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It is shown that, besides static autosolitons (AS), there can be excited in a stable homogeneous 
generated electron-hole plasma (EHP) heated in the process of Auger recombination a pulsating 
or moving undamped AS in the form of a striation or bunch of hot plasma. The amplitudes and 
sizes of the static AS in one-, two-, and three-dimensional systems are determined, and the stabil- 
ity of these AS is analyzed. The evolution of the transition from a static to a pulsating and moving 
AS as the EHP generation rate is varied is followed. The characteristic values of the AS-pulsation 
frequency and the velocity of the moving AS are found. It is found that under certain conditions it 
is possible to excite in a nonequilibrium EHP a static and a pulsating AS of the complex-domain- 
wall type, as well as moving AS in the form of reversible switching waves that convert a "cold" 
EHP into a "hot" one, and vice versa. Other experimentally realizable cases in which the various 
AS can be excited in a semiconductor plasma are discussed, and the AS parameters for some 
typical semiconductors are estimated. 

I. INTRODUCTION. THE PHYSICS OF AUTOSOLITON G=R (n ,  T )  =n/a, ( n ,  T )  , ( 1  ) 
EXISTENCE 

R ( n ,  T )  bE,=P (n,  T )  =n (TAT! )  %,-I,  

The electron-hole plasma (EHP) is one of the examples 
of active systems with diffusion whose general nonlinear the- 
oryle6 predicts that, with the aid of an external short-lived 
perturbation, we can excite in such systems in the region of 
stability of their homogeneous state a solitary state whose 
stationary shape does not depend on the form of the initial 
perturbation, but is determined only by the parameters of 
the specific system. It is natural to call such self-sustaining 
localized eigenstates of nonequilibrium systems autosolitons 
(AS). In Refs. 1, 2, 7, and 8 the static AS produced in a 
nondegenerate EHP heated in the process of photogenera- 
tion or by electromagnetic radiation are investigated. In the 
present paper we study the situation in which we can gener- 
ate in a homogeneous stable EHP not only static, but also 
traveling undamped, and pulsating, AS whose volume or 
shape varies periodically in time. 

Let us consider a homogeneous semiconductor film in 
which there occurs uniform photogeneration of an EHP of 
such density that the carriers are degenerate and their colli- 
sion time 7, <rE,  the characteristic time of the relaxation- 
in energy terms-of the hot carriers on the phonons. In a 
degenerate hot EHP the thermocurrent is suppressed in 
comparison with the diffusional current because of the 
smallness of the ratio of the temperature T of the carriers to 
their Fermi level energy F. We shall assume that the elec- 
trons and holes have identical parameters (i.e., that the plas- 
ma is symmetric), and that, because of the high density of 
the EHP, the rate R of recombination of the carriers is deter- 
mined by the Auger processes. As a result of the electron- 
electron collisions, the Auger-recombination-generated car- 
riers with energy of the order of forbidden-band width Eg of 
the semiconductor heat up the EHP.9-'1 The power that goes 
into heating up the carriers is equal to W =  bEgR, with 
b z  0.5 when re (E, ) 5 rE (Eg ). In the case under considera- 
tion the density and temperature of the homegeneous EHP 
can be determined from the equations 

where T, is the temperature of the lattice, G is the rate of 
carrier generation, and P(n, T) is the power transferred 
from the electron system to the phonons. It follows from a n  
a n a l y s i ~ ~ . ' ~  of Eqs. ( 1 ) and (2)  that, as Gincreases, the tem- 
perature T = T, of the homogeneous plasma, as a rule, in- 
creases monotonically, and the G dependence of n = nh is N- 
shaped (Fig. la) .  The rise of T, with increasing G is due to 
the increase of the rate R at which the Auger processes oc- 
cur, i.e., the rate of generation of hot carriers. The decrease 
of the concentration n, of the homogeneous plasma in the 
region G >  Go (Fig. l a )  occurs when R increases with in- 
creasing T, which is characteristic of the Auger-recombina- 
tion process. l2  Let us emphasize that, in the case under con- 
sideration, to a given value of G, correspond one value n, 
and one value of T,, (Fig. la) .  In spite of this, spontaneous 
excitation of uniform relaxational oscillations occurs in 
EHP with G >  G,,9910 which is due to the very large time 
constant of the n variation in comparison with the T vari- 
ation (7, ST, ). When G < Go, the homogeneous EHP state is 
stable. At the same time, if a small region (of dimension 
smaller than the carrier-diffusion length L )  of the semicon- 
ductor is irradiated in addition by a short light pulse, then a 
stable AS can appear in the form of a static, pulsating, or 
moving bunch of hot EHP. 

The existence of a static AS (see Sec. 3 )  in a stable EHP 
is due to the fact that the carrier diffusion length LSI, the 
relaxation length of their energy (L 2/1 -- (Fr, /TrE ) > 1 ) , 
while R increases rapidly with increasing T. Rapid recom- 
bination of the carriers occurs at the AS core (the high- 
temperature region (Figs. 2a-2c); nevertheless, the carrier 
concentration in a core of dimension 2, < L decreases to a 
significantly lesser degree than R increases, owing to a rapid 
diffusional inflow of carriers from the peripheral region of 
the AS into the core region. The carriers that enter the AS 
core as a result of diffusion from the periphery rapidly re- 
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a 
FIG. 1. Evolution of an AS as the generation rate G is 
varied: a )  dependence of the concentration n, and the 
temperature Th of the homogeneous plasma on G; b) 

"o form of the local relation (curves 1 and 2) and of the 
curve of states (curves a and b); c) G dependence of 
the traveling-AS velocity. In Figs. a )  and c )  the curves 
I depict the dependence on G of the concentration in 
the wall of a broad static AS (a)  and of the traveling- 
AS velocity (c); the curves I1 and 111 depict the corre- 
sponding dependences for multiautosoliton states of 
period Y,, and Y,, > Y,, . The dashed lines indi- 
cate the unstable sections. The Arabic numerals indi- 
cate the points of disappearance of the solutions in the 
form of a hot AS ( 1, 5, 8-13), or the points where sta- 

u bility is lost (2, 3, 6, and 7).  The numbers 1'-III' and 
1'-13' correspond to cold AS. The arrows between 
Figs. a )  and c )  indicate possible transformations of a 
static or pulsating AS into a traveling AS, or vice versa, 
upon the loss of stability by the AS or the disappear- 
ance of a solution in the form of the AS in question. 
The curve b in Fig. b) corresponds to the flip-flop re- 
gime, in which there is realized at a given G three ho- 
mogeneousstates, twoofwhich,n, , , Th, andn,, , Th, , 
are stable. 

combine there, producing in the Auger process carriers with tion (2) is satisfied locally. From (2) it formally follows that 
a high energy of the order of E, , which, in turn, maintain a the T dependence of n is, as a rule, N-shaped, i.e., to the value 
high temperature at the AS core. When L>Y, , the concen- n = n, correspond three temperature values T,, , T,, and 
tration n = n, at the core practically does not change, and, T,, (Fig. lb) .  The AS core is a stable "phase," with T=: T,, , 
because 2, > I ,  we can assume that the energy-balance equa- surrounded by a stable plasma with T = T,, . The unstable 

FIG. 2. Electron-concentration (n )  and effective-electron- 
temperature (T) distributions in an AS in the form of: a), b) 
a hot broad solitary, and a hot narrow solitary, striation; c) a 
radially symmetric hot bunch of large radius; d )  a moving 
broad striation; e), f)  a traveling AS of the type of a compli- 
cated domain wall: cold state-hot state switching wave; g) 
an AS of the static-complicated-domain-wall type; h )  a 
broad solitary "cold" striation. 

