E ,  these states begin to 
overlap each other. The terms corresponding to the interac- 
tion of different a: become large. 

Let us digress for a moment to explain the difference 
between the transition which we are discussing here and that 
which occurs in a ferromagnet or superconductor with a ran- 
dom Tc , in which phase-uncorrelated superconducting dro- 
plets form above the transition point,33 and the interaction 
between these droplets increases as the temperature ap- 
proaches Tc (the point of the phase transition in the mean 
field theory). In a ferromagnet or superconductor, all forms 
of the interaction between droplets are comparable in mag- 
nitude, so that a phase transition which orders the phases of 

the different droplets occurs in the region where the interac- 
tion between the droplets reaches a value on the order of T. 
In a spin glass we have a different situation. Here, only the 
interaction between the moduli of the order parameters in 
each droplet becomes large at ?-E,, while the interaction 
between the signs of a, (in the case of the Ising model) or 
their directions (in the case of vector fields) remains small. 
Consequently, no ordering or freezing of any sort has yet 
occurred at these temperatures. 

As the temperature is lowered further, the number of 
filled states increases, and each state interacts with a large 
number of neighbors. As long as we are concerned with only 
Ho, all the interactions are of the same sign, so that we can 
construct a mean field theory for the interaction of the 
squares of the amplitudes, a:, at these temperatures. For this 
purpose we introduce the molecular field B ipacting on a,"af 

The particular form of this field has been chosen so that it is 
as independent as possible of the index A. The final result 
does not depend on the details of this choice (i.e., on the 
coefficients of SPA ), as it should not. Making use of the inde- 
pendence of the $: with different indices, we find 

In the lowest-order approximation, we can ignore the fluctu- 
ations b altogether. The subsequent calculations take 
slightly different paths for the cases of Ising and vector spins, 
and we will consider these two cases in succession. For Ising 
spins (n = 1 ), the substitution of (3.5) into (3.1) and the 
variation ofHo with respect to Sa: lead to an equation for a;: 

8 
( T + B ) ' - ~ ~  + -a , '~  3 $,L ( i )  =O. 

In deriving (3.6) we have ignored terms of fourth order in a, 
(which are small, as we will see from the solution below), 
and we have ignored the difference between a and 3 [see 
(2.28) 1;  this difference would lead to a change on the order 
of Z -'I3 in the quantity B which is the coefficient in the third 
term in Eq. (3.6). The self-consistency condition requires 
r + BzO, so we have B- - r,Z -213. Solving Eq. (3.6) for 
a;, and substituting the resulting expression into the defini- 
tion of B in (3.5), we find the self-consistency equation 

where we have used (2.27), and we have set 
= ( r  + B)2 - E, . Solving this equation for 6, using expres- 

sion (2.26) for I(&), and setting p (E) =Po z we find 

It follows from (3.8) that under the condition dv>2 the 
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quantity 6 remains finite and greater than zero as T increases 
deep in the negative region; the delocalized states corre- 
sponding to g(O are never filled in this case. At dv < 2 we 
have a qualitatively different situation. Here the integral on 
the right side of (3.7) remains finite even at negative values 
off,  so that when T is negative and sufficiently large a delo- 
calized state is filled, and an ordinary phase transition oc- 
curs. Assuming v = (d  - 2) - I ,  we find the critical dimen- 
sionality dc = 4. In three-dimensional space we then have 

We can also write an expression which we will need 
below: 

We turn now to the model with a vector spin; we wish to 
derive expressions analogous to (3.9) and (3.10). Even at 
Z = cu , the phase transition in the vector model (n # 1 ) oc- 
curs in a slightly different way (from that in the case n = 1 ) : 
One mode (which lies at the edge of the spectrum E = 2)  
does not become unstable at T < 0, since the coefficient of a4 
remains positive at T < 0, as can be seen from (3.1 ), in con- 
trast with the case n = 1, in which it is proportional to T. If 
we choose n modes lying at the edge of the spectrum, orthog- 
onal in pairs and equal in absolute value to the amplitudes 
a,, we find that the coefficient of a4 becomes proportional to 
T, as in the case of Ising spins. This result means that at n>2 
the condensation necessarily occurs to a state with a vector 
spin, which is directed in a random, spherically isotropic 
way at different points in space, as expected. 

At finite values of Z, the tensor B ;B [see (3.5) ] is near- 
ly isotropic (by-@), for a similar reason. Substituting 
(3.5) into (3.1 ), and retaining only the leading terms in T 

and af, , we find 

Carrying out calculations analogous to the derivation of 
(3.9) and (3. lo), we find 

The equation for the critical dimensionality, dc v(dc ) = 2, is 
the same as that for an Ising spin glass, and it gives us dc = 4 
i f v =  ( d -  2)-'. 

