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Tunneling of a particle that interacts with harmonic oscillations is investigated. Account is taken 
of the particle action on a quantum oscillator in the external-force approximation, and of the 
influence of the oscillations on the particle in first-order quasiclassical perturbation theory. The 
method employed is valid for long-range local oscillations and long-wave phonons. The tunneling 
probability and the amplitudes of the multiquantum tunneling transitions are calculated for a 
quasistationary state in a well and also for scattering by a potential barrier. Applications consid- 
ered are the tunneling of a particle interacting with acoustic phonons at low temperature and 
inelastic tunneling of an electron in field emission from a metal. 

Interaction with oscillations of a medium (local oscilla- 
tions, phonons) determines the temperature dependence of 
the tunneling and of the amplitude of the inelastic tunneling 
transitions. Allowance for this interaction may turn out to 
be substantial in the study of the tunneling of light1-' as well 
as heavys-" particles. A theory of inelastic tunneling has 
recently been developed in connection with investigations of 
dissipative effects in the region below the barrier.l2.l3 

The tunneling-transition amplitudes are usually calcu- 
lated by using quantum perturbation theory or the tunnel- 
Hamiltonian method (see Refs. 1-3 and 14). To determine 
the tunneling probability we must know the wave functions, 
at least accurate to the terms quadratic in the interaction, 
but their calculation is quite laborious. The functional 
(path)-integration method permits calculation of the tun- 
neling probability by integrating over the oscillation varia- 
bles, and reduces the problem in the quasiclassical approxi- 
mation to a solution of a single-particle Newton equation 
with a nonlocal potential.9 This approach cannot be used to 
calculate the amplitudes of tunneling transitions in which a 
fixed number of vibrational-energy quanta is acquired (or 
lost). 

We develop below a method, based on quasiclassical 
perturbation theory, for calculating the tunneling probabil- 
ity and the tunneling-transition amplitudes. In the analysis 
of the interaction between the particle and the oscillations 
the starting point is the Schrijdinger equation." 
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moves, and W, (x)  are the interaction forces. 
We assume that the interaction energy and the oscilla- 

tor frequencies are much lower than the particle energy. We 
assume also, unless otherwise stipulated, that the potential 
V(x) and the interaction W, (x )  are quasiclassically slow 
functions of the coordinate x. The asymptotic solution ob- 
tained for Eq. (1)  takes into account the influence of the 
oscillators on the particle motion in first order of quasiclassi- 
cal perturbation theory, as well as the influence of the parti- 
cle on quantum oscillators within the framework of the ex- 
ternal-force approximation. 

Quasiclassical perturbation theory is more convenient 
than the quantum theory for the investigation of tunneling, 
since it yields the increment of the exponential in the expres- 
sion for the wave function. As a result, the tunneling prob- 
ability and the transition amplitudes can be changed by sev- 
eral times even in first order of such a theory. On the other 
hand, we are restricted to the analysis of rather smooth per- 
turbations (long-range local oscillations, or long-wave 
phonons) . 

We consider below the probability of an inelastic tun- 
neling transition from a bound or from a free state into a free 
one. The form of the potential V(x) is shown in Fig. 1. The 
method proposed can be used to treat similarly a transition 
between two bound states. 

In Sec. 1 we obtain an asymptotic solution of Eq. ( 1 ), 
while in Sec. 2 we present the conditions for its validity. We 
use the solution first to consider highly excited states in a 
well, after which we calculate the tunneling probability and 
the transition amplitudes. If the adiabatic approximation 
holds in the well, or if the potential can be approximated by a 

- - 

o,~u," quadratic one, the resultant expressions can be extended to +[ E - V ( ~ ) - ~  :- 1 ( w,(x) ' y=O, include low-lying states. 
, - 

In Secs. 3-7 it is assumed that N = 1, a generalization to 
where x is the particle coordinate, u, are the oscillation co- arbitrary N is given in Sec. 8, and in Sec. 9 the results are 
ordinates, V(x) is the initial potential in which the particle generalized, under certain assumptions, to the case of three- 

l&w ! I FIG. 1 
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dimensional particle motion. Some applications are consid- 
ered in the last section. 