Imin 
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state with T=: T,, is concentrated only in the walls of the AS, 
i.e., in the regions of rapid variation of T ( x )  (Fig. 2a). 

The stability of the static AS (see Sec. 4) is due to the 
fact that the wall of the AS has a small dimension of the order 
of 1(L, and that a rise in temperature in the AS walls is 
damped out by a corresponding decrease in the carrier con- 
centration. This damping is realized only in some G-value 
range, at the ends of which the static AS is, as a result of the 
instability, transformed into a pulsating AS. The appearance 
of the latter is due to the fact that ~ ~ $ 7 , .  Therefore, for 
temperature fluctuations that vary with some frequency 
o = o, (0, T, > l , o c  T, (1 ), the time constant of the T vari- 
ation does count, and, because of the extreme sluggishness, 
the concentration is less effective in damping out the grow- 
ing T fluctuations localized in the walls of the AS. 

At some G <  Go, besides the static or pulsating AS, 
there can be excited an AS that travels in any of the direc- 
tions (see Sec. 5), or an AS in the form of a spiral wave. 
Unlike, for example, the Gunn domain, a traveling AS oc- 
curs in an isotropic EHP, in which there are no macroscopic 
(heat, concentration) fluxes. A traveling AS in an EHP is in 
many respects similar to a pulse excited in a nerve fiber, and 
have properties in common with it.I3 Let us elucidate the 
appearance of a traveling AS. It follows from the energy- 
balance equation (2)  that two stable states of the plasma, 
i.e., the states with T = T, and T = T,,, , correspond to a 
given concentration value n = n, (Fig. lb) .  Because T, ST,, 
a brief (duration t, (rr ) local heating of the EHP by, say, 
radiation absorbed by the free carriers will take the plasma at 
that place into the state with T = T,,, and n z n ,  . Through 
thermal conduction, the resulting hot carriers will heat up 
the neighboring regions, taking them, one after another, into 
the state with T = T,,,, i.e., a ( T  = T, )-state-into-a 
( T  = T,,, )-state switching wave appears. Over a period of 
time TZT, T / F  the electron-heat flux propagates over a dis- 
tance - I ;  therefore, this wave has velocity v-Z/T. Behind 
this switching wave (i.e., behind the leading wall of the AS 
(Fig. 2d) ), the temperature and, hence, the Auger-recom- 
bination rate are high; therefore, the carrier concentration 
decreases with a characteristic time -T,, i.e., it falls off over - 
a distance - L = UT, - 17, F /TT, . This depletion of the EHP 
concentration stops at some value n = n,, (Fig. 2d), at 
which the velocity of the trailing wall is equal to that of the 
leading wall. Behind the trailing wall the concentration is - 
restored to the n = n, value in a region of dimension -L 
(Fig. 2d). 

Conditions can be realized in semiconductors9710 under 
which to a given value of G correspond two stable homogen- 
eous states with n = n, , , T = T,, (the "cold phase") and 
n = n,, , T =  T,, (the "hot phase") (Fig. lb, curve b). In 
such an EHP it is possible to excite an AS in the form of 
reversible switching waves that take the EHP from the cold 
phase into the hot phase (Fig. 2e), or, conversely, from the 
hot phase into the cold phase (Fig. 2f), it being possible for 
the reversible waves to move in the same direction. The pos- 
sibility of alternately switching the EHP from the cold into 
the hot phase and vice versa allows the excitation in the plas- 
ma of quite an arbitrary sequence of traveling AS of different 
widths. We can also excite a static or a pulsating AS in the 

EHP in question. As G-G, (Subsec. 3.4), the static-AS 
dimension 2, -+ CD , and an AS in the form of a domain wall 
of irregular shape is produced (Fig. 2g). 

2. THE BASIC EQUATIONS 

In a symmetric quasineutral EHP, the equations for the 
carrier density and temperature distributions have the form 

dn/at=e-l div j,+G-R, (3) 

a (n:) /at=-div j,+W-P, (4) 

in which the current density and the electron-energy flux are 
equal to 

j,=DVn, j,=-xVT, (5) 

D=2e.tpF/3m, x= (n2Tn.tp/3m)I; ( n ,  T ) ,  

where D and x are the coefficients of diffusion and thermal 
conductivity of the carriers; 2, m, and rp are respectively the 
mean energy, the effective mass, and the characteristic time 
of relaxation of the momentum of the electrons; the quantity 
c =  1 when T,(T~(T, and ~-T,/T,(I, when 1$re/ 
rp > (T/F) ' .  In (5)  we have taken account of the fact that 
the field E = 0 in a symmetric EHP, and that, when 

we can neglect the thermocurrent and the energy flux due to 
the electron current (see the Appendix). Equations (3)-(5) 
reduce to the following: 

a,0Bn/at=L2V ( 0 - ' V n )  -Q ( n ,  T ,  G )  ( 7 )  
(FOnT/F) dT/at=Z2V [ (?c/x") V T ]  -q ( n ,  T ) ,  (8)  

q ( n ,  T )  = [ P ( n ,  T )  -bE,R ( n ,  T )  IT,' (nor,)- ' ,  ( 10) 

where 

(D=FO.tpO/F ( n )  .tp ( n )  , ~ = . t , " n ~ T ~ / 2 F ~ ,  I =  (x0.t2/n,) ", 
L= [ Z / 3 F 0 ~ p o ~ r o / m ] " 3 .  

Here and below n, T, and G are measured in units of no, 
To, and Go, respectively, and a zero superscript on a quantity 
indicates that it is taken at T, = To and n, = no, which cor- 
respond to the point G = Go where dn, /dG = 0 (Fig. la).  
The temperature T, and concentration n, of a homogeneous 
plasma are determined from the equations ( 1 ) and (2), from 
which we find that 

where 
a 1nR d l n P  a l n ~  d I n R  

y = ------ 6 = - =----- r =-, 

a l n n  ' d l n n  ' d l n T  ' a l n  T 

Normally, in the case of Auger recombination, Y > 6 (Ref. 
12). Therefore, the condition r >@/Y may not be fulfilled 
even when r > 5. Then, according to ( 11 ), T,, increases 
monotonically with increasing G, and n, (G) is A- or N- 
shaped (Fig. l a ) .  The possible appearance of a second extre- 
mum on the n, (G) curve at G = G; > Go is due to the fact 

339 Sov. Phys. JETP 62 (2), August 1985 B. S. Kerner and V. V. Osipov 339 



that, at high T, the quantity R ceases to increase rapidly with 
increasing T (Ref. 12) in comparison with the function 
P( TI. 