Let us estimate the thermal fluctuations of af, near solu- 
tion (3.10) or (3.12). Making use of the particular form of 
H, in (5.1 ), we find, for typical states with E, - E, -f(r), 

where a: is the solution of (3.10) or (3.12). Comparing 
(3.13) with (3.10) or (3.12), we see that the thermal fluctu- 
ations are small in the critical region, in which we are inter- 
ested here: 

( (a2-a:) 2)'h/a,2- (T,,/T) ". (3.14) 

We can also estimate the spatial fluctuations of B, 
which we have discarded: S B - ~ 2  -'I2, where 2 = f -2 is 
the number of typical states with E, - E, - t ( r ) ,  which also 
dominate the fluctuations over a scale length I(f).  We find 
( c ~ B ) ~  - E , ( T ~ T ) ~  -f for Ising spins and (6B12 - E: (f for 
vector spins, justifying our neglect of the fluctuations of 
(B, + T ) ~  in the calculation of a:. 

We see thus that as the temperature is lowered, a gra- 
dual (in the case of Ising spins) filling of states of progres- 
sively larger dimensions begins at T- - Z -213. In the case 
of vector spins, this filling begins immediately at states of 
large size ( c - Z  -213( 1 ), as follows from (3.12). This result 
means that there is a transitional temperature region 
171 5;Z-213 in this case in which states of small size 
({> Z -213) are filled. In this region, however, the thermal 
fluctuations are large, and in estimating (a2) we cannot use 
simply the solution of the equation SH/Sa2 = 0. Let us 
evaluate (a2) in this temperature region from the expression 
for H, derived in the mean field approximation: 

In the temperature regions in which we are interested here, 
either the number of neighbors is large, so that the mean field 
approximation is legitimate, or we can ignore the interaction 
of different states altogether (in which case we have B = O), 
and expression (3.15 ) will also be valid. We find the estimate 

At high temperatures, the values of (a: ) are small, and 
the interaction of different states can be ignored. As the tem- 
perature is lowered, the values of (a:) increase. At what 
temperature does the interaction become important? To an- 
swer this question, we seek the value of B by perturbation 
theory, setting B = B, = 0 in solution (3.16) and evaluating 
the correction B, from definition (3.5) of B: 

The correction B, has little effect on solution (3.16) if 
rB(2  - E, , and this condition holds if T satisfies 

Even at temperatures T-Z -'I3, we cannot ignore the 
term of the a: type in the energy H,, so that even at these 
temperatures the results of the ordinary diagram version of 
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the mean field theory do not apply. Those results lead, in 
particular, to a T- ' dependence of the nonlinear susceptibil- 
ity: 

Z=6"n/ah2= (S (0) s (x) )'d3x. 
At lower temperatures, the interaction between differ- 

ent states cannot be ignored. Analytic expressions can be 
derived for the temperature region 

The temperature region IE:" - T I  -2 -516 is a region 
of transition between two regimes. Let us determine B in 
region (3.19), using (3.5) and (3.16): 

As before,the self-consistency equation follows from the de- 
finition of 6: (T  + B(f ))' - E, - 6 = 0. We should substi- 
tute (3.20) into it. For B in this temperature region, how- 
ever, we cannot ignore the term E, in the resulting equation 
(in contrast with the situation in the region - TSZ -'I3). 
From (3.20) we findg-Z -4B - 3 4 ~ c ,  SO that we can ignore 
only f in the resulting self-consistency equation. We have 

The states which dominate B (the so-called typical 
states) have eigenvalues E such that E - E, -Z -'136 'I3; i.e., 
the number of nearest neighbors of a given typical state, 
2- [ (E - E, )/E, ] ' - d v ,  increases as the temperature is 
lowered, from z at ~ f "  - T-Z -516 to z 4 I 3  at 
E:" - T - Z - ' ~ ~ .  This effect justifies our use above of the 
mean field approximation. At the lower boundary of tem- 
perature region (3.19), the eigenvalues E of the typical states 
are such that E - E, ME,. AS the temperature is lowered 
further, the thermal fluctuations of a: become smaller than 
a: for typical states, while the eigenvalues of the typical 
states, as we have already mentioned, continue to satisfy the 
relation E - E, -{. There is accordingly a joining of tem- 
perature region (3.19) with the region - T>Z -'I3. 

2. As we have already mentioned, the interaction of the 
signs of the amplitudes a, (in the case of Ising spins) or the 
directions of a, (in the case of vector spins) is weak in com- 
parison with the interaction of their moduli, a:, so that at 
temperatures - T 2 Z -'I3 there is still no sort of ordering at 
all in the system as a whole. 

In the case of Ising spins, the weakness of the interac- 
tion of the signs of the amplitudes a, follows from the fact 
that the coefficients of the type Zi $, (i)$, (i)  (i)--coeffi- 
cients of the terms in the expression for the energy, which 
depend on the signs of a, -are small. In the case of vector 
spins, Hamiltonian H, in (3.1 ) contains, not terms which 
appear small at first glance, containing (a, a, ) ', or similar 
terms. However, in the leading order these terms lead to only 
the isotropy of the tensor BaBzn-'BS@, as discussed 
above. An analogous situation arises in the problem of mag- 
netic moments which are distributed at random in a matrix 
(each having a large number of neighbors) and which inter- 
act with each other in an antiferromagnetic way. A strong 

antiferromagnetic interaction leads to only a very accurate 
vanishing of the total moment of the system, while an order- 
ing of the individual spins occurs only because of fluctu- 
ations of the interaction between them. Similarly, again in 
our case the ordering of the directions of a, is caused exclu- 
sively by fluctuations of the interaction, i.e., of the coeffi- 
cient Zi & (i) $; (i). Let us estimate the fluctuations of this 
quantity, assuming that the individual terms of the sum are 
random and independent quantities at different points i. We 
find 