1. SOLUTION OF THE SCHRODINGER EQUATION 

We separate in Eq. ( 1 ) the motion that is quasiclassical 
in x, by representing the wave function as the product 

Y =p-'" exp i p dx Q ( x ,  u , ,  . . . , u, ) ,  ( j  1 
p = [ 2 ( E 0 - V  (x)) ]'", ( 2 )  

where the energy E will be determined below. Substitution 
of (2) in ( 1) leads to an equation for R: 

N 
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In the quasiclassical approximation in x and for sufficiently 
small perturbations Wj (the actual conditions are given in 
Sec. 2), Eq. ( 3 )  is transformed into the following nonsta- 
tionary Schrodinger equation: 

N 

where x is replaced by the time variable 

t ( x )  = ( d x l p )  . 
It can be easily noted that the oscillations with different u, 
separate. We seek the solution of this equation in the form 

N 

Equation ( 1 ) is satisfied if 

and the arbitrary constants satisfy the condition 
N 

, - I  

Equation (6)  coincides formally with the exactly solvable 
nonstationary Schrodinger equation for an oscillator in a 
field of variable strength.15 We arrive in the upshot to the 
following asymptotic expression for the wave function: 

Y . ~ ( X ,  u) = p-12 exp ( i  j p d x ) ~ . , ,  
I*., 

n = ( n I , .  . . , n ~ ) ,  u = ( u l , .  . . , uN), 

where E is chosen to satisfy the condition that Eq. (7)  be- 
come the usual solution that is quasiclassical inx if the varia- 
bles separate ( W = f = 0; H,, (2) is a Hermite polynomial, 
and the functions f ( j '  (x) satisfy the differential equation 

P(PL ) ,+o,2f'j '+W,(x)= 0, (9)  

which reduces via the substitution (5)  to Newton's equation 
for an harmonic oscillator with an external force - 4.. 

Using the asymptotic expression for high-index Her- 
mite polynomials, we easily obtain from (7) and (8)  the 
classical action corresponding to the wave function (7) : 

This expression satisfies the Hamilton-Jacobi equation 
N 

accurate to terms quadratic in the ratio of the interaction 
and kinetic energy of the oscillators to the particle kinetic 
energy. 

From the viewpoint of diffraction theory, solution (8) 
is a Gaussian beam localized in configuration space 
(x, ul, ... , u N )  near the axis. The asymptotic character of 
such solutions as f i  -+ 0 and at finite transverse quantum 
numbers n , was proved in general form in Ref. 16. 

2. CONDITIONS FOR THE VALIDITY OF THE 
APPROXIMATION 

To determine the actual conditions under the asympto- 
tic form (7)  is valid, we assume for simplicity that the char- 
acteristic length x, defines in the region considered the dis- 
tance over which the functions V(x) and Wj (x)  vary. We 
introduce also the characteristic values of the oscillator co- 
ordinates u,, , of the time 7, = x,/~,, and of the interaction 
W, ,  . We note that under the condition 

poxoB 1 (11) 

the terms 3p:/8p2 andp, /4p in the square of (3)  can, just as 
in the one-dimensional WKB method, be discarded in view 
of their relatively small [of the order of (pfi,) -I] contribu- 
tion to the wave function. Under the same condition, p, /2p 
can be neglected compared with ip in the first term. For (3)  
to go over into (4) it suffices to neglect Rxx compared with 
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the remaining terms. To determine the conditions under Conditions ( 17) and ( 18) can be regarded, on the one hand, 
which this is permissible, we rewrite (3), with the indicated as constraints on the interactions W, . On the other hand, 
small terms neglected), in the form according to the result of Ref. 16, they will be satisfied in the 

N classical limit ifp, and x, are large enough. 
1 1 

ipn. + - (*,+A:) + - E (nuj.,+ 1 ~ : )  
The conditions obtained become invalid near the turn- 

2 2 , = I  ing points xk of the momentump. In the vicinity of xk it is 
N necessary to find the matching conditions for the solutions 

0,2u,2 +[E-B"Z( W , ( ~ ) U , + ~ ) ]  =0 ,  ( 12) such as (7). This is the subject of the next section. 
- 

, = I  

where the function A is obtained from R = eA , Let 0, = eAo 
be the solution (8)  of Eq. (4)  and let A = A, + A,. The 
condition for the transition from ( 3 )  to (4)  is then deter- 
mined by the inequality 

(13) 

We seek the value of A, by iterating Eq. ( 12) with respect to 
A,, + A&. In first order, we arrive at the equation 

We consider now two cases. 
a) W,T, 5 1 or mixO 5p0. It follows from this and from 

(11) that 

w,Kpo2. (15) 

According to (9)  we have then 

I f ( l )  I - Wo1/wI2, I fx(l' I - WOJ/ (wI2z0). 