If, on the other hand, the quantity T ) @ / v  in some G- 
value range, then, according to ( 11 ), the T, (G) curve is S- 
shaped, and there exist9.I0 two stable states of the homogen- 
eous EHP (Fig. lb, curve b )  . 

It follows from the expressions given above that 

Q :, =dQ /an > 0, and the quantity 

becomes negative when G> Go. This allows the use, in the 
analysis of the EHP, of the results of the general 
from which it follows that the shape of the AS depends essen- 
tially on the form of the local n ( T) relation corresponding to 
q (n, T) = 0 and the curve n ( T) of states that corresponds to 
Q(n, T, G) = 0 (Fig. lb).  Analysis shows that the local re- 
lation may be N- or A-shaped (Fig. lb).  

3. THE STATIC AUTOSOLITON 

1. Using the ideas of the theory of singular perturba- 
tions,I4 we can show (see the Appendix) that the concentra- 
tion and temperature distributions in a one-dimensional AS 
in the case of an N-shaped local relation (Fig. lb, curve 2)  
can, when allowance is made for the symmetry of the AS 
about its center (x = 0, Fig. 2a), be written up to terms of 
theorderofcgl,  (13), in the form 

(14) 
Here T,, (x ) ,  a sharp distribution describing the AS wall, 
corresponds to the separatrix of the equation24 

l 'dZ0/dx2=q ( T  (O)  , n,,), n,,=const, (15) 

while n,, ,,, (x)  and TI, ,,, (x),  smooth distributions describ- 
ing n (x)  and T(x) outside the AS walls, are those solutions 
to the equationsz4 

L2d2q,/dx2=Q,=Q (Tj (q) ,  q, G ) ,  

(16) 
q(T, ,  n)=O, j = I ,  111, 

which correspond to the boundary conditions 

In these equations 

@ ( T )  = I ( T J ,  nsh) d ~ ' ,  
q ( n )  = @-I (nr )  d n f  

x 0  

are single-valued functions of T and n; the subscripts I and 
I11 indicate that the relation between Tand n corresponds to 
the branch I (T<To) or I11 (T>,TA ) of the single-valued 
function T(n) on the local relation (Fig. lb).24 In ( 15) the 

value n,, = n, of the concentration in the wall of a broad AS 
is found from the equationsz4 

which determine the minimum T,, = T,, and maximum 
T,,, = T,, temperatures in the AS (Fig. 2a), as well as the 
temperature at the point x = 2, /2: T,, (2, /2) = T,, . In- 
tegrating ( 16) with allowance for the continuity of the car- 
rier flux through the AS wall (at the point x = 2, /2, Fig. 
2a), we obtain equations for the determination of the con- 
centration n(0) = n, and the temperature T(0) = T,,, at 
the center of a broad AS (Fig. 2a), as well as the width 9, of 
the AS: 

'Ih "a us 'I 

QI d q  + j QIII  dq-0, Z~=Y?L j [ j Qlll d l l ]  -'dq, (18) 
11s 'Im m 'Im 

q(n,, T,) =O. 

Thus, the principal AS parameters can be determined 
up to quantities of the order of E (see the Appendix) from the 
simple algebraic equations ( 17) and ( 18) without having to 
solve the complex problems for n (x)  and T(x). It follows 
from (10) and ( 17) that the principal AS parameters T,,, , 
T,,, , and n = n, (Fig. 2a) are G independent in practically 
the entire region of existence of the AS (Fig. l a ) .  This result 
is due to the fact that the local EHP-energy balance (2) ,  
which essentially gives the distribution T(x) in the AS wall, 
does not depend on G. Only the AS width YS and the values 
n = n, and T = T, at the center of the AS depend on the 
quantity G (Fig. 2a). These parameters are determined by 
the integrated carrier-number balance in the AS. It follows 
from the equation ( 18) for this balance that the quantity Q 
should have difference signs at the core of the AS (Q ,,, ) and 
outside it (Q, ). Therefore, ( 18) can be fulfilled only when 
nh > n, , i.e., when G > G, , where G, is the generation rate at 
which n, > n, (Fig. la) .  As G decreases, the quantity 2, 
decreases, and the solution in the form of an AS vanishes at 
some Gb slightly greater than G, , and located in the vicinity 
of the point where dn,, /dG = co (Fig. la) .  Thus, an AS in 
the form of a bunch of hot EHP (Fig. 2a) can exist only in 
the region Gb <G(Go. As G-+Go, the monotonic transition 
of T(x) and n (x)  at the periphery of the AS to their homo- 
geneous values T, and n, (Fig. 2a) may be replaced by a 
regime in which these quantities are damped in amplitude, 
but oscillate with period - (IL ) lJ2. 

In accordance with the general results obtained in Refs. 
2-4, an AS in the form of a bunch of cold EHP with a slightly 
elevated carrier concentration (Fig. 2h) can be excited in a 
hot homogeneous EHP with Th > TA ( G >  G 6 ,  Fig. la) .  
The parameters of this homogeneous AS can be determined 
from Eqs. ( 17) and ( 18) if the subscript I is replaced by I11 
and I11 is replaced by I in the latter equation. Besides the 
simplest AS (Figs. 2a and 2h), there exist AS of complicated 
shape, as well as multi-autosoliton states in the form of peri- 
odically or randomly disposed AS. The latter can exist in the 
region Go < G < G as well (Fig. la).  
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2. Only narrow hot AS can be realized in the region 
G < Go in an EHP with A-shaped local relation (Fig. 2b). 
The amplitude of such an AS is not restricted by the nonlin- 
earities of the system, but is determined by the balance of the 
energy entering the EHP during the Auger recombination of 
the carriers at the core of the AS and the energy that leaves as 
a result of thermal conduction (i.e., as a result of the diffu- 
sional spreading of the temperature). We find up to terms of 
the order of E' (see the Appendix) that in a narrow hot AS 

T ( x )  = T s h ( x )  -Ti+TI ( x ) ,  n ( x )  =nI ( x ) ,  O < X < ~ ,  ( 19) 

where Tsh (x)  is determined by that separatrix of Eq. ( 15) 
which passes through the saddle point Oi (Ti ) (in Fig. 2b 
the quantity Tmin z Ti ), x = 0 being the value to which cor- 
responds the point where dO/dx = 0 and O = Om,, ; TI  (x)  
and n, (x) are given by the solution to Eq. ( 16) with j = I 
(for T<To, Fig. lb) and the boundary conditions 
~ ( c c )  = v h ( n h )  andv (0 )  =77sh(nSh).Thevalues Ti and 
n,, correspond to the branch I of the local relation (Fig. lb),  
and are determined from the condition q(Ti,  n,, ) = 0 and 
the integrated carrier-number balance in the AS: 

As G decreases, the AS amplitude decreases, and at the point 
G = G, , where dn,, /dG = cc , the AS with T,,, - To k To 
suddenly disappears. 