The effective interaction can now be estimated by the 
saiiie method as is ordinarily used to estimate the effective 
value of a completely random binary interaction: 
I ::) -2 "'I~, where 2 is the number of neighbors of the 
given typical state. In our case we have I, -aiYQ, where a, 
is the amplitude of a typical state, so that [see (3.12) ] 

It follows from (3.23) that the quantity 1%) can be 
ignored over the entire temperature region (we recall that 
171 5 1); i.e., when we take into account ollly Ho{a,), no 
ordering of the directions of the amplitudes a, occurs at any 
temperature. We can therefore move on to a study of the 
effect of H,{a, ). 

Let us evaluate the magnitude of the sign interaction or 
of the vector interaction (in the case of vector spins) of the 
amplitudes a, which stems from the part of the Hamiltonian 
H,{a, ). The magnitude of the binary interaction between 
the signs or directions, a, = a,/la, I, is determined by a 
term of the type 

where C2 - 1. In deriving (3.24) we made use of the isotropy 
(in the case of vector spins) of the thermal expectation val- 
ues (a:az). If we use the replacement 

in a first approximation in expression (3.24), then the ortho- 
gonality of the different eigenfunctions leads to the vanish- 
ing of I,, , so that only the spatial fluctuations of B(i) (SB, ) 
contribute to I,, . The states at the boundary of the spec- 
trum, ie., the states with E - E, -&,, dominate SB,. Evalu- 
ating SB, in this manner, we find lSBi 1 -T,-Z -'I3 in the 
case of Ising spins or ISB, I a Z - ' in the case of vector spins. 
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Substituting this estimate into expression (3.24), we find the 
effective magnitude of the sign interaction: 

1 ( -  (1 T ) Z (Ising spins), (3.25) 

I - ( 1  T I / T o ~ ' '  2-I (vector spins). (3.26) 

At I T /  -rO, the interaction I of the signs (or directions) 
of thea, is weak, as expected. As the temperature is lowered, 
1 increases, and at 

(wherep = 1/3 in the case of Ising spins o rp  = 4/15 in the' 
case of vector spins) reaches a value of order unity. The sign 
variables a, = a, /la, I (or the directions u, ) interact with 
each other in a manner similar to that of spins in the original 
formulation of the model. Accordingly, at - TZT, we find 
an effective Hamiltonian of the type in (2.1 ) near the transi- 
tion point for the variables a,; here the quantity 
.i = (7- + T,)/T, serves as the reduced temperature. The ef- 
fective number ( Z ,  = 2) of nearest neighbors of the new 
"spins" is on the order of the number of "typical states" in 
the volume spanned by this state. It is easy to see that we 
have Zl-f -'(7,), where f is determined by (3.9) and 
(3.12) in the cases n = 1, n>2, respectively. As a result we 
find 

where q = 4/3 for n = 1 or q = 32/15 for n>2. It is very 
important to note that we have q > 1; i.e., at  Zo) 1 we find 
Z,)Z,. This result means that the accuracy of the expansion 
in l/Zo which we used above improves as we go from the 
original spins ai to the "block spins" a,. 

Estimating the correction for the four-spin interaction 
(a,a,) (a,a,) by perturbation theory, we can show that this 
interaction is insignificant near T = - T,. 

Singling out the critical slow variables in the problem of 
an Ising (or vector) gas has thus led to variables whose inter- 
actions is again described by the Hamiltonian of an Ising (or 
vector) spin glass. 

As the temperature is reduced further, the critical slow 
variables constructed from the spins a, convert into second- 
level spins, for which we construct an effective Hamiltonian; 
etc. A spin glass is therefore a hierarchy of superparamag- 
nets. At a certain temperature T = Tf the number of levels of 
this hierarchy becomes infinite; i.e., the degrees of freedom 
of an arbitrarily large spatial dimension interact strongly, so 
that Tf would naturally be considered the temperature of the 
freezing phase transition. This assumption is confirmed be- 
low, where we show that the nonlinear magnetic susceptibil- 
ity i and the maximum spin relaxation time t,,, become 
infinite in the limit T-+Tf. 

For quantitative estimates of the behavior of the phys- 
ical quantities we need the number of nearest neighbors at 
the Nth level of the hierarchy, Z,, and we also need the 
value of Tf - T,, where NN is the physical temperature at 
which the effective temperature of the N th level of the hier- 
archy reaches a value on the order of unity. Using Eqs. 

