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The principles of a theory of magnetoelastic properties of ferromagnets with mobile collectivized 
electrons are formulated. The theory is based on allowance for the exchange interaction of the 
electrons and for the electron interaction with the lattice. A theory free of the assumption that the 
exchange energy depends on the volume is developed for the temperature anomaly of the elastic 
moduli. I t  is shown that, in agreement with experiment, an anomalous change of the elastic 
moduli can occur both near the Curie point and relatively far from it. The conditions under which 
the magnetic induction determines the change of the elastic moduli are found. 

1. INTRODUCTION 

The theory of magnetoelastic properties of ferromagne- 
tic metals has long attracted much attention, mostly in con- 
nection with engineering applications of these properties.'.' 
Particular attention is paid lately to the development of a 
magnetoelastic-phenomena theory based on the model of 
collectivized electrons (see the review by Wohlfarth3). It 
has become clear that use can be made of the earlier4-6 suc- 
cessful general approach to the elasticity of normal metals, 
which points, as follows from Refs. 7-1 1, to a dependence of 
the elasticity of a metal on its magnetization. 

We generalize here the approach of Refs. 4 and 5 to 
include the case of ferromagnetic metals. The principles of 
the magnetoelasticity theory set forth here shed light on the 
nature of the magnetoelastic properties of metals with col- 
lectivized electrons, and show how the magnetoelastic pa- 
rameters are determined by the exchange interaction of the 
lattice with the electrons. In Sec. 1 we formulate the general 
premises of the theory of dynamic elastic moduli of a ferro- 
magnet with mobile electrons. In Sec. 2 is discussed the mag- 
netodeformation connection between the spin and sound 
waves. The third section is devoted to an analysis of the elas- 
tic moduli. With a weak ferromagnet as the example, we 
consider explicit relations between the elastic moduli and 
the magnetic induction, the temperature, and the magneti- 
zation. These relations, containing no magnetoelastic con- 
stants (cf. Ref. 12), correspond to the Invar anomaly (see, 
e.g., Ref. 13). We show here that the anomaly of the elastic 
moduli can set in near temperatures that differ substantially 
from the Curie temperature. The conditions are found under 
which the induction in a ferromagnet determines the values 
and temperature dependences of the elastic moduli. The Ap- 
pendix contains expressions for the coefficients that govern 
the excitation of sound by a high-frequency electromagnetic 
field (cf. Ref. 14), and other electromagnetic effects. 

2. EQUATION FOR SOUND OSCILLATIONS IN A 
FERROMAGNET WITH MOBILE ELECTRONS, AND THE 
DYNAMIC ELASTIC MODULI 

Our purpose being formulation of an elasticity theory 
for a ferromagnetic metal in which the states of the mobile 
electrons are changed by lattice deformations, we use the 
ideas of Ref. 4, in which the corresponding theory was devel- 

oped for normal metals. In contrast to normal metals, we 
take consistent account of the effect of magnetization on the 
susceptibilities that determine the dynamic elastic modu- 
li.'-'' The exposition in the present section follows a general- 
ization of the premises of Ref. 5. 

In a ferromagnet in a nonequilibrium state correspond- 
ing to propagation of a sound wave having a frequency w and 
a wave vector k, the nonequilibrium increment to the elec- 
tron-density matrix is given by 

/FIE (P-Ak, a') I-~=[E(P,  0 )  I 
~ / ( P , O , O ' ,  w k ) =  ~ O + E  (p-Ak, o') -6 (p, a)  -ti0 

Here f, (E) is th;~ermi distribution function of the elec- 
trons, ~ ( p , a )  = ~ ( p )  - ab, where a = + 1 and b is the en- 
ergy of the magnetic splitting of an electron band with dis- 
persion ~ ( p ) . "  In contrast to Ref. 5, we neglect the effect of 
the magnetic field on the orbital motion of the electrons; this 
is reasonable at not too low temperatures and for metals that 
are not very pure. 