3. The concentration and temperature distributions, 
n( p )  and T( p ) ,  in a radially symmetric AS with a large 
radiusp = po%l, which is realized in the case of an N-shaped 
local relation, is given up to quantities of the order of E by the 
expressions ( 14) with x replaced by p and 2, /2 by p, (Fig. 
2c). The function Tsh (p)  describes the AS wall, and corre- 
sponds to the separatrix of Eq. ( 15) with n,, = n, and x 
replaced by p; the functions n,, ,,, (p)  and TI, ,,, (p),  which 
describe n(p)  and T(p) outside the AS wall, are the solu- 
tions to the equations (16) with the operator d */dx2 re- 
placedbyp-'-s (d/dp) x (p'+sd/dp) (s = 1 oroaccord- 
ing as the AS is spherically or cylindrically symmetric). Up 
to quantities of the order of E, the values Tmin = T,, , 
T,,, = T,,, and T,, (p,) = T,, , where the T,, and n, are 
determined from (17). Taking account of the continuity 
condition on the carrier flux through the AS wall (in the case 
when p = p,), we obtain the following equations for the de- 
termination ofp,, n(0) = n,, and T(0) = T,,, (Fig. 2c): 

Another radially symmetric AS is the state in the form 
of a spherically or cylindrically symmetric layer of hot EHP 
with T z  T,, , outside which (at the center and the periph- 
ery) the state of the EHP is close to its homogeneous state. In 

the case of an A-shaped local relation, a hot radially-sym- 
metric AS of radius po -1 is realized (see Appendix). 

4. It follows from an analysis of the formulas given in 
Subsec. 3.1 that there exists in an EHP with two stable ho- 
mogeneous states (Fig. lb, curve b )  a hot static AS when 
G < G, (Fig. 2a) and a cold one when G >  G, (Fig. 2h). The 
value G = G, at which 2, = can be determined up to a 
quantity of the order of E from the equation 

4. STABILITY OF THE STATIC AUTOSOLITON 

Linearizing (7) and (8)  with respect to the fluctuations 
of the form 

6 0 4 0  ( r )  e-:', 6q=6q ( r ) e - f l ,  (23) 

and using the requirement that the variation of n(x)  be 
smooth, we arrive at the system of equations 

in which length and time are measured in units of l and 7, and 
q, = nTx°FO/Fx. By letting the operator V act on the equa- 
tions (7)  and (8)  for the stationary case, and then multiply- 
ing by an arbitrary unit vector n, we can easily verify that 
SO a nVO and Sn a nVq are the eigenfunctions of the prob- 
lem (24), (25) that correspond to the eigenvalue y = 0.3 
This result is a consequence of the translational symmetry of 
the problem. It clearly follows from this fact and the oscilla- 
tion theorem that, in problems whose characteristics are de- 
scribed by a single equation of the type (8)  with n = const 
(such problems arise in the theory of comb~st ion, '~  as well 
as in the investigation of current cords or field domains in 
semiconductors with non-single-valued CVC16), only the 
monotonic solution, for which dO/dx (or dO/dp) does not 
have a single node can be  table.'^,'^ In the case of the com- 
plicated problem under consideration (the system of equa- 
tions (24), (25) is of fourth order) the oscillation theorem 
does not apply, and it can be expected'-6 that complicated 
states, including the one in the form of randomly disposed 
AS, for which dO/dx has a set of  node^,^.'^ can be stable in it. 

To investigate the stability of the AS, let us expand SO 
and 677 in series in terms of the eigenfunctions SO, and Svr 
of the self-adjoint problems 

for which the functions SO, and 677, are normalized with 
weight q, > 0 and cP > 0, and satisfy cyclic boundary condi- 
tions in the case when the system's dimensions 2,, y, + cc . 
By substituting these series into (24) and (25), we can easily 
verify1 that the y-fluctuation spectrum is determined by Eq. 
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(35) in Ref. 5. According to Ref. 5, the condition for stabil- 
ity of an AS against fluctuations with Im y = w = 0 reduces 

while the condition for the appearance of a pulsating AS has 
the form 

m 

a,.. (P,2+a-202) -'=a, 

where w, is the frequency of the critical fluctuation (pulsa- 
tion). 

1. To investigate the stability of a one-dimensional 
broad AS (Fig. 2a), let us write SO ( r )  and 677 ( r )  in (23) in 
the form 

6 0  (r) =60 (x) cxp (ik,r,) , 

6q (r) =6q (x) cxp (ik,ri). 

Substituting (29) into (24), (25), we arrive at a system of 
equations of tke type (24), (25), in which the Laplacian in 
the operators H,  and H, should be replaced by d 2 / d ~ 2 ,  and 

FIG. 3. For the analysis of the stability of the static AS: a )  form of the 
dependence T ( x ) ;  form of the potentials V, (b) and V, (c) ,  ofthe critical 
fluctuations 60,,, , and of the perturbations 6 ~ ~ , ,  or ST damping these 
fluctuations (d and e)  . 

for A, andp, in (27), (28) we should substitute 

hn=hp+akLz, pi=pk+e-'gkL2, (30) 

where 

SO,, 677, and A,, p, are the eigenfunctions and eigenvalues 
of the one-dimensional problems (26). 

In the AS walls (Fig. 3a) the temperature varies from 
T,, to T,, (Subsec. 3.1 ), and concentrated in them is a re- 
gion of potentially unstable EHP with T=: T,, correspond- 
ing to the branch I1 of the local relation (Fig. lb),  for which 
V, =q& ~6 - T < 0 (see Sec. 2). It follows from this that 
V, (x) has the form of two narrow potential wells with 
V,, < 0 (Fig. 3b). Outside the AS walls, i.e., in the regions 
of smooth distributions, where T(x) =: T I  (x)  or TI,, ( x )  
(Subsec. 3.1 ), the magnitude of the potential V, =q& 2 1. 
Therefore, the ground-state function SO;'' in each isolated 
well is highly localized in a region of dimension of the order 
of I, and to it corresponds an eigenvalue A 'O' < 0. It follows 
from Refs. 2-4 and 6 that the spectrum A, of the potential 
V, for a static AS having the form of two wells located at a 
distance Y,  >I apart (Fig. 3b) contains only two negative 
values A, and A ,, to which correspond SO, and SO, (Figs. 3d 
and 3e) : the coupling and anticoupling combinations of the 
ground-state functions SO;'' of each of the isolated wells.18 
The values ofA, and A ,  for 2, < L are then roughly equal to 

It can be seen from (25) and (26) that SO, and 6 0 ,  are 
growing-with increments of - A, and - A ,-temperature 
fluctuations in the case when 677 = 0. At the same time, the 
temperature variation is accompanied by a corresponding 
concentration variation, the damping effect of which is tak- 
en into account in (27) and (28) by the terms containing the 
coefficients 9,,, >0, (27). The local rise SO,,, in tempera- 
ture in the AS walls leads to a change in the EHP concentra- 
tion in regions of dimension of the order of L (Figs. 3d and 
3e). 