In addition, it follows from (8) and ( 10) that in the region of 
interest to us 

uo,G (nJ/wj) “+ 1 j") 1. (16) 

As a result we obtain from ( 14) and ( 13 ) 

b) W, r0 2 1. Consider first the classical forbidden re- 
gion. From (9) we get the estimates: 

I f ( j l  I - Woj  exp (wj-ro) /wJ2, 112' I - Woj exp (oJ t a ) /  (ojpo). 

Using them together with ( 16) we obtain in this case 
A 

'L. E{ nJ"'WoJ esp (wJ-ro) NnJWo,2 exp (2w,-rU) + 
,=I 

w,'"po2 w,ZpoL 

It can be similarly shown that the condition for the validity 
of the solution (7) in the classically allowed region is ob- 
tained from ( 18) by replacing each exponential in it by uni- 
ty. 

Conditions (17) and (18) can be simplified by assum- 
ing that all the W,, are of the same order, and that N, nj , and 
the adiabaticity parameters ojro are of the order of unity. 
Equations ( 1 1 ) , ( 17), and ( 1 8 ) are then equivalent to the 
inequalities 

3. MATCHING RULES AND CERTAIN DESIGNATIONS 

For brevity, we assume for the time being that N = 1 
and omit the subscript j.  

The matching near the turning point xk can be effected 
by Zwaan's method." In analogy with the one-dimensional 
case, we bypass the turning point x, in the complex x plane, 
where the conditions for quasiclassical behavior are formal- 
ly satisfied. As a result we find that in Eq. 7 the substitution 
p -+ + i[pl (on going below the barrier) or p -+ + p  (in 
reflection) must be made not only in the factor preceding the 
exponential in the first integral, but also in the expansion of 
the function f near the turning point xk : 

f (XI = Di+D2 J (drip)  
XI( 

as well in the analogous expansion of the integral of 
(w2f -p2f5) .  

Let, for example, the regions to the left and to the right 
of x, be classically allowed and forbidden, respectively. We 
express the solution (7)  at x z x ,  in the form \y,, (p), denot- 
ing explicitly the functional dependence on p(x) .  The 
matching rule for the transition into the below-barrier re- 
gion is then 

[Ynz(p)+Yvtz(-~)l 1 * < r ~ + Y n ~ ( i l ~ I )  I=>=<. (20) 

The other matching rules are obtained similarly. 
We introduce some designations. We express the solu- 

tion of (9)  in the region of k in the form 

where A 2 are free parameters. We introduce also the quan- 
tities 

Z k  

r2 X 

1 dx dx' 
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Here T, is half the period of the oscillations in the well, and 7, 

is the tunneling time. The parameters G related the solu- 
tions of Eq. (9)  near the turning point, x, - , and x, . For 
example, if we have in the vicinity of x,, according to (21), 
the function 

this function must take near x, the form 

f, - [ ( A , + + G Z f )  e"'~ + (Az -+G2- )  e-""11 

dx  + [ (AZt+Gz+)  em's- (Az-+G,-)  e-"'21 o - . 
3, lpl 

4. EIGENFUNCTIONS IN A POTENTIAL WELL 

We seek the normalized quasiclassical wave function 
with energy E 7 + o ( n  + 1/2) in a potential well in the form 

cDIn=(2.t,)-'"(Yni+Y,,*). (25) 

The continuation of @,, beyond the turning pointsx, and x,  
must decreases exponentially. According to the matching 
rules this is equivalent, as in the one-dimensional case, to the 
requirement that the function V,, remain unchanged after 
tracing the contour Con the Riemann surface of the function 

p (x) = [ 2  (ELo-V ( x )  ) ]  '" 

with a cut on the interval (x,, x , )  (Fig. 2). This rule, when 
applied to the function f,, determines uniquely the coeffi- 
cients A ,f and A , : 

and leads also to a rule for quantizing the particle energy E: 
1, 

[ 2 ( E , o - V ( x ) ) ] " 2 d x = n  
*o 

from which we obtain for the particle energy shift on account 
of the interaction 

p a -  FIG. 2 

In the adiabatic limit wr,(l, expanding (26), (22), and 
(21 ) in powers of wr,, we obtain 

Substituting these expressions in (8),  we arrive in the ap- 
proximation linear in wr, at an adiabatic wave function in 
the Condon form: 

In the opposite adiabatic limit wr,, 1, integrating (22) and 
(21 ) by parts, we get 

We have hence in the zeroth approximation in (wr,)-' 

Since it follows from ( 17) and ( 18 ) that W '/02 and Wu 
are small compared withp2, we moved these quantities into 
the intregrals of (31) and (33). We note that at constant W 
these expressions coincide and yield for Eq. (1 ) a solution 
that is quasiclassical with respect to x. 