We examine now the form of the energy Wcorrespond- 
ing to perturbation of the electron state. We express the ener- 
gy in the form 

W ( p , a , a ' , ~ , k ) = W . ( a , a r , o ~ , k ) + W C ( o , o ' , o , k )  

+Wd (p, a, of, a, k)+bV,~~ (0, o', 0, k ) .  (2.2) 

The first term 

W e  (a, a', o, k) 

is here the electron energy in the self-consistent electromag- 
netic field that accompanies the sound-wave propagation. 
@(w,k) and A(w,k) are the scalar and vector potentials, 
b(w,k) is the nonequilibrium electromagnetic induction, 
and i$ and are the spin operator and the magnetic moment 
of the electron. Using the gauge condition k A(w,k) = 0, 
we define the scalar potential by the Poisson equation 

k2@ ( 0 ,  k)=4n[en(o,  k ) + q ( o ,  k)] .  (2.4) 
The nonequilibrium electron-charge density is accordingly 
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where d~  = d p ( 2 d )  -3 .  For the lattice nonequilibrium 
charge density we have4 

q ( o ,  k )  =-Qiku(w, k ) ,  

where u ( o , k )  is the Fourier component of the lattice local 
displacement, and Q is the charge per unit volume of the 
lattice. 

We use for the correlation energy of the electron-elec- 
tron interaction the very simple approximation 

where q, d d 2 v  and y i r B d 2 y  are the Fermi-liquid-inter- 
action constants, Y is the density of the electron states on the 
Fermi level E, in the paramagnetic phase, and 

is the nonequilibrium spin density of the electrons. 
Even Eqs. (2 .3) - (2 .5)  alone provide a definite descrip- 

tion, corresponding to the so-called "jellium" model, of the 
interaction between the electrons in the lattice. This model is 
refined, first, by taking into account the deformation inter- 
action 

W d ( ~ l  a, a', w, k )=d ,~At j (p) ik ,u i (o ,  k ) ,  ( 2 . 6 )  

where Aij (p) is the symmetric tensor of the deformation 
potential,16 and, second, by taking into account the magne- 
todeformation potential A,, ,  (p ,p l )  of the electrons,' for 
which we use in the present paper a very simple approxima- 
tion that does not depend on the electron quasimomenta: 

where S = M/fl is the component of the doubled equilibri- 
um spin density determined by the equilibrium magnetiza- 
tion and oriented along the z axis. Equations (2 .2 ) ,  (2 .3 ) ,  
and (2 .5) - (2 .7)  yield the following set of equations: 

+ikjui ( o ,  k )  (Ail 

s * ( o ,  k )  =2 [1-24(I'(T, f) )] -'{-fibf ( o ,  k )  ( r ( F ,  f) > 
+ik,ui(o, k ) S d ,  ,,(I'(T, *) )). (2 .10)  

Here 

The perturbed state of the lattice is described by the 
equation of motion (cf. Ref. 4) 

wherep, is the lattice mass density, A 'O' is the ion contribu- 
tion to the elastic-moduli tensor, and F is the force exerted 
on the lattice by the electrons. An explicit equation for this 
force can be expressed, in accord with ( 2 . 2 ) ,  as the sum 

Th.: first term corresponds here to the Lorentz force 
F'" (a, k) 

where B is the equilibrium magnetic induction. The remain- 
ing two terms of (2.12) corresponds to the deformation in- 
teraction 

and to the magnetodeformation interaction 

Equations (2 .8) - (2 .10)  allow us to eliminate from 
(2.12) the electronic nonequilibrium quantities n ( w , k )  and 
s(w,k) . Equation (2.12) takes therefore the form 

We then obtain for the tensor of the dynamic elastic moduli 

hij,kl ( 0 ,  k )  =h:;,)kl+hijil.kl (61, k) +hijtkl (O,  k ) ,  (2 .14)  
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We have used here the notation 
ai;=<r(o, 0) [Aij+o(MIp)Aij. ,,I ), 

%ij-[i-$(r(+, +)+I?-, -) >] -' [ai,+(i-2~<r'(-, -) )) 

+aij- (1-2$(I'(+, +))) I, 

E,(w, k) =I+[ (4ne2/kZ)+~1x(o,  k ) ,  

X(O,  k) =[4$(r(+, +) >(r( - ,  -) >-(r(+, +)+r(-, -))I 

x [ i - q < r  (+, +) +r (-, -1 >I  - I ,  

where E, is the longitudinal dielectric constant of the elec- 
trons, andx is the electron polarizability and takes into ac- 
count the exchange interaction. The right-hand side of 
(2.13) determines the connection between the acoustic field 
and the solenoidal electromagnetic field (cf. Ref. 14). The 
corresponding coupling coefficients are given in the Appen- 
dix. 

