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Attention is called to a far-reaching analogy between a laser and induced generation of a Bose 
condensate of Cooper pairs in a superconductor. The analogy with the laser is used to postulate 
nonstationary equations for the order parameter of the superconductor. Examples are cited of 
other processes in whose dynamics stimulated transitions can play a substantial role. 

1. INVERSION CONDITION FOR A SUPERCONDUCTOR 

Haken1 has shown that lasing can be regarded as phase 
transition in an active medium + electromagnetic field sys- 
tem. This raises the question: is this analogy reciprocal, i.e., 
can at least some phase transitions can be treated from the 
standpoint of coherent-state generation via stimulated tran- 
sitions? This question can be answered in the affirmative, at 
any rate, with respect to formation of a superconducting 
Bose Condensate of Cooper pairs.2 

The present paper is devoted to development of the 
ideas of Ref. 2. In particular, it traces more consistently the 
analogy between the equations that describe generation of 
radiation in lasers, on the one hand, the formation of a coher- 
ent Cooper-pair Bose Condensate, on the other. 

For stimulated transitions to contribute to the forma- 
tion of a superconducting Bose condensate it is necessary 
that the induced "production" of cooperons prevail over 
their "absorption." Such a state of a system, using laser ter- 
minology, can be called "inverted." 

It is convenient to formulate the inversion conditions in 
terms of chemical potentials of quasiparticles. Formation of 
a Copper pair (cooperon) can be treated as recombination of 
two quasiparticles ("positive" and "negative") accompa- 
nied by phonon emission. For stimulated formation of coo- 
perons to be possible, it is necessary that the stimulated 
"emission" of the cooperons exceed their stimulated absorp- 
tion. In the language of quasiparticles, this condition can be 
written in the form 

Here n,+ and n; are the densities of positive and nega- 
tive quasiparticles of energy E, . Next wTis the probability of 
copperon production per quasiparticle pair at zero tempera- 
ture with emission of a set of phonons with energies 
fifl,, finv2 ..., fin,, while w r  is the probability of the inverse 
process; N, is the density of phonons of energy fifl,; \I/ is the 
order parameter, and /\I/ l 2  is a quantity proportional to the 
density of the Cooper pairs. 

We assume the quasiparticle density to have a quasiequ- 
librium Fermi distribution 

This distribution has a limited validity range.3 It is conven- 
ient to use it, however, as a model distribution, to gain a 
deeper insight in the meaning of relation ( 1 ) . 

Recognizing that w; = W; and 

N,= [exp (AS2,IkT) -I] -', 

we find ( 1 ) is equivalent to the inequality 

Since the pairing energy 2.5, is transferred to the lattice, 
it follows that 2.5, = 2,fiR,, and we arrive at an ultimate 
inversion condition 

We emphasize that condition (4) does not mean inver- 
sion in its usual meaning when the particle density at the 
bottom of the gap exceeds 0.5. Condition (4) is much less 
stringent, and is governed by the fact that, within the frame- 
work of the mechanism considered, the rate of stimulated 
cooperon production exceeds their destruction rate by a fac- 
tor (N, + l)/N,, with N, small enough at low tempera- 
tures. It follows from condition (4)  that even an insignifi- 
cant deviation of the quasiparticle density from the 
equilibriump + = p - = 0 corresponds to an inverted distri- 
bution. It explains the phase stability of a Bose condensate of 
copper pairs. Indeed, if a fluctuation breaks some pair of the 
Bose condensate into two unbound particles, an inversion 
state satisfying condition (4) sets in immediately. The pro- 
cess of induced cooperon production restores the broken 
pair to a state coherent with the Bose Condensate. 

Coherent processes with probability proportional to 
I \I/ 1 were taken into account in a number of papers (see, e.g., 
Ref. 3 and the literature cited there) devoted to the analysis 
of nonstationary phenomena in superconductors. No notice 
was taken, however, of the rather profound analogy between 
induced production of cooperons and the processes that take 
place in lasers. In our opinion this is not merely a change of 
terminology. Such an approach has heuristic significance, 
the gist of which is the following. 

Lasers operate in a large variety of dynamic regimes, 
which have been well investigated theoretically and experi- 
mentally. In particular, depending on the parameters, one 
can observe smooth and pulsating approaches to a stationary 
regime, a regime with undamped radiation pulsations, and 
regimes corresponding to the strange a t t r a ~ t o r . ~ - ~  Trains of 
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picosecond radiation pulses can be generated in a multimode 
laser. 