Equation (33) acquires the known effective increment 
- W2(x)/2W2 to the potential V(x) (Refs. 9 and 12), and 

the particle motion in the renormalized potential is elastic at 
Orl,l in the classically allowed region. The next terms of 
the expansion in (wr1)-l are responsible for the inelastic 
corrections. 

According to (26), the quantity A ,  and with it the prob- 
ability of tunneling decay of the state (see below) increases 
strongly, generally speaking, near the classical resonance 
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WT,  = ~ q ,  4 = 1,2, ... . In the immediate vicinity of the reso- 
nance the approximation considered no longer holds. 

5. ASYMPTOTE OF WAVE FUNCTION AT LARGE x 

We continue now the wave function from region I into 
region I11 (Fig. 1 ). We consider first the case of a highly 
excited bound state. We indicate next the variation of the 
wave function if the states is not necessarily highly excited, 
but in a certain vicinity of the well the potential can be re- 
garded as quadratic, or else the adiabatic approximation is 
valid. In the end of the section we consider the case of a free- 
free transition. 

Assume that the final states of the particles correspond 
tox tending to infinity, where the interaction W(x) becomes 
negligibly small. This condition is not important for the de- 
termination of the tunneling probability, since the latter is 
independent of the behavior of V(x) and W(x) at x > x,. It 
determines, however, the final states of a particle with fixed 
energy, and hence also the transition amplitudes. 

The continuation of the wave function (25) into the 
below-barrier region decreases exponentially. In the region 
x, < x < x, it takes the form2' 

@ l n z C Y  nz (x, u )  , C= (Za,) - ' I2 ,  (34) 

where the unknown constants A and A , of the function 
f,(x) in (21) are determined by the matching rules. Ac- 
cording to Sec. 3, we obtain 

A,+=A,-=A,=G,*+A,e""'~ 

= (Gi-el@r,-Gi+e-to',) ( e s ~ ~ , - e - t o r ,  ) - I .  (35) 

Continuing the wave function (34) into the region 111, we 
obtain at largex -+ CQ , apart from inessential constant phase 
factors, 

where 
z 

r g = r z - ~ ( ( A 2 - 1 2 + J G 3 - 1 2 )  -20 Re (A2-G2++A,-G,+). 
For low-lying states the quasiclassical approximation 

(25) no longer holds in the well, but the continuation (36) 
retains the same form. It is necessary here to redefine the 
normalization factor C and the constants A :. We consider 
first the case when V(x) can be regarded as quadratic near 
the potential well, and W(x) as linear. The variables in the 
initial Schrodinger equation are then exactly separated and 
it can be shown that the quantization rule (27), as well as 
expression (35 ) for A 8 , remains valid also for small I. Con- 
tinuing the solution obtained into region I11 (we leave out 
the intermediate algebra), we arrive again at the asymptote 
(36), where 

The correction coefficient Y, + 1 as I + w and turns out to 
be close to unity also at small I (namely, Y, = 1.037, 
Y, = 1.014, v2 = 1.008), so that theasymptote (36) is fully 
satisfactory at all I. 

Assume now that in a certain vicinity Ix - x, 1 Sx*  of 
the well the adiabatic approximation wx*/p,( 1 is valid, 
withp+*) 1. In this case the adiabatic solution near the well 
in the below-barrier region can also be matched to the wave 
function VI,, . We must now put in the asymptote (36) 

where VI? is the eigenfunctioh of the particle in the well at 
W = 0. The effect of the interaction Win the well is taken 
into account here in first-order quantum perturbation the- 
ory. At large I the quantum mean value ( ( W ) ) tends to the 
classical ( W ) . 

In the case of a free-free transition (Fig. lb)  we assume 
that the interaction W(x) is negligibly small as 1x1 -+ CQ. 