(3.27)-(3.28) for a transition to a higher level of the hierar- 
chy N times, we find 

At T = T,, the spins of the N th  level of the hierarchy 
are strongly correlated with each other (this temperature 
corresponds to the point T = 1, T = 0 for the zeroth level). 
The temperatures T z  corresponding to the point T = 2 of 
the zeroth level behave in an analogous way: 

At TX,  we can completely ignore the correlations of the 
spins of the Nth  level of the hierarchy. We recall that Eqs. 
(3.27)-( 3.28 ) and thus all the subsequent equations are de- 
rived at an accuracy to within unknown numerical factors, 
so that the symbol z in (3.29)-(3.30) means that we are 
retaining the fastest functional dependences on the number 
N. 

4. NONLINEAR SUSCEPTIBILITY 

In this section we will determine the nature of the singu- 
larity in the nonlinear magnetic susceptibility i as 
T-Tf + 0. We first express in terms of spin correlation 
functions. We use the definition 

Making use of the macroscopic spatial isotropy, we then find 

The terms with indices which are not equal in pairs in sum 
(4.2) contribute nothing when an average is taken over the 
realizations, so they do not contribute to sum (4.2). Making 
use of the definition of the irreducible correlation function 
and also the identity a; = 1, and retaining only the terms 
which grow as T+Tf, we find 

In the derivation of (4.3) we made use of the spatial 
isotropy of all the thermal expectation values above the tran- 
sition point (e.g., (84) = n -' (viaj)  ), which holds 
even without an averaging over realizations. Near the transi- 
tion point the spin correlation function which appears in 
sum (4.3) can be expressed in terms of the correlation func- 
tion of the slow variables a, : 

In the temperature region - T < T,, the interaction of 

384 Sov. Phys. JETP 62 (2), August 1985 L. B. loffe and M. V. FeTgel'man 384 



the signs (or directions) of the amplitudes aA can be ignored, 
and we can assume that a, and a, are uncorrelated i f1  #p. 
In this case we have 

Outside the critical region (T)T,), expression (4.5 ) is 
the same as the result of a high-temperature expansion: 
i = l/r. At T-r0, we have X - ~ 2 1 3 .  The increase in the 
susceptibility as the temperature is reduced further takes 
very different paths in the cases of Ising and vector spins. We 
consider the Ising spins first. At temperatures - r>r0, we 
can use expression (3.10) to calculate (a2). We find 

Expression (4.6) holds at temperatures to - T ~ T , ,  at 
which we can ignore the interaction of the spins of the next 
level. At the lower boundary of the range of applicability of 
(4.6), i increases to 2'. AS the temperature is lowered 
further, we go into a region where we can use a perturbation 
theory in terms of the spins of the next level of the hierarchy. 
We thus have 

etc. As the temperature is lowered, and correlations of pro- 
gressively higher levels appear, the nonlinear susceptibility 
increases rapidly. In each level, there are two regimes in the 
behavior of the susceptibility: a regime of the type in (4.6) 
and a "perturbation-theory" regime (i- l/?). Let us deter- 
mine the behavior of the susceptibility as we go from the 
point T,* = 2T0 to the analogous point of the next level, T:: 

ii ( T i g )  =Z2=Z2g ( T o t ) .  (4.8) 

For transitions to the following levels we can use 

we thus have 

1 1 l x  ( T N * )  ~6 ( ( ' I 3 )  N - l )  l n Z 0 .  (4.9) 

Comparing (4.9) with (3.30)-(3.31), we find 

Evaluating i( T) at the points T = Tz*=2TN - Tf in a 
similar way, and comparing the results with (3.30), we find 

This result means that the functioni(T) is not described by 
a common power law but instead oscillates between two 
power-law envelopes: i ,  ( T) - ( T - Tf ) - "*; y + = 6, 
y- = 19/4. We wish to stress that, despite these oscillations, 
i( T) and the first three of its derivatives increase monotoni- 
cally in the limit T-+Tf. In an actual experiment these oscil- 
lations would probably be more reminiscent of smooth de- 

viations of i ( T )  from an approximating power law. The 
behavior of the thermodynamic quantities near the freezing 
point of a spin glass thus turns out to be more complicated 
than an ordinary power-law singularity in the limit T+TJ. 

Now let us consider vector spins. At TST,,, as in the case 
of Ising spins, we have i- 1/r, and this susceptibility is of 
course the same as in perturbation theory. At - 7)r0, the 
expectation value (a2) in (4.5) can be replaced by a2  from 
(3.12). Taking this approach, we find an expression analo- 
gous to (4.6): 

A qualitative distinction from the case of Ising spins is the 
presence of an intermediate temperature region 
z -5169&r/2 - T ( Z - ~ / ~  in which (a2) is determined by 
thermal fluctuations of a, near zero. In this region, we use 
expressions (3.16) and (3.21) for (a:), finding 

At T - &-z - ' I 6 ,  this expression y i e l d s i - ~  213 and thus 
joins with the high-temperature behavior l/r; at the lower 
boundary of its range of applicability, r z  - T,, we find 
i-Z-413 from (4.13), in agreement with the value found 
from (4.12) at the boundary of its range of applicability. 
Consequently, in the case of vector spins the nonlinear sus- 
ceptibility passes through three regimes at each level of the 
hierarchy as the temperature is lowered: a perturbation-the- 
ory regime (i- 1 / ~ ) ,  a transition regime (4.1 I ) ,  and a 
"low-temperature regime," (4.10). After arguments analo- 
gous to those in the derivation of the expressions for the 
envelopes i + and i - in the case of Ising spins, we find the 
following expressions for the envelopes in the case of a vector 
spin: 

At temperatures T = T;G, the nonlinear susceptibility i 
agrees with its upper envelope i + ,  while at T =  T;G* it 
agrees with its lower envelope, i-. 