In the next two sections we obtain relatively simple cor- 
ollaries of Eqs. (2.15) and (2 .16) .  

3. MAGNETODEFORMATION COUPLING OF SPIN AND 
SOUND WAVES 

We shall be interested hereafter in long-wave perturba- 
tions, when #ik is small compared with the difference 
between the Fermi momenta of electrons corresponding to 
two spin projections ( a  = f ). The contribution A' to the 
dynamic elastic moduli, which determines the coupling of 
the spin and sound waves, can then be simplified. We use 
from now on for a ferromagnet with mobile electrons the 
equation of state 

where 

fioB=2fiB, M (B, T) =p J d r  (ni-n-) , na=fF[e (P, 0) 1. 
All this enables us to write down, recognizing that o g R , ,  
the approximate equation 

where 

a,. - 8 (n++n-) 
+ 2  }. (3 .3 )  

" - 
Qo (B ,  T )  de ~ Q o  (B, T )  

As a result we obtain from (2.16) 

Here a, (B,k)  = R, + aV ki kj is the spin-wave frequency. 
In the vicinity of the magnetoacoustic resonance, allowance 
for the spin-wave dissipation (which we neglect in this sec- 
tion) is known to lead to an increase of the sound absorp- 
ti~n.'.~.' We confine ourselves to Eq. (3 .4)  which demon- 

strates the role of the magnetodeformation potential AG,, in 
the coupling of the spin and sound waves. In the limit as 
w -+ 0 and k -+ 0, Eq. (3 .4 )  yields for the elastic moduli 

In the particular case when the magnetic field H is zero and 
B = 4rM, Eq. (3 .5 )  corresponds to a quadratic dependence 
on the magnetization M ( B , T )  (cf. Ref. 1 ). We point out 
finally that if w s w ,  (k) ,  i.e., the sound frequency exceeds 
that of the spin waves, we have 

The term with w-' in the right-hand side of (3 .6 )  describes 
in this case the rotation of the polarization plane of the 
sound." We note finally that no account is taken in the equa- 
tions of the present section of the effects of the anisotropic 
(a, ,  Ref. 1 ) and of the magnetoelastic (a,, , Ref. 18) gaps 
of the magnon spectrum. This is equivalent to the assump- 
tion that the principal effect that causes the onset of a finite 
magnon frequency at k = 0 is the magnetic induction of the 
ferromagnet (a,  )RA ,Re, ) . 

To conclude this section, we emphasize that in our 
model the coupling of the spin and sound waves is deter- 
mined by a phenomenological magnetodeformation poten- 
tial. 

4. TEMPERATURE DEPENDENCE OF THE ELASTIC MODULI 
OF A WEAK FERROMAGNET 

Whereas the magnetodeformation interaction that cou- 
ples the spin and sound waves is a comparatively weak rela- 
tivistic effect, the contribution (2.15) to the dynamic elastic 
moduli, on the contrary, is determined primarily by the non- 
relativistic Coulomb and deformation interaction. We con- 
sider below this contribution in the limit o = 0 and k  = 0, 
when w / k  = v, ( k )  is the speed of sound in the ferromagnet. 
We then obtain from (2.15) 

Here 

where 
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with E~ the Fermi energy in the ferromagnetic state and v, 
the characteristic electron velocity on the Fermi surface. 
The imaginary part of the tensor All corresponds to 
allowance of an effect well known in the theory of normal 
metals, that of collisionless absorption of sound by mobile 
 electron^.^ Collisionless absorption of longitudinal sound in 
ferromagnetic metals was studied in Ref. 19, where the "jel- 
lium" model was used. 

We consider below the real part ofA 1 1  , which is the con- 
tribution to the elastic moduli of the ferromagnet. We write 
down first a corollary of (4.1 ) for the paramagnetic state at 
B = 0: 

where f, is the Fermi distribution function of the electrons 
in the paramagnetic state. 