A consistent development of the theory of analogous 
processes in a superconductor can be not only of scientific- 
theoretical but also of applied significance. It  is necessary for 
this purpose to forgo the assumptions made in the treatment 
of nonequilibrium processes in a superconductor, viz., that 
they are quasistationary with respect to individual dynamic 
variables. 

The complete system of equation should include a non- 
stationary equation for the order parameter and nonstation- 
ary equations for the densities of the quasiparticles and 
phonons. 

A rigorous derivation of such a set of equations on the 
basis of the microscopic theory is outside the scope of the 
present paper. Qualitatively, however, the structure of the 
system can be visualized by using the analogy with a laser. 
According to this analogy, the order parameter Y of the su- 
perconductor corresponds to the electromagnetic field of the 
laser. The Ginzburg-Landau (GL) equation for the super- 
conductor is equivalent in this case to the equation for a laser 
in which the polarization of the medium and the number of 
active particles are replaced by their quasistationary values. 
Knowing the technique for this substitution, we can attempt 
to "reinstate" the initial nonstationary equation. This calls 
for a transition from complete nonstationary system of laser 
equations to the quasistationary equation for a coherent 
electromagnetic field. 

2. SYSTEM OF LASER EQUATIONS 

The theory of the dynamic laser regimes is based in its 
simplest form on the following system of equations, which 
was corroborated" in Refs. 7 and 8: 

a2r 2 aP - + - - + o;r=-20, - 
at2 T, at  

' ' I2 ARE, 
h 

The meaning of this set of equations is quite simple. The 
first is the wave equation for one of the components of the 
electromagnetic field generated by the laser. In our case this 
means the electric field E(r,t), for in most cases the decisive 
role is played by the electric dipole interaction of the medi- 
um with the electromagnetic field. The wave equation con- 
tains the field sources in the form of the polarization P(r ,  t )  
of the active medium used in the laser. The same equation 
takes into account the electromagnetic-radiation losses, de- 
scribed by the term 2yd E/dt. The losses are due primarily to 
the extraction of the laser radiation from the active volume 
for further utilization. There are also additional loss sources, 
due to the imperfections of the laser elements, such as scat- 
tering of the radiation by inhomogeneities of the active medi- 
um, radiation absorption by the optical elements used in the 
laser, and others. 

The equations for the polarization were obtained in an 

approximation in which the radiation interacts resonantly 
with the medium. In this case only two energy levels of the 
energy spectrum of the medium are taken into account, with 
the frequency of the transition between them chosen close to 
the frequency of the electromagnetic field. The polarization 
relaxation time determines the spectral line width 
Aw, = 2r2-'; M is the density of the population difference 
between the upper and lower resonant ( "working") levels of 
the medium, frequently called the number of active parti- 
cles; r ,  is the time in which equilibrium over the energy lev- 
els of the medium is established; p is the dipole-moment ma- 
trix element and corresponds to a transition between 
resonant energy levels. The quantity I describes the so-called 
pump--the supply of energy from an external source to pro- 
duce resonant-energy-level inverted population needed for 
the laser operation. 

Since the equations for the polarization and for the field 
are close to the equations of harmonic oscillators, the field 
and the polarization can be represented in the form 

E ( r ,  t )  = A ( r ,  t )  e-'"', P ( r ,  t )  =B ( r ,  t )  e-'"', ( 6 )  

with the frequency o close to the resonant frequency o, of 
the transition, so that Iw - w,l < w,, and A and B slow func- 
tion of the time compared with exp( - iot),  i.e., d A/dt<oA 
and d B/dt(wB. 

With allowance for ( 5 ) ,  the equations for A(r, t )  and 
B(r, t )  take the form9 

Monochromatic lasing is achieved by exciting one defi- 
nite oscillation mode in the cavity. In this case 
c2V2A = - @;A, where w, is the natural frequency of this 
mode. If furthermore w, = w,, the lasing frequency w coin- 
cides with the resonant frequency 0, of the spectral line of 
the medium, and 

dB 1 -+ -B=- i - -  
at  7 2  

" I 2  ANA, 
h 

Further simplifications of the system (8) are achieved 
by specifying in detail the type of the laser. For solid-state 
lasers based on ruby, neodymium glass, and similar media, 
we have T ~ < T ~ ,  r2<y-'. In this casedB /dt<B /r2, the equa- 
tion for the polarization becomes algebraic, and its solution 
permits the polarization to be eliminated from Eqs. (8)  : 
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where, to make the equations compact, we introduce the 
notation 