The potential 

has the form of two wells of depth 2 1 and width -L  (i.e., 
&-I), located at a distance 9, apart, and separated by a 
high potential barrier (Fig. 3c). In this case it is natural to 
suppose18 that the eigenfunctions 67, and 677, of the prob- 
lem ( 2 6 )  are localized in the region of the AS (Figs. 3d and 
3e). It follows from the form and the symmetry of the func- 
tions 60, and 67, about the center of the AS (Fig. 3) and 
the equality of the number of zeros of the function Sr], to the 
index "k " that 9 ,,, = 0 when k + p is an odd number, and 
9 ,,, 4 PpPp when k + p is an even number. Using this, we 
find from (27), (28), and (30) forp = 0 and 1 that, approxi- 
mately, 
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Taking account of the fact that the functions SO, and SO, 
are localized in the regions of the AS walls, whose dimension 
is of the order of I, while 677, and 677, are localized in regions 
of dimension of the order of L (Fig. 3), we can, following 
Refs. 1,5,and6,findfromtheformulas (27), (9),and ( lo ) ,  
as well as (39) in Ref. 6 that 

where ( . - . ),, denotes averaging of the function over the 
region of the AS wall. 

1.1. In the one-dimensional case k, = 0, and the condi- 
tion (32) practically determines the point G = Gb (see Fig. 
l a )  where the solution in the form of a hot AS vanishes, and 
dn, /dG = co .5,'7 Using (3  1 ), we can easily verify that, at 
the boundary where the condition (32) is fulfilled, the AS 
width 

It follows from (31) and (33) that the AS is stable against 
the growth of the fluctuation S O , c ~ s ( w ~ ~ ' t )  if its width 2, 
lies in the range 

It follows from the estimates given in (34) that the condition 
for the existence of a static AS is more easily fulfilled in an 
EHP for which g-r,/-r,(l. Since a(& (13), 9 , > Y b ,  
i.e., G, > Gb . In other words, it follows from (34) that the 
AS goes over into a pulsating AS when G is decreased (the 
point 2 in Fig. la) ,  as well as when it is increased (the point 3 
in Fig. la).  From the form of the fluctuation SO, (Fig. 3d) it 
follows5 that a static AS goes over into a pulsating AS at the 
corresponding bifurcation points G = G, and G,, the pulsa- 
tion frequency in the case of a mild excitation regime being, 
according to (33), given by 

It follows from (31) that the condition (33) with re- 
spect top = 1 can be fulfilled only when the system is heated, 
the corresponding bifurcation point G = G, (the point 4 in 
Fig. la) ,  which corresponds to the solution O(x)  
+ S@,cos(wL1)t), being located close to G = G,, since for a 

broad AS the quantity A, -A,, (31). From the form of SO, 
(Fig. 3d) it follows that a solution in the form of an AS 
whose walls oscillate in phase with frequency o:')--wL0) 
branches out from the solution in the form of a static AS at 
G = G,. Thus, as G increases, the expanding static AS can, at 
G> G,, spontaneously go over not into a pulsating AS, but 
into an AS traveling with velocity 

(the 4-16 jump in Figs. la and lc) .  
When the potential V, -Q ; depends weakly on x ,  and 

it can be assumed that V, = Q ( q h ,  @9 ) =VO, and @ = 1, 
then it follows from (24) that 

Substituting (35) into (25), we obtain 

where 
cm 

Taking only the functions SO, and SO, into account in (36), 
we have 

The functions SO, and SO, are localized in the AS walls, 
which are of dimension 1 (Figs. 3d and 3e), and the perturba- 
tions Sr] ( x )  induced by them (the dot-dash curves in Fig. 3 ) 
have, according to (35), forms close to the functions Sq, and 
6.17 respectively (Figs. 3d and 3e). It follows from (35) that, 
outside the AS walls, Sr](x) falls off exponentially with 
characteristic length of the order of LsI. Taking this into 
account, we find from (37) that 

9, ,-P,[l+exp(-w9,) 1 ,  9 , 1~Po[1 -exp ( -w9d) ] ,  (39) 

g o =  (-&/2) : ( ~ q ' ) ~ h ( Q e ' ) s r , .  

Substituting (39) into (38), we find from an analysis of the 
zeros of the function l7 ( - i0) in the upper half-plane of Y:. 
S1 that the AS loses its stability against the SO, fluctuation 
that varies with frequency 

when 

These expressions essentially coincide with those that follow 
form (33) for p = 0. From (40), (41 ), and ( 3  1 ) it follows 
that 

O,"E'l* ( e a  -' ) I/' (.r'crO)-'", 

and the static AS becomes a pulsating AS at G = G ,  and G, 
(Fig. la) ,  when its dimension 

1.2. The conclusions drawn in Subsec. 4.1.1 about the 
AS stability hold true in the two- and three-dimensional 
cases, when we cannot set k, = 0. An exception is an EHP 
with g < a"3p~'3, when the condition (33 ) is more rigid than 
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(32), which is fulfilled at 

with respect to fluctuations with 

which strive to stratify the one-dimensional AS into smaller 
regions-bunches-in the plane yz of its walk3 It follows 
from (3 1 ) and (42) that the AS stratifies both as G decreases 
(with the stratification occurring at some G = G,), and as it 
increases (at G = G,) ,  when its width 

Taking the results obtained in Subsec. 4.1.1 into account, we 
can conclude that in the general case a broad static AS is 
stable when its width 2, lies in the range Y,, 
2, < Ys < L?,, Y,, where the quantities 3, and 9, are 
given in Subsec. 4.1.1. 

For a one-dimensional AS (Fig. 2b), which is realized 
in an EHP with a A-shaped local relation (Subsec. 3.2), the 
quantity A, - - 1. Therefore, according to (42), such an AS 
in a two- or three-dimensional sample is unstable against its 
division into bunches of small radii3 

2. The potential V, (p)  for a radially symmetric AS is a 
single potential well in which other negative eigenvalues 

corresponding to radially asymmetric fluctuations with 
p #O may occur besides A Similarly, in the potential 
well V,, (Refs. 3 and 4) 

It follows from an analysis of the conditions (27) and (28) 
with A, = A  A@' < 0 and p, = pL8' that a static AS in an 
EHP to which corresponds an N-shaped local relation can be 
stable when 5 In this case the condition (27) for 
A, = A  A*' withfi #O may be fulfilled as G is varied, i.e., a 
static bunch can become unstable against a radially nonsym- 
metric fluctuation. 

An AS in the form of a radially symmetric layer (Sub- 
set. 3.3) enclosed between spherical (cylindrical) surfaces 
of radii p ,  > L and p, turns out to be more stable that a 
bunch. Such an AS is stable in roughly the same range of 
2, r p, - p ,  values as a one-dimensional AS (Subsec. 
4.1.2). 