Expressions (4. lo) ,  (4.1 1 ), and (4.14) for the expo- 
nents y * of the nonlinear susceptibility have been derived 
here on the basis of the hypotheses of localization theory, 
which we believe are the most plausible. In particular, we 
have assumed I ( & ) - ( E - E , ) - " ,  v = l / ( d - 2 ) = 1 .  
Without derivation we now write corresponding expressions 
for y * for the case of an arbitrary exponent v (however, we 
are assuming that this value is greater than 2/3, so that the 
overall picture of the hierarchy is not changed): 

Small deviations of v from 1 strongly affect the value of 
y * , especially in the case of vector spins. 
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5. CWlTlCAL RELAXATION 

As the temperature approaches the transition (from 
above), the number of levels of the hierarchy increases, so 
that long relaxation times appear; these times are associated 
with the relaxation of the "spin" of the highest level of the 
hierarchy at the given temperature. We will derive quantita- 
tive expressions for the maximum relaxation time t,,, in the 
simple dynamic generalization of the Edwards-Anderson 
model with a purely dissipative dynamics. There is the hope 
that in the region of the critical slowing of the relaxation, 
which is the only region with which we are concerned, the 
purely dissipative dynamics will be a reasonable approxima- 
tion of the actual situation. The purely dissipative dynamics 
of vector spins is described by the Langevin equation 

<qrU ( t )  qje (t') )=21'oT6ij6a'6(t-t'), 

where ro is the reciprocal of the one-spin relaxation time. 
The purely dissipative dynamics of Ising spins is described 
by Glauber equations, which are equivalent in meaning: 

+ exp (+ Z J , ~ ~ .  )p { a I .  . . -0,. , . o n ) ] ,  (5.2) 
k 

where p{ui) is the probability of the spin configuration 
{pi 1). These dynamic equations retain the same form, apart 
from the replacement ro--trl, on going to the next level of 
the hierarchy. Under the condition ro 5 ( T - T,)/T,( 1, we 
can average over the fast spin fluctuations and reduce Eq. 
(5.1) or (5.2) to the form 

6F 
mi=-r0-  +qi ( t ) ,  

6mi 

where the functional F{mi ) is given in (2.3). In deriving 
(5.3), we have ignored corrections to To which are small, on 
the order of mf. We have not yet completely eliminated the 
fast degrees of freedom from Eq. ( 5.3 ) , since the slow relaxa- 
tion of the variablesa, leads to a slow relaxation of the varia- 
bles 6, , by virtue of the interacton of modes [see (2.29) 1. 
However, the intrinsic relaxation times of these modes are 
short, so that they can be eliminated, as was done in the static 
case (Section 2). As a result we find equations for the slow 
amplitudes: 

(qra ( t )  q: ( t l )  )=2Tro6rr6a06 (t-t') , (5.4) 

where H{a, ) is given in (2.3 1 ). At temperatures 

.c0< (To-T) /To<.c, 

we can ignore the part of H{aA ) which depends on the signs 

of a,, and the interaction of modes which does not depend 
on the signs can be taken into account by mean field theory, 
as explained in Section 3. Equations (5.4) then split up into 
the independent equations 

where C =  (n - 1)/6(n + 2) at n)2, and C- 171 at n = 1. 
Our only remaining task is to transform from (5.5) to the 
equations of motion for the "spins" a, = a,/laA 1. In the 
case of a vector spin, it is sufficient to substitute 
a, = a, (a: ( r ) ) l J 2  into (5.5) [where a: (7) is determined 
by the minimum of H a'; see (3.12) 1, since the direction of 
a, fluctuates without a change in la, I. As a result we find 

where we have taken the aio to be the values of a: for typical 
states at - r z r , ,  i.e., for those states which are responsible 
for the appearance of correlations of the next level. In the 
case of Ising spins, a change in the sign of a, is possible only 
through a passage of a, across a barrier, in a process involv- 
ing an activation, into the region aA (aAo. The height of this 
barrier is AH',' =: lrl/rO>T=: 1 ,  SO that such processes oc- 
cur exponentially rarely. Estimating their frequency ( TI ) by 
means of the ordinary Kramers formula, applied to the po- 
tential H a', we find 

It is the quantity r, which appears in Glauber equations of 
the type in (5.2) for the "spins" u, . The recursive transfor- 
mation which we have been seeking has thus been construct- 
ed, and we can write expressions for the quantities r, : 

Using (3.291, we can put these expressions in the form 

Xexp ( -2 ,  (("aN,~) ( N ) )  