1 '12 I P 1 F = ( ~ )  A, 0=4n- 
f i  

0 Zz. 

The values of T, and T, are close in order of magnitude for 
lasers ofa definite type, so that the relations T,, r2(y-' hold. 
In this case we can neglect not only d B/dt compared with 
r2-'B, but also dAN/dt compared with T; ' AN. The system 
(8) reduces then to the single equation 

At relatively low laser power we have o~ , IF1~<1 ,  SO 

that 

Equation ( 10) takes then the form 

(the assumption dAN/dt(~, 'AN) .  In the case of a super- 
conductor, the analogs of active particles are quasiparticles 
corresponding to elementary excitations, and it can be as- 
sumed that Eq. ( 14) results from a quasistationary approxi- 
mation for the quasiparticle density. The nonstationary 
equations can be "reconstituted," by analogy with laser the- 
ory, in the following manner. 

The term in (9b) with CAN IF l 2  is none other than the 
rate of the induced transition, and  TAN is the same rate per 
unit density of the generated photons. This term enters in 
Eq. (9a) for the laser field in the form 4oANF. The analo- 
gous quantity for a superconductor is given by the differ- 
ence, summed over the quasiparticle momenta and over all 
possible sets of emitted photons, between the terms in the 
right- and left-hand sides of ( 1 ). We denote this quantity by 
W [TIz. Then 

d F  1 
- + [ y - - oIr ,  (1-20%. I~ I ') ] F=O. ( 11 ) and the equation for the order parameter takes the form 

at 2 
2e 

d y + i g ~ +  The stationary amplitude of the generated radiation is deter- at 
mined by Eq. ( 1 1 ) under the condition d F/dt = 0: 

2 

(16) 

3. NONSTATIONARY EQUATIONS FOR THE ORDER 
PARAMETER 

Notation aside, Eq. ( 12) coincides with the GL equa- 
tion for the spatially homogeneous order parameter of a su- 
perconductor. l 1  

This circumstance was used in Ref. 1 to treat the onset 
of lasing as a phase transition. The inverse analogy is used 
here to obtain a nonstationary set of equations that describe 
the superconducting state. 

Just as Eq. (12) is a stationary approximation of the 
more general Eq. ( lo), we shall consider the GL equation2' 

2e 
[ - L - ~ J ~ Y  l z + ~ ( i ~  +-A) fic ]Y=O 

as a stationary approximation of the following equation: 

2e 
( i + i 6 ) ~ +  [ a - e l ~ 1 2 + ~ ( i ~  +-A) fic ] Y-0. (14) 

The term iST was introduced in (14) for the sake of 
generality, since replacement of \I, by T exp{ - i$Sdt) does 
not alter the form of ( 13). Equation ( 14) coincides with the 
nonstationary GL equation derived in Ref. 12 on the basis of 
microscopic theory for a zero-gap superconductor. It was 
found in the same reference that S = 2&-'p, where p is the 
electrochemical potential (see also Ref. 13). 

The laser equation ( 10) is the consequence of the quasi- 
stationary approximation for the number of active particles 

where T, is the time of relaxation of the order parameter by 
the impurities. 

Since W depends on the number of quasiparticles, Eq. 
(16) is not a closed one. We need also equations that de- 
scribe the variation of the quasiparticle density n: in space 
and in time. The quasiparticle dynamics can be described by 
using the kinetic equation 

where rVp is the partial relaxation time that describes the 
breakup of the pairs at the impurities into quasiparticles 
with momentump; T; = Zp~;p'; Qp is the source of the non- 
equilibrium density of the quasiparticles; S f ,  Sp+ , S F ,  S;, 
and Skm are the collision integrals obtained in Ref. 13 and 
given in the review of Elesin and K ~ p a e v . ~  Their explicit 
forms are unwieldy and will not we written out here. We note 
only that S,+ and Sp- describe the energy relaxation of 
quasiparticles by phonons: S,+ describes the arrival of parti- 
cles with momentum p, and Sp- their departure with the 
same momentum; S; is the electron-electron collision inte- 
gral; Sim is an integral that describes the energy relaxation of 
the quasiparticles by the impurities; Sf is the recombination 
collision integral. The quantity Wp 1 Y 1 is in fact the "coher- 
ent part of the recombination integral Sf and is proportional 
to A2 [see Ref. 3, Eq. (24) 1. 