5. THE TRAVELING AUTOSOLITON 

The properties of a traveling AS are described by Eqs. 
(7)  and (8) if we go over to the self-similar variable 
x-x - ut in them. This adds the term Zdn/dx, where 

= VT;, to the right-hand side of (7) and the term (urFOTn/ 
F)dT/ax, to (8) .  We can, by going through a procedure 

similar to the one expounded in the Appendix, verify that we 
have, when the condition (6)  is fulfilled," 

where the T,? are the solutions corresponding to the separa- 
trices of the equation 

that go from the saddle point 03(T3)  to the saddle point 
O, ( TI ) for i = 1 and from the saddle point O; ( T ; ) to the 
saddle point O; ( T ;  for i = 2; n,, ,,, (x)  and TI, ,,, (x)  de- 
scribe n (x)  and T(x) outside the AS walls, and are the solu- 
tions to the equations 

Edn,/dx-Qj=O, q (T,,  n )  =0,  j = I ,  I11 (46) 

with the boundary conditions n, (0)  = n,, and 
n,,, (2, ) = nh.  The values of T,, T ; < To and T3, T ;  > T 6 
at the saddle points are determined from the equations 

which also give the minimum T,, = T ;  and maximum 
T,,, = T, temperatures in the AS (see Fig. 2d) and the val- 
ues of the temperature at the points x = 0 and 2 , :  
T,,, (9, ) = T2 and TSh2 (0) = T; . The magnitude of the 
AS velocity and the value of n,, in the AS can be deter- 
mined from the equations 

631 rn 

Integrating Eq. (46) for j = 111, we find 

P s = E  Q;: dn. 

It follows from an analysis of Eqs. (48) and (49) that, 
as G-Go (n, +no, Fig. la) ,  the quantities u, Y s ,  and T,,, 
attain their maximum values (v,,, -1/r), while T,, and 
n,, attain their minimum values. On the other hand, as 
G-G, (vh--tr], ), the velocity u - 4 .  At the same time, ac- 
cording to Ref. 6, for ( 13), a solution in the form of a 
traveling AS can be constructed only whe ~ % a " ~ 1  /T. From 
this it follows that a traveling AS disappears suddenly at 
n h  > n,, i.e., at some G = G, > G, (the 9-15 jump in Fig. 
I ) ,  or else it is transformed into a static (the 9-14 jump in 
Fig. l ) ,  or a pulsating, AS. The traveling AS disappears at 
G >  Go, but there exist both a periodic and a nonperiodic 
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sequence of traveling AS. Therefore, in the region G>  Go a 
solitary AS can stimulate the appearance of a traveling-AS 
sequence (the jump at the point 10 in Fig. lc),  or else there 
can arise in the EHP the uniform relaxational oscillations 
considered in Refs. 9 and 10. The evolution of a cold AS in a 
hot EHP, as G is varied, proceeds in similar fashion (in the 
region GI G A ,  Figs. la and lc)  . 

Since the AS has a velocity 1 /T 2 ~ % a " ~ 1  /T, it is accord- 
ing to Ref. 6, stable in the one-dimensional case in the entire 
region of its existence. It is shown in the Appendix that the 
condition for the stability of a traveling AS in the two- three- 
dimensional cases (k, f 0)  reduces to 

It follows from (50) that the stability of a traveling AS in a 
three- or two-dimensional sample against fluctuations with 
k, # O  follows from the stability of the AS in the one-dimen- 
sional case," i.e., in the k, = 0 case. 

6. ON THE CONDITIONS FOR THE OBSERVATION OF AN AS 
IN SOME SEMICONDUCTORS 

1. The above-investigated simplest model of a svmmet- 
ric EHP is realized in, for example, h b ~ e ,  in which m,* = m,* 
z0.02mo, and the carriers turn out to be degenerate even at 
low concentrations (for T ~ 1 0  K, at n>n,  = 2 x  1015 
cm-3 ). 2) It is known from experiment21s22 that the Auger- 

recombination process in PbTe is the dominant process in 
the temperature region 4.2 5 T 5  77 K when n 2 1016 ~ m - ~ .  
Using Ref. 23, we can find that the Auger-recombination 
rate in PbTe is equal to 

for a concentration nd < n < 4X 10'" cmp3 and a carrier 
temperature T < F S  E~ = m, E, /4m, =: 50 K (m, and m, are 
the transverse and longitudinal effective masses). At a lat- 
tice temperature T, = 4.2 K the carriers with T <  10 K dissi- 
pate their energy on the acoustic phonons (7, - 3 x lo-' 
sec); those with T> 10 K, on the optical ph~nons . '~  There- 
fore, the local relation is N-shaped (see Fig. lb),  with To = 5 
K, Th = 10 K, Go = 7X loz0 ~m-~.sec- ' ,  no = 2.5X 1016 
cmP3, and the pump power corresponding to Go being equal 
to wo = G & g 9 ,  ~ 0 . 1 4  W.cmp2 for a film thickness of 
9, = lo-' cm. Analyzing the local relation together with 
( 17), we obtain the following estimates for the parameters of 
the static AS (Fig. 2a): Tm,,=.Tsl =4.5 K, 
T,,, =: T,, = 11 K, n,, Zn, = 2.1 X 1016 ~ m - ~ .  Taking ac- 
count of the fact that the carrier mobility p z 8  X 10' 
cm2.Vp'.sec-' in PbTe,24 we find that 1 ~ 4 ~  cm and 
L - lo-' cm. According to ( 13), a z 2 ~  i.e., we can, 
in accordance with the results obtained in Secs. 4 and 5, 
excite in an EHP in PbTe a pulsating AS with pulsation 
frequency w - lo4 sec-', or a traveling AS with velocity 
u - 4 ~  lo4 cm.secp', in whichZ=:l cm. 

The conditions for AS excitation are fulfilled in broad- 
band semiconductors, such as Si and GaAs, even at room 
temperatures ( TI z 300 K). 

2. AS'S can occur not only in degenerate, but also in 

nondegenerate EHP, in which the Auger-recombination 
rate, as a rule, increases most rapidly with increasing T. 
Analysis shows that the properties of a traveling AS in a 
nondegenerate EHP are the same as for a degenerate EHP 
(Sec. 5). 

3. Static AS'S can occur in a nondegenerate EHP heated 
in the electric field of both polar and nonpolar semiconduc- 
tor at T, ~ 3 0 0  K. In polar semiconductors (InSb, PbTe, 
GaAs) at T >  OD, where OD is ther Debye temperature, the 
carriers dissipate their momentum and energy on the polar 
optical phonons. The product of r, cu F and r, cu T s  then 
increases with increasing T ( a  + s > 0), i.e., the conditions 
for spontaneous appearance of static AS are It 
is precisely under these conditions that static AS in the form 
of bunches of hot EHP were experimentally detected and 
studied in GaAs." In Si and Ge at T >  0, the carriers dissi- 
pate their energy on the nonpolar optical phonons (s = 1/2) 
and their momentum on the acoustic and optical phonons 
(a = - 1/2). Such an EHP w i t h p z n  will stratify in the 
direction of the applied field at 

T>To=TI (2+a+s) (l+a+s) -i=2TI-600-700 IC. 