Experiment points to unusual temperature depen- 
dences in the case of a number of weak ferromagnets having 
relatively low magnetization. In this case one can expand in 
powers of the ratio of the spin-splitting energy to the Fermi 
energy, and obtain in our theory simple analytic relations. 
To obtain the temperature dependence of the elastic moduli 
we must use here an equation of state that follows from 
( 3 .1 ) :  

- 
T2M2 (B ,  T )  

Tn2M2 (0,O) 
(1+2$v)C* 

where 11 + 2$v((  1 for a weak ferromagnet, v  is the density 
of states at T = 0 on the Fermi level EF if induction and 
magnetization are neglected, 

+15v2v'v'"+10(vv")2-105v (v')'v" +I05 (v')'] , 
C2= [v6 (v f lv)  (v'/v3) '1 -' [ - ~ ~ v ( ~ ~ ) + 7 v ~ v ' v ' ~ ' + 4  (vv") = 

- 2 5 v ( ~ ' ) ~ v " + I 5 ( v ' ) ~ ] ,  C,=0,1[v2(vflv) ']-2[-7v3v(1v' 

+17vZvfv'f'+10 ( ~ v " ) ~ - 3 5 v  (v') 2v'f+15 (v ' )  & I .  
With the aid of the equation of state ( 4 .3 )  for a weak 

ferromagnet, we rewrite (4.1 ) in the form 

In accordance with ( 4 .2 ) ,  

h:,kl ( T )  = (qQ2/e2) (1+2$v) 

is here a collectivized-electron contribution that is indepen- 
dent of magnetization and induction, and is typical of a mag- 
netically ordered phase. In this case 

. , 
W,,, i,=Y,;lvn, on=v'lvn. 

Here dS is an element of the Fermi surface ~ ( p )  = E, and 
v  = (b '~ /dp ( .  We note right away that in the Coulomb model, 
when Ag ( p )  = 0, the temperature dependent correction to 
the elastic moduli (4.5 ), which describes the temperature 
dependence of the elastic moduli in the paramagnetic phase, 
is of the form 

It follows hence that in metals in which the usual condition 
VV" < ( v 0 2  for ferromagnet~ is satisfied, the electronic con- 
tribution ( 4 .7 )  to the elastic moduli decreases as the tem- 
perature is lowered; this corresponds to an anomaly of the 
elastic moduli in the paramagnetic phase. 

The magnetization- and induction-dependent contribu- 
tion can be expressed by 

1+E ( B ,  T )  
h7lkl (B ,  T )  =hi::;l 

[l+E (B,  T )  I2+O2 ( B ,  T )  

Here 

nu. M2(0, 0 )  o (B,  T )  =- -- (4 .10)  
4vF (1?2$v)" M2 (13, T )  ' 
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A feature of relation ( 4 . 8 ) ,  at nonzero induction B, is 
that it vanishes at zero magnetization. At the same time it 
must be specially emphasized that at B = 0  not only the 
second term, but also the first differs from zero at M # O .  
At zero induction we have then the parameter E(0,T)  
z ( 1  + 2 $ v ) M 2 ( 0 , T ) / M 2 ( 0 , 0 ) g l .  At the same time the 
parameter O ( 0 , T )  that describes the effect on the elastic 
moduli by collisionless absorption of sound by mobile elec- 
trons is determined by the ratio of two small parameters, us / 
u, and (1 + 2$v) .  

Any discussion of the consequences of (4 .8 )  must re- 
veal the effect exerted on the elastic moduli by the induction 
and magnetization, on one hand, and by collisionless damp- 
ing, on the other. We note that the influence of collisionless 
damping on the velocity of longitudinal sound, with induc- 
tion neglected, was discussed in the simplest Coulomb-inter- 
action model in Ref. 19, but the peculiarities that character- 
ize weak fertomagnets were not discerned there. 

In our discussion of the consequences of (4 .8 ) ,  we shall 
likewise start with the case B = 0 .  We indicate first that the 
influence of collisionless damping is particularly strong for 
anomalously weak ferromagnets, when 

Equation (4 .8 )  takes then the form 

The first term predominates then if 

Disregarding the small quantities - ( 1 + 2qv)  we have the 
simple equation 

which in the case of cubic crystals makes it possible to dis- 
cern directly a relation corresponding to the Invar anomaly. 
~ndeed, since MV,,, = A1l6~6,, for cubic crystals, it is ob- 
vious that M < 0 ,  since o; < 0  for weak ferromagnets. The 
negative AA causes Eq. (4.16) to describe, near the tempera- 
tures (4 .17) ,  a decrease of the elastic moduli with decreasing 
temperature, and this corresponds to the Invar anomaly 
(see, e.g., Refs. 12 and 13). 