We have neglected in ( 16) the incoherent (spontane- 

351 Sov. Phys. JETP 62 (2), August 1985 A. N. Oraevskl 351 



OUS) recombination of the quasiparticles. Spontaneous re- 
combination creates a Cooper pair in a state of arbitrary 
phase, and is a source of noise for the order parameter, just as 
spontaneous emission in a laser is a source of noise that 
causes the finite spectral width of the laser emission.14 

If the phonons have no equilibrium distribution func- 
tion, the system (16) and (17) must be supplemented with 
the kinetic equation derived in Ref. 15 for the phonons (see 
also Eq. (29) of Ref. 3). 

Equations ( 16) and ( 17) describes also the electron 
pairing in the case when the interaction between them is 
repulsive. This phenomenon should become manifest in high 
quasiparticle density (n, > 0.5) in a certain energy interval 
located above the Fermi level (see Ref. 3 ) . 

Assuming for the quasiparticle density a quasiequili- 
brium Fermi distribution with potentialsp * that depend on 
the coordinates and time, and assuming also an equilibrium 
phonon distribution and a small deviation of the quasiparti- 
cle distribution from the equilibrium value (p * /kT< 1 ), we 
can write down a relatively simple closed system of equa- 
tions. In this case 

and W takes the simple form 

where 

while n$ and nG are the equilibrium Fermi distributions 
with p , = 0. 

As a result we obtain from ( 16) and ( 17) 

where 
( 20b 

cc 

exp (xZ+u2) Ih du (21) 

v, and pF are the electron velocity and momentum on the 
Fermi surface; 2Ao is the gap width, and +no is the density of 
the Cooper pairs at absolute zero. Dp is the quasiparticle 
diffusion coefficient. 

Equation (20b) is derived by substitution in (17) the 
distribution function (2) and summing the result over all 
momenta. It must be recognized here that the energy E, is 
independent of the energy gap A ( r ,  t ) :  

We have retained in (20b) terms of the first order in A/kT, 
and introduced the notation I Y 1 = A2/(kT) '. 

To determine G we consider a homogeneous supercon- 
ductor in the absence of a magnetic field and of currents. In 
this case the quasiparticle density is conserved: 

In the absence of impurities (7, ' = 0) the equilibrium state 
of the superconductor corresponds to a zero chemical poten- 
tial p , of the quasiparticles. 

Expanding n,f and np- , expressed in the form (2),  in 
powers of p * we obtain 

where n, is the equilibrium number of unpaired quasiparti- 
cles at the temperature T. Since, however, 
no - n, = no( 1 - T/Tc ), where Tc is the critical supercon- 
ducting-transition temperature of the impurity-free metal, 
we get 

It follows from (20a) and (24) that 

Comparing the coefficients in (25) with the GL-equation 
coefficients calculated form the microscopic theory," we 
obtain 

where g = NF V, with NF the state density in phase space 
near the Fermi level and V the electron-phonon interaction 
constant. 

Nonstationary equations for the quasiparticles and a 
stationary equation for the order parameter (the energy 
gap) have been used in a number of investigations of non- 
equilibrium processes in supercond~ctors.~ The argument 
customarily used to justify this approach is that the time 
required to establish an equilibrium state in a system of Coo- 
per pairs is substantially shorter than the time to establish 
equilibrium in a quasiparticle system. Experience with lasers 
shows that these arguments are debatable. In a solid-state 
laser, for example, the time to establish equilibrium in the 
active medium (which is the analog of the quasiparticles) is 
much longer than the electromagnetic-field transient time in 
the cavity. The use of a stationary equation for the field, 
however, is categorically inadmissible. A stationary field 
equation in the laser-equation system (9)  leads inevitably to 
a stationary equation for the number of active particles. 