Thus, if we apply to an n-Ge (or n-Si) sample an electric 
field of intensity E > Eo close to the value at which the elec- 
tron drift velocity begins to saturate (Eo- lo3 V/cm), and 
produce with the aid of, say, photogeneration an EHP with 
p z  n - 1017-101%m-3, then there will spontaneously ap- 
pear in the sample static or moving-in the direction of the 
field-AS in the form of hot EHP bunches (see Fig. 1 in Ref. 
26). The smaller the quantity E = I /L  z (7, /T, ) ' I 2 (  1 is, the 
higher the maximum value of the carrier temperature in the 
AS (T,,, ) will be. Even for E -0.1, the quantity 
T,,, - 100T,, i.e., there should occur as the center of the AS 
intense impact ionization, which will limit the value of T,,, . 

Thus, in a relatively weak electric field (E-  lo3 V/cm) 
a homogeneous EHP can undergo strification that leads to 
the spontaneous appearance of local regions of intense im- 
pact ionization of the carriers. It is possible that such an 
effect was observed in the experiment reported in Ref. 27. 

For the EHP in the semiconductors under considera- 
tion here the critical field intensity (i.e., the intensity at 
which the AS still exists) E = E, is proportional to the value 
E = I /L4  1 (Eb (EO). In other words, a stable static AS, at 
the core of which T,,, ST, z 300 K, can be excited in a very 
weakly heated EHP with T, - T, (TI. 

4. AS'S can occur not only in a hot EHP, but also in an 
EHP that has thermalized with the lattice. In this case, in a 
degenerate EHP, there can be excited static, pulsating, and 
traveling AS; in a nondegenerate EHP, as a rule, static AS.' 
In a nondegenerate EHP the T( r )  and N( r )  distributions in 
an AS vary in phase and with the same characteristic length 
I, that characterizes the variation of the temperature 
T(r)  = TI ( r  ) in a semiconductor film, i.e., the AS is a bunch 
of high-temperature, high-density EHP.' The temperature 
at the center of the AS in the case of relatively small I,/L 
values is higher than the melting point of the semiconductor; 
therefore, the formation of an AS can lead to local melting of 
the film. 
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APPENDIX 

Derivation of the expressions (14)-(22) and (50) in the main 
text 

Adding to the expressions (5) for j, and j, , respective- 
ly, the terms (~%er,/3m) (T/F)VT and (F/e)j,, which 
were discarded in ( 5 ) ,  we obtain from (3) and (4) the fol- 
lowing equations, which describe the distributions T(r)  and 
n ( r )  in the steady-state case: 

12AT+12al(VT)2+Lza2(VqVT) 

+h3 ( V q )  ' -  ( x 0 / x )  (q -aa4Q)  =0,  (A. 1 ) 

L2Aq+LZMAT+L2M,,' ( V q  V T )  + L2MT'(VT)z -Q=0 ,  (A.2) 

where 
I 8% I 3% 2m a , = - - - - ,  a , = - - + - -  
x  dT x  d q  3cn ' 

1. For the analysis of the one-dimensional static AS (see 
Fig. 2a) in the case of an N-shaped local relation (Subsec. 
3.1 ) we introduce the notation 

and write (A. 1 ) and (A.2) in the form of a system of equa- 
tions: 

where 

fi=Xz, f z =  ( x 0 / x )  (q -aarQ)  -aIX22-ea2XzX,-~2a3X,2,  

f3-X'. f4=Q-M~-"2-~-'M,'X~X4-~-2MT'X22; (A.4) 

here and below (except in Sebsec. 5) xis measured in units of 
L. Let us divide the semi-infinite axis x>O into two sections: 

m = I ,  where O < X < X , - - ~ ~ / ~  H m=2,  wherex>xo. 

The boundary conditions for the functions X jm' (x) in each 
of the sections m = 1,2 have the form 

xi" ( 0 )  =x:" ( 0 )  =o,  xi2) ( 0 0 )  =Th, xS2' ( 0 0 )  = q h ,  

xi'' ( x 0 )  =xj2) ( x O ) .  
i = I , .  . . ,4. (A.5) 

Let us, in accordance with the theory of singular perturba- 
tions,', write the solutions to the system (A.3) in the form 

xirn' ( x )  =Rim' (x, E )  +Xlrn) (t, e )  , i = i ,  . . . ,4, m = l ,  2 ,  

(A.6) 
where the outer 2 jm) (x ,  E )  and inner (boundary) 
Xjm'(f, E) solutions will be sought in the form of series in 
powers of E: 

Hi ( x ,  e )  = H i , o ( x )  ( x )  +. . .+ckHi,,(x) +. . . . , 
X i & ,  e )  =Xi ,o (E)  + e X i , < ( E ) + .  . . + E * X ~ , ~ ( ~ )  +. . . . , (A.7) 

where f = (x - xO)/&. Let us substitute (A.6) and (A.7) 

into (A.3). Next, expanding the functionsf; (Xi ) in series in 
powers of&, and equating the coefficients of the same powers 
ofe (separately depending on x and separately depending on 
f (Ref. 14) ), we obtain in the zeroth approximation in E the 
system of equations 

8:,?)=0, f, (x::' (x)) =0 ,  d ~ : J ' i d x = ~ t ; ' ,  (A.8) 

When 

aa*, e 2 a 3 K I ,  M K E ,  

which is equivalent to the condition (6) ,  we can, taking 
(A.8) into account, neglect in (A.9) and (A.lO) those 
terms entering into the functionsf;. a n d z ,  which are pro- 
portional to a,, a,, M, M ;, and M k ,  and also assume that 
& f 4 ,  = 0. Next, taking into account the boundary condi- 
tions 

for the boundary functions14 and the conditions (A.5 ), and 
also setting 

, ( 0 )  T - T  w!: ( 0 )  =T,,-T$i,  (A.13) 

where the T,, satisfy ( 17), we obtain the results presented in 
Subsec. 3.1 in the main text. 

2. For the analysis of the radially symmetric AS (see 
Fig. 2c) in the case of an N-shaped local relation (Subsec. 
3.3) we introduce the notation 

and write (A. 1) and (A.2) in the form of a system of equa- 
tions: 

edX, /dp=f , ,  edX, ldp=f , -e  ( I +  s )  p-'XZ, 

dX3/dp=f3 ,  dX , /dp=f , - ( l+s )p - 'X , ,  (A. 14) 

where the& (X i  are given by (A.4) andp is measured here 
and below in units of L. Let us divide the semi-infinite axis 
p>O into two sections: m = 1, where O<p<po, and m = 2, 
wherep>po. If we carry out the same iterative procedure as 
in Subsec. 1, we arrive, in the zeroth approximation in E, at 
the system of equations (A.8 )-(A. 10) withx andlreplaced 
respectively by p and f = ( p  -p,) /~ and with the term 
- ( 1 + s)p-'2:l;;)( p )  added to the right-hand side of 
(A.9). Then, taking (A.11), (A.13), and (A.5) into ac- 
count, we obtain the results given in Subsec. 3.3 

3. Let us consider the one-dimensional AS in the case of 
a A-shaped local relation. This form of the relation (Fig. lb) 
is characteristic of an EHP in which T, 1 ( 12), and there- 
fore it is possible for the following condition to be fulfilled in 
the AS-core region: 

346 Sov. Phys. JETP 62 (2), August 1985 B. S. Kerner and V. V. Osipov 346 



i.e.9 19 ( Tmax ) 1, 1 Q( Tmax 1 -C2. Let us introduce the nota- 
tion 

and write (A. 1 ) and (A.2) in the form 

where 
f l = x 2 ,  f2=p ( x , / x )  (q-ua4Q) -a3X22-pa~X2X~-~2 f13X42 ,  

f3=X4, fl,=~-~p-2f~-p-1M~X2X4-p-2M~'X22. (A.18) 

The boundary conditions for the functions Xi (x)  have the 
form 

Substituting into (A.17) and (A.18) the functions (A.6) 
and (A.71, which are defined for all x>O, and setting 6 = x/ 
p ,  we arrive in the zeroth approximation inp  at the system of 
equations (A.8)-(A. 10) (without the superscript m ) . Tak- 
ing (A. 12) into acount at 6 = C Y J ,  we obtain from (A.8)- 
(A.10), (A. 19), and (A. 11) the results given in Subsec. 3.2 
and the equation 

which describes the variation of the quantity dn/dx at the 
AS core. 