We may deal here, for example, with tunneling of an electron 
that interacts with molecular  vibration^.^.^ We stipulate a 
wave incident on the barrier fromx = - co and normalized 
to unity flux: 

'I* -'h 
, ) [ ) ] I ~ n ( w ~ ~ u ) e r p ( i j  dx). (40) 

The asymptote of the solution as x -+ + CQ is obtained in 
analogy with the procedure above, and takes the form (36) 
in which we must put 

C = l ,  A,*=G,', (41 

and assume x, + - CQ in Eq. (22) for G ,+ . All the remain- 
ing quantities in (36) are determined from Eqs. (37), just as 
in the case of tunneling from a bound state. 

The asymptote obtained yields explicit expressions for 
the tunneling probability and for the amplitudes of the in- 
elastic tunneling transitions. 

6. TUNNELING PROBABILITY 

The tunneling probability or the flux of the wave-func- 
tions (36) through the straight line x = const on the (x, u )  
plane is defined as 

ca 

P,,= j dup(@1.12. 
-m 

Simple calculations yield 

where L ( - /3) is a Laguerre polynomial, 

The tunneling probability, as expected, is independent of the 
behavior of V(x) and W(x) at x > x,. 

At large n + UI we can use for the Laguerre polynomial 
an asymptote that contains a modified Bessel function: 
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The approximation (44) describes the oscillator quasiclassi- 
cally, when its action on the particle can be replaced by an 
alternating increment to the potential V(x): 

W(x, t )  = (n/2a)'"W(x) cos at .  

This approximation was used in Ref. 18 to estimate the influ- 
ence of local oscillations on electron tunneling.3' In the case 
considered there Wwas concentrated under the barrier, and 
hence G ,+ = 0. In that case Eq. (42), with (44) and (41) 
taken into account and with terms a and in the exponen- 
tial, which are quadratic in the interaction, becomes equal to 
the result of Ref. 18. 

The quantity 2a describes the influence of the zero- 
point oscillations on the tunneling probability, and can be 
either positive or negative. At n > 0, the Laguerre polyno- 
mial describes the increase of the tunneling probability on 
account of the interaction with the excited oscillator: 
L : (  -p) > 1, sincep>Oaccording to (43). 

Assuming that in the initial state the oscillator is in 
thermal equilibrium with the thermostat, we obtain for the 
tunneling probability - 

Separating in the integral in (45) the energy shift AE, due to 
the interaction in the well, by using the formula 

P (Eo+AEl) -p (Bo) + AEJp (Ea) , 

we find that the interaction increases the tunneling probabil- 
ity at a temperature higher than 

T'=o [ln(I-p/2(a+ AE,T,)) I-', (46) 

and decreases it at a lower temperature. For the scattering 
problem (40) it is necessary to set AE, in this formula equal 
to zero. 

If the interaction with the oscillator is concentrated 
only in the region ahead of the barrier and can be neglected 
below the barrier, we get from (43) 

In the adiabatic limit, the value of A, for a well is given by 
(39). Equations (47) coincide then with the analogous ex- 
pressions of Ref. 4, obtained with the aid of the adiabatic 
theory of multiphonon transitions. Interaction in the well 
can also lead to an energy shift that can be obtained from 
(28) and (30): AE, = - ( W)'/2W2 (forlow-lying stateitis 
necessary to replace the classical mean value ( W) by the 
quantum mean ( ( W) ). Equation (46) takes in this case the 
form 

and T  * turns out to be independent of the actual form of the 
interaction W. At mr2) 1 we obtain T  * z (27,) - ', and at 
or2( 1 this quantity is of the same order: T  * ZT,-'. For the 

scattering problem (40) at G; = y2 = 0 we obtain 
T *  = (27,)-'. 

If the interaction W(x) is concentrated below the bar- 
rier (A ; = 0), we get a > 0 [see (50) ], which leads at any 
temperature to an increase of the tunneling probability. In 
the adiabatic limit or,( 1 this follows from the fact that the 
particle tunnels through the oscillating barrier predomin- 
antly when the barrier is lowered. In the nonadiabatic situa- 
tion the latter effect suppresses the interaction of the type 
considered. At zero temperature expression (45) goes over 
in this case into the result of Ref. 11. In fact, let us introduce 
the function 

We then obtain from (43) and (23), integrating y2 by parts, 
C C = O ~ - z o ~ z  (Gz-)'+yz 

r z  

=20e-2wTz (Gz- (r,) )'+2w2 J epZmr(Gz-(T) )' d t ,  (50) 

which, notation aside, coincides at W(x) = cx with Eq. 
(3.85) of Ref. 11. 