The quasistationary approximation of the order param- 
eter does not lead in the case of superconductors to a formal 
contradiction, since the equation for the order parameter 
contains the magnetic-diffusion term [ iV + (2eA/%) ] 2Y. 
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The use of the quasistationary equation for q, however, can 
lead to loss of solutions that correspond to modulation re- 
gimes. For example, relatively shallow modulation of the 
pump intensity Iof  the cavity losses y (in a range from sever- 
al percent to a fraction of a percent, depending on the laser 
parameters) can lead to deep modulation of the radiation 
generated by solid-state lasers.16 The lasing consists in this 
case of periodically repeated radiation pulses whose maxi- 
mum values can substantially exceed the radiation corre- 
sponding to the stationary lasing regime. The frequency of 
the external modulation of the laser parameters should be 
chosen to be of the same order as the so-called relaxation 
frequency a,- (yr , )  "' (Ref. 16). Starting from the ana- 
logy of the dynamic equations of the superconductor and the 
laser, it can be assumed that a modulation regime can be 
achieved also in a superconductor if the material and the 
magnitude and spatial distribution of the flowing current are 
suitably chosen. Weak modulation can be produced in a su- 
perconductor by applying an alternating magnetic field 
modulated by microwave electromagnetic radiation, and by 
excitation of sound. One cannot exclude beforehand the pos- 
sible onset, under certain conditions, of a self-modulation 
regime. Finally, a great decrease of a magnetic field whose 
initial value is close to critical, or even exceeds it, can pro- 
duce an order-parameter pulse of large amplitude, analo- 
gous to the "giant" pulse of a laser. Instead of using a mag- 
netic field, one can abruptly turn off another agent that 
destroys the superconducting state. 

Of course, IYI2 cannot exceed in any of the processes 
the maximum value determined by the quantity 
An, = no - n, [see (23) 1 .  If, however, the stationary val- 
ue of I q12 is noticeably snialler than An, under certain con- 
ditions, the maximum of the order parameter will exceed 
noticeably its stationary value. Recognizing that the current 
pulse density j -A I Y 1 ', supercritical currents can flow 
through the sample at the instant when an order-parameter 
pulse is produced. 

4. CONCLUSION 

In view all the foregoing, a more detailed review of the 
role of induced transitions in a great variety of processes is 
called for. 

It is necessary first of all to refine the widely used state- 
ment that a Bose condensate is "attracting." This statement 
stems from the fact that the probability of the transition of a 
system into a state characterized by the presence of a certain 
number of Bose particles is proportional to this number. If 
the transition takes place, however, from a state with a cer- 
tain number of Bose particles, the transition probability is 
also proportional to the number of these bosons. Thus, a 
Bose condensate can equally well attract to itself or destroy 
itself. The only question is which of these processes predomi- 
nates. For the "creation" process to predominate, special 
conditions must be satisfied. In a laser, such a condition is 
the need for inverted population that exceeds a threshold 
value; for the quasiparticles of a superconductor, this is con- 
dition (4), etc. In analogy with lasers, such conditions in 
other system can be called inversion conditions. 

We present examples of some processes in whose non- 
stationary dynamics a substantial role can be played by in- 
duced transitions. 

1. First, processes that form the ferroelectric state. The 
analogy between the onset of radiation in a laser and the 
formation of the ferroelectric state seems even more natural 
than the analogy between a laser and the superconducting 
~ t a t e . ~ '  

2. According to contemporary opinions concerning the 
nature of elementary particles, a physical vacuum contains 
Bose condensate of singular Higgs particles, and these divide 
the universal interactions into strong, weak, and electromag- 
netic. ls.19 These condensates were produced by phase transi- 
tions that occurred in the universe during the initial stage of 
its expansion after the big bang.19 One cannot exclude the 
possibility that inverted states were produced at the instants 
of the phase transitions in the expanding universe, and that 
induced transitions played an essential role in the formation 
of both the Higgs bosons and of their coherent Bose conden- 
sates. 

The complicated dynamics of nonequilibrium pro- 
cesses, which appears when induced transitions are taken 
into account, may have played and still plays a substantial 
role in the evolution of the universe. Rapid expansion of 
matter can be accompanied by "quenching" of states, and 
this contributes to the appearance of an active medium that 
is equivalent to inverted p~pulation.~' As it expanded, the 
universe could therefore pass through a state of inversion 
relative to the induced generation of various bosons. It is not 
excluded that inverted states can occur also in other cosmo- 
logic processes, e.g., supernova explosions. 

3. Interest in self-organization-synergetics-has 
greatly increased of late.'l It seems to us that a deeper insight 
into the nonstationary dynamics of self-organization pro- 
cesses can be gained on the basis of the concepts of inverted 
population and induced transitions. It is precisely induced 
transitions which can cause the complicated dynamics of the 
process; in the presence of inversion they cause a rapid devel- 
opment of the process and ensure the succession of the gen- 
erations. 

The author thanks Yu. V. Kopaev for valuable remarks. 
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