The factor F(N) in (5.11 ) can be put in the form 
N-i  
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In the limit N-cc we have Z,-, -+w and F(N)+l, but 
this limit is actually reached only at very large values 
2,-, - lo4; at smaller values of N, we can use 
F(N) - 10(3/4), An Zo as a rough estimate. It is important 
to note that F(N) is a relatively slowly varying function of N. 
The quantity T; ' determines the maximum spin relaxation 
time t,, at the temperature T =  Tg [see (3.30)-(3.31)]. 
We thus find 

for the vector spins and 

tmY- (A T-Ti ) ' e x p { ( s ? ; ) " ~ ( ~ ( T ) )  T-T 1 (5.13) 

for the Ising spins. Expressions (5.12) and (5.13) are simi- 
lar in meaning to expressions (4.10) and (4.12) for the up- 
per envelope of the function X(T). 

At times t<t,,,, the relaxation occurs in a nonexponen- 
tial way. To find this behavior we seek the fraction ( w, ) of 
the total moment of the system which relaxes along with the 
Nth level ofthe hierarchy. For this purpose we determine the 
total moment corresponding to one degree of freedom of the 
Nth level; we multiply by the number of such degrees of 
freedom; and we divide by the total number of spins. We find 

Over the time t, the first N(t) levels of the hierarchy, for 
which we have T,:, 5 t ,  manage to relax, so that the remain- 
ing magnetic moment M( t )  is given by (5.14), where N is 
determined with the help of (5.10)-(5.11), in which we set 
t- Ti '. For vector spins we finally find 

For Ising spins there are two possible cases, depending on 
the relative roles played by the first and second factors in 
(5.1 1). For times which are not too long, the first factor is 
governing; we find 

In the opposite limit we find 

M ( t )  - (ln r o t )  - 18 .  (5.17) 

In deriving (5.15)-(5.17) we assumed that t is quite large, 
so that many levels of the hierarchy participate in the relaxa- 
tion. 

Here are expressions for t,,, ( T) which hold for an ar- 
bitrary value of the index v of the localization theory (see the 
discussion at the end of Section 4) : 

t  ( T - T )  - az=36vz-30v+9/, ( n 3 2 ) ,  

t , , ~  (T-Tr) exp [(%)'I P ( N ( T ) ) ,  
T-TI 

6. DISCUSSION OF RESULTS 

1. Starting from a microscopic model, we have shown 
that a phase transition occurs at T = Tf >O in a three-di- 
mensional spin glass with a finite interaction radius. This 
phase transition is unrelated to the macroscopic filling of 
any delocalized mode (even if disordered). Instead, at tem- 
peratures near Tf the system can be represented as a hierar- 
chy of localized, strongly interacting degrees of freedom. 
The number of levels of the hierarchy and the spatial scale of 
the correlations increase without bound as T+Tf, in a pro- 
cess accompanied by strong singularities in the temperature 
dependence of the nonlinear magnetic susceptibility 

= - d 'x /dh and the maximum spin relaxation time t,,, . 
We have derived X(T) [(4.10)-(4.1 I ) ,  (4.14)-(4.16) 1 ,  
t,,, (T )  [(5.12)-(5.13)], and (a ,  (0)ai  ( t ) )  [(5.15)- 
(5.17) ] near the transition. We again stress that, in contrast 
with the behavior at an ordinary phase transition, there is a 
singularity in i ( T )  which is more complicated than a pow- 
er-law singularity: It oscillates between two power-law enve- 
lopes (see the end of Section 4). 

A hierarchical structure of this sort naturally combines 
the representations of critical phenomena in spin 
g l a s~es~- '~*~ '  with the picture of superparamagnetic clus- 
t e r ~ . ' ~ , ~ ~  We should emphasize, however, that our "degrees 
of freedom" have a pronounced spatial overlap and are thus 
quite different from ordinary rigid clusters. The state of a 
given spin at each level of the hierarchy is determined by a 
set of variables corresponding to degrees of freedom local- 
ized near the given spin. 

The spatial dimension of the states increases sharply 
with the level index N [even the "spins" of the first level 
contain -2: (zT) original Ising (vector) spins], so that 
physical phenomena associated with the existence of many 
levels of the hierarchy could hardly be observed in numerical 
simulations. For the vector model, we might note, this in- 
crease is more rapid, possibly explaining the absence of 
freezing from the numerical simulations of Refs. 20 and 21 
with Heisenberg spins. 

Our results do not contradict the conclusion that no 
phase transition occurs in a space of dimensionality d < 4, 
which was reached in Ref. 12 through an analysis of high- 
temperature series, since that analysis tells us only that there 
is no phase transition at temperatures where all the terms of 
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the series are comparable in magnitude (171 -2 - 2 1 3  in the 
cased = 3). As we have shown above, it is quite true that no 
phase transition occurs in this region, but one does occur at a 
lower temperature ( - 7-2 & ' I 3 ) .  A characteristic feature 
of this phase transition is the absence of continuous scaling, a 
direct consequence of the discrete hierarchical structure of 
the phase space of the system. 