If the motion in the below-barrier region is low 
(m2, 1 ) , the quantity 

yields, just as in (33), an effective increment - W2/(202) 
to the potential. 

7. AMPLITUDES OF TUNNELING TRANSITIONS 

To calculated the amplitude of the tunneling transition 
we expand the asymptote (36) of the wave function in terms 
of a set of solutions, normalized to unity flux, of the Schro- 
dinger equation in the region of largex -+ cu , where W(x) is 
assumed equal to zero: 

co 

This yields for the transition probability 
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where B,, B - ,  and q, are defined in (37). 
At low temperature, the particle interacts most strongly 

with the zero-point oscillations. Equation (52) takes then 
the simpler form 

X Z  

Neglecting in the exponential the term q, which is quadratic 
in the interaction, Eq. (53) goes over at k = 1 into the Fermi 
golden rule (in which it must be recognized that w e 2 ) .  In 
this approximation, \Ao, l 2  is obviously not equal to the in- 
elastic part, quadratic in W, of the total tunneling probabil- 
ity, inasmuch as to determine Po at the accuracy indicated it 
is necessary to take into account also the part of (A,,I that is 
quadratic in the interaction. 

Assuming that the oscillator was in thermal equilibri- 
um with the thermostat in the initial state, we obtain for the 
probability of a particle tunneling and acquiring m energy 
quanta 

If the adiabatic approximation w ~ <  1 is valid, the main con- 
tribution (of zeroth order in WT) to the values 9, ( E  ') is 
made by the well region, and we can put B+ = B- . Summing 
9, ( E O )  over m, we find in this case that the tunneling 
probability becomes independent of temperature. The same 
result is obtained from (45), since a and P are quantities of 
first order in w ~ .  The probabilities of the partial transitions 
(54) and of the amplitude (52) are thus determined in the 
adiabatic approximation by the interaction in the well. At 
the same time, an essential role in the determination of the 
total tunneling probability is played by the interaction in 
both the well and in the below-barrier region. 

8. GENERALIZATION TO THE CASE OF INTERACTION WITH 
N OSCILLATORS 

We consider now the case of interaction of a particle 
with Noscillators. Owing the factorization of the wave func- 
tion (7) with respect to j, the tunneling probability and the 
transition amplitudes reduce to a product of N flux integrals 
of the same form and the overlap integrals from Secs. 6 and 7, 
while the contributions from the different oscillations are 
summed in the quantization rule. In analogy with (28) we 
obtain 

N x, 

The generalization of the results (42) and (45) is given 
by 

and the expression for the amplitude of the 
(n, ... n,) + (k, ... k,) transitions at k, >n, is 

If kj <nj for some arbitraryj, we must replace in the product 
(58) B ($ by B 0 and interchange k, and n,. 

In the formulas presented, the quantities a,, pi, B y ,  
and q,, are defined in the same manner as a ,  8, B * , and q,, 
with w and W(x) replaced by w, and W, (x) .  The other 
equations given above are generalized to the case of N oscil- 
lators in the same manner. If the frequency spectrum is con- 
tinuous, the sums in ( 55 ) and (57) should be replaced by the 
corresponding integrals. 

If the interaction is concentrated in the below-barrier 
region, Eq. (57) coincides at zero temperature with that ob- 
tained in Ref. 11, where it is shown, in particular, that the 
contribution, calculated with the aid of (57), of the dissipa- 
tive terms agrees with the result of Ref. 12. 

9. GENERALIZATION OF THE THREE-DIMENSIONAL CASE 

When a three-dimensional particle tunnels from a low- 
lying state in a sufficiently weak external field, the flux of its 
wave function is localized in the below-barrier region in the 
vicinity of a certain trajectory. Localization occurs also for 
the most easily ionized excited states that stretch along the 
field. This circumstance allows us to generalize our results to 
the three-dimensional case. 

We assume for simplicity that the potential, as a func- 
tion of the particle coordinates, has a symmetry axis with 
which the indicated trajectory coincides. We now put in the 
initial Schrodinger equation ( 1 ) x = (z, p cos q,, p sin p ) ,  
where z, p, and p are cylindrical coordinates. 