If a weak ferromagnet satisfies the condition 

nu8/4u,<l 1+2$v I < ('I,) (nvS/2u,) '"- (4.19) 

we get at temperatures Ta 5 T <  To, where 

T,=Tn[l+nu,/4u,(l+2$v) ] k T , ,  (4.20) 

a large change of the contributionR (O,T),  described by the 
formula 

(4.2 1 ) 

We emphasize that at T >  To there is no contribution 
(4.21) to the moduli of the ferromagnet. The appearance of 
such a contribution at Ta 5 T < To changes the elastic modu- 
li by an amount Ma,, that is comparable with R $,,,. For 
cubic metals, where the contribution (4.21) is proportional 
to 6,.6,,, the condition o; < 0  in the vicinity Ta 5 T <  To 
leads to an anomalously strong decrease of the elastic moduli 
with decreasing temperature. This agrees with the experi- 
mentally observed relations for Invar alloys. It must be par- 
ticularly emphasized that, in contrast to Ref. 19, according 
to which the longitudinal-sound velocity undergoes an 
anomalous jump in the small vicinity AT = To - T -  Tous / 
u, ( T o  of the Curie temperature To, in our case the presence 
of the small parameter 1 + 2$v can cause the temperature 
T, to differ considerably from the transition temperature T,. 
It is precisely this last case which corresponds to the elastic- 
moduli anomaly observed in Fe, -,Nix alloys with low 
nickel concentration ( x  -- 0.34).  l 3  With increasing nickel 
density in the alloy, the parameter ( 1 + 2$vl increases, the 
temperature Ta tends to To, and the anomaly of the elastic 
moduli of the Fe, -,Nix alloys shifts towards the Curie tem- 
perature TO.l3 For stronger ferromagnets that satisfy the 
condition 

I >  1 l+2$v 12 ('I2) ( n ~ ~ / 2 ~ , ) ~ ~  (4.22) 

we must point out, first, that their T, is quite close to To, and 
second, in the low-temperature region 

Eq. (4 .8 )  can be written in the form 

where 

h$l=~h, j ,kL [I+ (1+2$v)C2] + (1+2$v)Bij,k[. 

The proportionality of the elastic moduli in (4.24) to M ' ( 0 ,  
T )  is analogous to the results of the approach that uses the 
Heisenberg model for the theory of Invar alloys (see Ref. 
13).  

The case B = 0  considered by us is an idealization. Real 
ultrasound experiments in which the temperature depen- 
dence of the elastic moduli is measured, at any rate at 
low temperatures, are performed in fields B>Bo(Bo 
= 4rM(O, 0 )  is the saturation field) that ensure that the 

ferromagnet is single-domain and eliminate, by the same to- 
ken, the additional contribution made to the elastic moduli 
by the domain-wall motion. We begin the analysis of Eq. 
(4 .8 )  at finite B with the case of sufficiently strong induction 
in the ferromagnet, when the collisionless damping of sound 
at 
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(where X, -fl ,v) is insignificant in the discussion of the 
electronic contribution II ' (B, T) . Under our conditions, for 
a large change of the elastic moduli by an amount compara- 
ble with II $,,, , we obtain from (4.8), in place of (4.2 1 ), the 
following simple approximation (cf. Ref. 12) : 

This approximation, just as (4.21), differs substantially 
from the usually discussed13 proportionality to M2(B, T) 
that arises in the Heisenberg model. For cubic crystals, Eq. 
(4.26) corresponds to an anomalous decrease of the elastic 
moduli. We note that in contrast to (4.21), Eq. (4.26) de- 
scribes the elastic-moduli anomaly observed in Invar alloys 
at a temperature higher than T,,.12,1%quation (4.26) de- 
scribes at M,,,, # O  practically the entire temperature de- 
pendence of the elastic moduli of weak ferromagnets that 
satisfy the inequality 

If, however, the condition I 1 + 2$v I > (n-% /4vF l3I5 holds 
rather than (4.27), we have at low temperatures 

and at induction values satisfying the inequality B, < B  
< B O ( h x p  ) ( 1 + 2 $ ~ ) ~  the temperature dependence of 