2. The slowing of the relaxation as the freezing point is 
approached from above stems from a broadening of the spec- 
trum of relaxation timesg(t) toward longer times because of 
an increase in the number of levels of the hierarchy. The 
relaxation times of the intermediate levels change only 
slightly. At T <  Tf, with (Tf - T)/Tf = E>O, an infinite 
number of levels of the hierarchy [beginning at the index 
N(E) determined by expression (3.30), with In( l / ~ )  as its 
left side] turn out to be close to zero at their effective tem- 
peratures. This result means that at T<Tf the spectrum of 
times becomes an unbounded spectrum which decays very 
slowly; this is the primary distinction between the spin-glass 
phase and the low-temperature phases of ferromagnets or 
antiferromagnets. In ordinary magnets the spectrum of re- 
laxation times can be broken up into two distinct regions; the 
times in one region do not depend on the total number of 
spins, N ,  while those in the other increase with increasing 
N. From this picture we can find the limit of equilibrium 
thermodynamics, by first letting N-co and then letting 
t-tm. The situation is completely different in a spin glass, 
where the spectrum of relaxation times stretches continu- 
ously from microscopic times up to the very longest times, 
which increase exponentially with the size of the system, N. 
Consequently, a thermodynamic equilibrium is never 
reached in such a system. Generally speaking, the ergodic 
behavior is disrupted even at an ordinary phase transition, 
since in its low-temperature phase the system sweeps over 
only some hypersurface in phase space. However, the codi- 
mensionality of this hypersurface is finite and determined by 
the number of order parameters. In our case, the codimen- 
sionality (at N = co ) is infinite at any finite t, since there 
are infinitely many levels of the hierarchy with relaxation 
times greater than t. 

We can use this hierarchical picture to find a simple 
qualitative explanation of the validity of the de Almeida- 
Thouless law for the magnetic-field dependence at which the 
irreversible response appears. At temperatures below the 
point of the phase transition, the relaxation times of the lev- 
els of the hierarchy increase very rapidly with increasing 
level index [at any T <  Tf, the effective temperatures T::) of 
all levels with N>N(T)  are very small, and we have 
TL;)--+ 0 in the limit N+ co 1 ,  so that in a real experiment 
(with a scale time t) the point at which the irreversible re- 
sponse appears is related to the "quasiphase transition" 
which occurs in the highest thermalized level (with 
r, ' - t ) . The corresponding number of nearest neighbors, 
ZN,  is very large, so that we can use the mean field theory, 
which predicts a de Almeida-Thouless line, but the effective 
magnetic field acting on a "spin" of the N th level is propor- 
tional (with a large factor) to the physical field h.  As a re- 
sult, we find A ,  1 in this functional dependence (see the In- 
troduction). 

3. We have shown that two universality classes exist in 
this model: one corresponding to Ising spins (the number of 
components is n = 1 ) , and another corresponding to vector 
spins ( n > 2 )  with an isotropic interaction. It can be shown 
that the incorporation in the vector model of weak interac- 
tions of the uni xial-anisotropy type, 

or a randomly anisotropic i n t e r a~ t ion ,~~  

leads to a rapid transition (crossover) as T--t Tf to an Ising 
asymptotic behavior, since the relative values of A and G 
increase: 

The fact that interaction (6.1) leads to an Ising asymptotic 
behavior follows from the nondegeneracy of the eigenstates 
of the exchange matrix J,it3aB + G GE, because of which the 
eigenfunctions tC,: (i) carry the vector exponent a, while the 
amplitudes a, do not (as in the Ising case). The appearance 
of new universality classes is possible in an analysis of mod- 
els with a constant anisotropy of higher order, but we will 
not take up that question here. 

4. This entire analysis leans heavily on the assumption 
of a large initial number of nearest neighbors (i.e., of spins 
within the interaction radius): 2,) 1. When we make the 
transition from the original spins to the "block spins" of the 
first level, the parameters Zo becomes Z, = pZ ,'j, where 
q> 1, and p is an unknown numerical factor. At 
Zo > Z,,, = p' - we find the hierarchical construction de- 
scribed above, with increasing Z as we go to a higher level: 
Z2 < Z, < Z2 . . . . In classical spin glasses with an RKKY 
interaction, V0r-3 cos pO-r, the effective number of nearest 
neighbors increases with decreasing t empera t~ re~~ :  
Z,, cc cVJT. A phase transition usually occurs at T-cVo; 
i.e., we have Z,, - 1. We thus have two possibilities: Either 
the scheme studied above begins to take form with increas- 
ing ZN when Z,, reaches the critical value Z,,, , or there 
exists another scenario of the freezing phase transition, 
which holds at Z- 1 and which corresponds to a fixed point 
along the scale of the parameter 2,. Just how this second 
possibility may unfold is not clear at this point, but it is ob- 
vious that in this case the appearance of a nonlinear suscepti- 
bility would be described by a single power function, not by 
two power-law envelopes, as in the case studied here. 