Equation ( 1 ) can be solved in the vicinity of the adiaba- 
tic approximation (which is valid for an electron), or else by 
assuming the potential to be a quadratic function of the co- 
ordinates (for a heavy particle). Far from the well, in the 
below-barrier region, where the wave-function flux is local- 
ized, we expand the potential V(x) = V(z, p) in the vicinity 
of the z axis, accurate to terms quadratic in p, and neglect 
the dependence of W, on p. As a result, the variable p be- 
comes analogous to the vibrational variables u,. The fre- 
quency ( Vpp (z, 0) ) ' I2  that corresponds to the coordinate p 
is now a function of z. 

If the dependence of the potential on the coordinates is 
quasiclassical, and also if the wave function is localized in 
the vicinity of the z axis and under the assumptions ( 17) and 
( 18) are valid, the variables in Eq. ( 1 ) can be separated by 
the procedure described above. The equation is reduced as a 
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result to N exactly solvable two-dimensional equations in z 
and u,, and to one equation in z and p. Matching the solu- 
tion obtained to the tail of the bound state, we obtain the 
wave function of the problem. A similar problem concerning 
elastic decay of a bound state in an external field was solved 
in Refs. 20 and 21, and we therefore leave out the details 
here. 

Factoring the solution of the Schrodinger equation with 
respect to the parameters p and u, changes the inelastic- 
ionization probability to the factorized form 

N 

P(")  (E0+AEI)  --P(O) ( E , )  exp ( ~ A E , T , ) .  (59) 

Here P(O'(E) is the probability of elastic tunneling ionization 
from the level Eo at W, ;. 0, AE, is the shift of the level by 
the interaction, and the quantities rZ, a,, andpj are calculat- 
ed on the z axis by replacing the turning points x, by z, . The 
value of P ' O '  is known for a small-radius center22 and for a 
Coulomb center23 in a constant electric field. The results of 
the cited papers were generalized in Refs. 20 and 21 to in- 
clude arbitrary axisymmetric potentials. Equation (59) per- 
mits an estimate of the contribution made to the tunneling 
probability both by size effects and by effects of interaction 
with the oscillations. 

10. PARTICULAR CASES AND APPLICATIONS 

1. We consider first the temperature dependence of the 
tunneling probability of a one-dimensional bound particle 
interacting with one-dimensional phonons: 

W h ( x )  =ck sin kx, k<O; 

W h  ( x )  =ck cos kx,  k>O, 

after making the substitution 

in (55) and (57). 
We assume the potential near the well to be quadratic, 

V(x) = wixz/2, and the adiabatic approximation w k ~ , < l  
to be valid. For the I th state we obtain then 

It follows from (60) that the quantum mean value goes over 
into the classical one at 1% 1 and k 2 < ~ o I .  These inequalities 
are the conditions under which the employed quasiclassical 
approximation is valid for this region. The second inequality 
states that the phonon momentum must be small compared 
with the characteristic momentum of the particle. In the be- 
low-barrier region, in analogy with the classically allowed 
one, the foregoing conditons take the form p$co) 1, k Q 0  

where po and xo are the characteristic momentum and dis- 
tance below the barrier. 

Assume for simplicity that the potential V(x) is con- 
stant in the below-barrier region (except in the vicinities of 
the turning points, whose contributions to the exponential of 
(57) can be neglected). Assume in addition that the adiaba- 
tic approximation is likewise valid under the barrier. Since 
O , T ~ < ~ ,  to determine the temperature dependence of the 
tunneling probability it suffices to calculatep, + p - , . Un- 
der the assumptions made we get 

2a 2 
- ( s i n  kx2-sin k z l )  b WhP+ -(I-cos  ka)  1. (61 ) 

k kZ 

Here a = xz - x, is the barrier width, p is the value of the 
momentum below the barrier, and x, = (21 - 1)1'2/wo112. 
At small k, just as at large ones, the expression in the square 
brackets of (61 ) tends to zero. For small k this follows from 
the fact that the interaction independent of x cannot have a 
tunneling probability. 