II ' is determined by (4.24). 
For typical parameters xP - loP5, v, /vF - 5 . lop3 

and for weak ferromagnets with 11 + 2$vl- lo-', the in- 
duction B, is found to equal approximately 3B0; this is the 
condition for the ferromagnet to be single-domain at low 
temperatures. For weaker ferromagnets with I 1 + 2$vl(0.1 
there can be realized the inequality B,,B,. We shall there- 
fore discuss hereafter the influence of the magnetic induc- 
tion on the elastic moduli at B < B,. We note first that the 
induction plays a substantial role for the contribution II ' (B, 
T) in the region of relatively high temperatures 

T2-TO2>ToZ (-8nxoB/B0) ' I3,  (4.28) 

when we have from (4.8) 

Allowance for the finite value of the induction near To, when 

leads to 

If, on the contrary, B < B,, the induction is inessential near 
the temperature T, (in this case T i - T Z  
> ( - 8rxoB /B0)'l3 ), where the change ofA ' with tempera- 
ture is given by (4.21 ). The condition B > Bo can in this case 
be satisfied, in view of the inequality (4.19). For tempera- 
tures sufficiently lower than T, the effect of the induction on 
the elastic moduli can become substantial for ferromagnets 
with 

~ u . / ~ v F <  ( 1 + 2 $ ~  (< ( X U ~ I ~ V ~ ) ' ~ ,  (4.32) 
at the values 

in the temperature region 

where we get from (4.8) 

In this case B, < B,. 
We note finally that for cubic crystals the anomalous 

decrease of the transverse-sound velocity is described ac- 
cording to (4.8) and (4.12) by the expression 

-6 (1+2$v) [ (z;,~~/v) '1 ( ~ 0 8 ' )  ] [in ( B ,  T )  /M2 (0,O) 1, (4.36) 

which is proportional to the square of the magnetization in 
the entire range of temperatures where the ferromagnetic 
state exists. 

It can be stated in conclusion that the Fermi-liquid ap- 
proach permits not only a general description of the magne- 
toelastic phenomena in ferromagnets with collectivized mo- 
bile electrons, based on the use of the exchange interaction of 
the electrons and of the interaction of the electrons with the 
lattice, but also a description, without resorting to the mag- 
netoelastic constants, of the anomalous (Invar) depen- 
dences of the elasticity of ferromagnetic metals. In this case, 
first, the character of these anomalous dependences is sub- 
stantially altered by a change of the parameter 1 + 2$v, in 
accordance with the universally accepted viewpoint. Sec- 
ond, in our analysis the anomalous relations are in no way 
connected with the usual assumption that the exchange-in- 
teraction energy depends on the volume, since a large set of 
possible anomalous magnetoelastic relations are derived in 
our approach at $ = const. This allows us to state that the 
Fermi-liquid approach, by revealing the anomalous rela- 
tions that govern the elastic moduli of ferromagnetic metals, 
provides a new possibility of understanding the Invar anom- 
aly. 

APPENDIX 

The appearance, in the right-hand side of (2.13), of 
components of the alternating magnetic field and of the al- 
ternating vector potential is due to the cocpling, described 
by our collectivized-electron model, of the sound field with 
the solenoidal electromagnetic field. The spin coupling is 
determined here by the coefficients 

Ri jo=(M/~)  (3) ) [ 1 - - 2 q ( r ( - o ,  (3) > ] - 1  

x(A,~,  z x F i ~ k j .  zg), (A.1) 

Rij"=D-' ( c p ,  $) {ai,+ (I-2cp(r(- ,  -) )) 

-a,]- ( 1 - 2 ~ ( r ( + ,  +) ))  

+ 4 n ~ k - ~ ~ , - ' ( o ,  k )  (r(+, +) - r ( - ,  -) > 
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where 

For the coefficient of the diamagnetic coupling of the sound 
with the electromagnetic field we have 

P,,=Qos,,-ekj{( [r(+, +) +r(-, -)I ulAij>+ (M/P)Aij ,  .. 

Equations (A. 1 )-(A.4), on the one hand, determine 
the effects of sound excitation by an electromagnetic field 
(cf. Ref. 14), and on the other, describe the sound-wave 
damping due to the self-consistent solenoidal field (cf. Ref. 
4), and also the electromagnetic coupling of sound and spin 
waves (cf. Ref. 7). 
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