We do not rule out the possibility that it is this circum- 
stance which explains the discrepancy between the asympto- 
tic results which we derived for i ( T )  and the experimental 
results of Refs. 8 and 9 for RKKY alloys. The same com- 
ment applies to the dependence t,,, (T) ,  although experi- 
mentally it is not known as accurately; in particular, the 
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high-frequency experiments are described better by power- 
law formulas of the type t,,, - ( T  - Tf) A ,  while quasi- 
static experiments are described better by a Vogel-Fulcher 
law In t,,, - TT - Tf ) - I .  There is the possibility that a de- 
scription of the experimental data over the entire range of 
times (10-10-104 S)  will require the use of an expression of 
the type 

t,,,,- (T-T,)  -A exp {C(T-T , )  -"I. 
Furthermore, as the observation time is increased, there is 
the real possibility of a transition from a "vector"regime, 
(5.12), to an "Ising" regime, (5.13). 

It would apparently be possible to experimentally study 
spin glasses which correspond literally to the model which 
we have studied here: the rare earth alloys 
Y, - , R,  (R = Er, Dy, Tb, Gd), with smallx (apparently on 
the order of 0.5-1 at. % ). Since yttrium is close to the insta- 
bility with respect to the formation of spin-density waves, 
the interaction of impurity magnetic moments is of the 
form36,37 

vo V ( r )  - - e-r'ra sin p0r 
r 

with an interaction radius ro)a, p, I. The behavior of a sys- 
tem of this sort depends strongly on the value of the param- 
eter y = p;/4.rrcVo, where c is the dimensional concentra- 
tion. At y( 1, a spin-glass phase with a local helical order 
should form.36 At y k 1, helical correlations are unimpor- 
tant, and the problem reduces to the Edwards-Anderson 
model with Z o ~ 4 c r ; )  1, which we have studied here (the 
conditions y 2 1 and Z,)  1 are compatible if r,po) 1 ) . Pre- 
liminary experiments3840 carried out with these alloys indi- 
cate a local helical order at x 2 2-3%. In addition to magnet- 
ic measurements, it would be possible to observe a transition 
from a "helical" spin glass to a completely random glass by 
means of neutron scattering and also from the change in the 
function Tf (c) : At y( 1 we should find Tf cc c, while in the 
opposite limit we should find Tf oc c " ~  (for classical spins; 
how quantum effects will influence this behavior is not 
known at this point). 

The hierarchical structure of a real spin glass (with a 
finite Z )  described above converts in a natural way into the 
hierarchical structure, discovered by P a r i ~ i , ~  of the Sher- 
rington-Kirkpatrick model. The infinite set of relaxation 
times, which become infinite at the phase transition and 
which remain infinite below Tf (Ref. 5), acquires a clear 
physical meaning at a finite Z: These are the relaxation times 
which correspond to different levels of the hierarchy, each of 
which is now finite (but increases with increasing Z ) ,  while 
the maximum time becomes infinite at the phase transition. 

Some slightly different possible hierarchical structures 
were recently proposed by Palmer et on the basis of 
some phenomenological arguments. Our structure differs 
from those proposed in Ref. 41 in that the number of "spins" 
which are controlled by one "spin" of the next level of the 
hierarchy increases in our version but decreases in the sce- 
narios of Ref. 4 1. 

We wish to thank I. E. Dzyaloshinskii, A. I. Larkin, V. 
L. Pokrovski'i, and D. E. Khmel'nitskii for critical interest in 
this study. A brief version of this study was published in Ref. 
42. 

APPENDIX 

To calculate the functional F{mi ), we will determine its 
second variational derivative S2F /6mi Sm, and then recon- 
struct F{mi) from it. We note that we have 
S2F/Sm;Sm,B = (x-')iO, where X;D is the matrix of the 
magnetic susceptibility, determined by the relation 
,yGO = - a 'F/dh :ah; (Fis related to Fby a functional Le- 
gendre transformation). In the approximation Z = a 

(which is sufficient for deriving F{mi )), we can write X;E 

asz3 

By virtue of the isotropy, F{mi ) depends on only the scalars 
m: and (mi m, ), so that we have restrictions on the form of 

The functional dependenceA (mf) can be determined most 
simply by making use of the form of the single-point suscep- 
tibility: 

M 

Expanding the expression forXiD, (A. 1 ), in a series in JA - I ,  

and collecting the leading terms (in the i m i t  z+ a ), we 
find a convenient equation which relates x and A: 

In deriving (A.5), the condition Z- CQ allowed us to re- 
place 

Substituting (A.3) for A yB and ,yZ0 in the form 
XjO)S,O + Xjl'mymfm:, into (A.5), and using condition 
(A.4), i.e., nxI0) = ( 1 - m;)/T, we find an equation 
for 

where t = m'. Solving this equation through a series expan- 
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sion in t, we find the functional dependence F{mi):  

- < .  I F -  1 F T ",. " %  , . .,> 

The first term in this expression corresponds to the di- 
rect interaction of mi ; the second corresponds to the reaction 
of the remaining spins to the given mi ; and the third corre- 
sponds to the free energy of one spin in the external field, 
expressed in terms of the expectation value of this spin. 
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