For acoustic phonons at low temperature, the depen- 
dence of the tunneling probability (57) on T determines the 
behavior of expression (61) at small k. Let w, = sk and 
c, -ckq as k - 0. Under the conditions Ikz/wo<l and 
kx, <kx2( 1, expanding (6  1 ) in terms of these small param- 
eters, we then obtain as k -+ 0 

Pk+P-h= (cza4/2sp)  kZ4+'. (62) 

The approximation (62) can be used at a temperature much 
lower thans/a or s(oo/l) 'I2. This condition is quite restrict- 
ed for light particles. For a heavy particle, assuming that 
wo-s-0.003, a- 1, I =  1 and that the particle mass is 
M- lo4 (atomic units), we obtain T<100 K. Integrating 
with respect to k, we arrive at the result 

where Po is the tunneling probability at zero temperature, r 
is the gamma function, and is the Riemann zeta function. 
The temperature dependence is determined in this case by 
the interaction in the below-barrier region at k < 0. 

2. Equation (63) can be generalized to include a three- 
dimensional case when 

W k  ( x )  =ck sin kx ,  

W k  ( x )  = C k  COS kx,  kz>O, 

w, = slkl and c, zc(kIq  as Ikl - 0 and the momentump is 
constant in the below-barrier near thez axis, which coincides 
with the most probable tunneling path. At I k l Q  the main 
contribution to the wave-function flux under the barrier is 
made by the interaction on the z axis, and the conclusions of 
the preceding section are valid. In place of (62) we now 
obtain Ikl + 0 

pk+&.-- (c2a4/2sp)  1 kIzq-'k2. 
As a result we get 

PT=Po exp 1. (65) 

Here a is the width of the barrier along the z axis. 
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3. Assume that the main contribution to the sum over k 
is made by phonons with I kla> 1 (for light particles). If fol- 
lows then from (61) that the decisive contribution to the 
quantity 0, + - , is made by the region of the well. In the 
general case, if the interaction with the oscillations is signifi- 
cant only in the well region, where the adiabatic approxima- 
tion is valid, we obtain from (59) 

N 

where qo, is an eigenfunction the particle in the well normal- 
ized at W, :. 0. Equations (66) can be used for interactions 
both with phonons and with localized oscillations. A similar 
result was obtained in Ref. 4 within the framework of the 
adiabatic theory of multiphoton transitions. Account is tak- 
en also in (66) of the shift AE, of the particle energy in the 
well, due to the interaction that leads in the adiabatic limit 
wj T~ + 0, together with the remaining terms in the exponen- 
tial of (66), to a decrease proportional to ( ~ ~ 7 , ) ~  of the 
argument of the exponential. 

4. We consider now the interaction of an electron with 
local oscillations of an adsorbed molecule in the case of field 
emission from a metal into a vacuum3 [a metal-barrier-met- 
a1 system is treated similarly2]. Calculations of the ampli- 
tude of the electron inelastic transition, in the zeroth order in 
w/pO2 (this corresponds to the adiabatic approximation) is 
inaccurate for broad barriers.14 The approximation em- 
ployed, by taking into account the change of the action of the 
particle in first order in w/po2, describes quite adequately the 
inelastic transition in this problem. The emission probability 
of an electron of energy E, interacting with a vibrational 
mode w, is given by the e ~ ~ r e s s i o n ~ . ~ ~  

c= 

where 9, is determined by Eqs. (54) and (41 ), and f is 
the Fermi distribution function of the metal electrons. Tak- 
ing into account the most significant elastic and single- 
phonon transitions, we get from (67) and (54) 

I* 

~ ( E ) = e r p  {-2 J 12(E-V(z)) I"} 
x, 

In the adiabatic approximation it follows from (37) and 
(41) that B+ = - B- and q, = ReB : . If the interaction is 
concentrated below the barrier, B+ and B- are real. It is 
easy to generalize Eqs. (67) and (68) to include interactions 
with several vibrational modes. 

We note in conclusion that the method proposed per- 
mits a similar treatment of problems with a larger number of 
turning points. It is of interest, for example, to develop a 
theorv for a bound-bound transition'' and for resonant tun- 
neling through a two-hump p ~ t e n t i a l . ~ ~ - ~ '  

The author thanks A. K. Kazanskii, A. I. Larkin, and 
Yu. N. Ovchinnikov for a discussion of certain questions 
connected with the present study. 

"We use a system of units in which Planck's constant and the particle 
mass are equal to unity. 

"In the expression for Y,, we must takep to mean i[pJ.  
"A similar problem was solved in Ref. 19. 
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