4. Let us consider the radially symmetric AS in the case 
of a A-shaped local relation. Using (A. 16) with x replaced 
byp, we can write (A. 1 ) and (A.2) in the form of the system 
(A. 14) if we replace in it E byp and ash (Xi ) we use (A. 18). 
As a result we arrive, in the zeroth approximation inp, at the 
system (A.8)-(A.10), in which we must set =p/p, and 
add to the right-hand side of the last of the equations (A.8) 
and the right-hand sides of the equations (A.9) and (A. 10) 
the following terms respectively: 

From the equations obtained we find, taking (A.l I ) ,  
(A.12), and (A.19) into account, that T ( p )  a n d n ( p )  can 
be represented in the form ( 19) with x replaced by p, i.e., 
T( and n ( p )  are qualitatively similar to the distributions 
T(x) and n(x),  depicted in Fig. 2b, in the region x>O. The 
distributions T,, ( p )  and TI ( p ) ,  nI ( p )  satisfy the bound- 
ary conditions given in Subsec. 3.2, and can respectively be 
determined from Eqs. ( 15) and ( 16) with the operator d '/ 
d ~ ~ r e p l a c e d b ~ ~ - ' - ~  ( d / d p )  (p'+sd/dp).Thevaluesof 
the Ti and nSh can be determined from the conditions 
9(Ti, nsh = 0, 

5. Derivation of the criterion for stability of a traveling 
AS. Let us linearize in terms of perturbations SO and 6n of 

the form (29) Eqs. (7)  and (8)  with respect to the above- 
considered self-similar solution depicted in Fig. 2d. As a re- 
sult, we obtain 

where x and t are measured in units of I and r respectively. 
Let us solve Eq. (A.2 1 ) for Sn with the boundary conditions 
that follow from n( & CYJ ) = n,, and let us substitute this 
solution into (A.20). Going over in the latter from the SO 
functions to S d  = SOexp ( u/2 J x  g, dx), we obtain 

I 

(Be+kL2-yrp) sA=E-' exp (q J rp  dl) 

where 

Expanding S d  in a series in terms of the eigenfunctions sG, 
h 

of the problem H,  68,  = A, g,SG,, and substituting it into 
(A.22), we obtain, after appropriate transformations, the 
equation 

det [ (A,- y +akL2) 6,,+9,,1 =0, (A.24) 

where 
m I 

x[ j Qe'66,  e ~ p  { - 1 ( s + F) dx) dg] dx. (A.25) 

Owing to the asymmetry of the traveling AS, the A, spec- 
trum for a(& contains only one negative value: 

and the function 66, corresponding to it is localized in the 
leading wall (of dimension -1) of the traveling AS (in the 
vicinity of the point x = 9, in Fig. 2d) .6 Retaining only the 
function ado in (A.24), and taking its 6-function character 
into account, we obtain in the case when k, < 1 -' and 
0 < r-I the condition (50). 

The problem under consideration is mathematically similar to the prob- 
lem of pulse propagation in a nerve fiber," and the results presented in 
the present section can be considered to be a generalization of the results 
obtained for models of the Fitz-Hugh-Nagumo type.19'20 

" The estimates in Subsec. 6.1 were made in collaboration with N.  Yu. 
Mizerina. 

347 Sov. Phys. JETP 62 (2), August 1985 6. S. Kerner and V. V. Osipov 347 



'B. S. Kerner and V. V. Osipov, Zh. Eksp. Teor. Fiz. 74, 1675 (1978) 
[Sov. Phys. JETP 47,874 (1978)l. 

'B. S. Kerner and V. V. Osipov, Fiz. Tekh. Poluprovodn. 13,721 ( 1979) 
[Sov. Phys. Semicond. 13,424 ( 1979) 1. 

'B. S. Kerner and V. V. Osipov, Zh. Eksp. Teor. Fiz. 79, 2218 (1980) 
[Sov. Phys. JETP 52,1122 (1980)l. 

4B. S. Kerner and V. V. Osipov, Mikroelektronika 10,407 (1981). 
5B. S. Kerner and V. V. Osipov, Zh. Eksp. Teor. Fiz. 83, 2201 (1982) 
[Sov. Phys. JETP 56,1275 (1982)l. 

6B. S. Kerner and V. V. Osipov, Mikroelectronika 12, 512 ( 1983). 
7B. S. Kerner and V. V. Osipov, Zh. Eksp. Teor. Fiz. 71, 1542 (1976) 
[Sov. Phys. JETP 44,807 ( 1976) 1. 

*V. V. Gafiichuk, B. S. Kerner, and V. V. Osipov, Fiz. Tverd. Tela (Len- 
ingrad) 23,2305 (1981) [Sov. Phys. Solid State 23, 1348 (1981)l. 

9N. N. Degtyarenko and V. F. Elesin, Pis'ma Zh. Eksp. Teor. Fiz. 13,456 
(1971) [JETP Lett. 13,326 (1971)l. 

'ON. N. Degtyarenko, V. F. Elesin, and V. A. Furmanov, Fiz. Tekh. Polu- 
provodn. 7, 1716 ( 1973) [Sov. Phys. Semicond. 7, 1147 (1974)l. 

"I. A. Lubashevskii, V. I. Ryzhii, and R. A. Suns, Pis'ma Zh. Tekh. Fiz. 
8,36 (1982) [Sov. Tech. Phys. Lett. 8, 16 ( 1982)l. 

lZR. Gernardts, R. Dornhaus, and G. Nimtz, Solid-State Electron. 21, 
1467 ( 1978); V. L. Gel'mont, 2. N. Sokolova, and I. N. Yassievich, Fiz. 
Tekh. Poluprovodn. 16, 592 (1982) [Sov. Phys. Semicond. 16, 382 
(1982)l. 

I3L. S. Polak and A. S. Mikhailov, Samoorganizatsiya v neravnovesnykh 
fiziko-khimicheskikh sistemakh (Self-organization in Nonequilibrium 
Physicochemical Systems), Nauka, Moscow, 1983, Chap. 5. 

14A. V. Vasilreva and V. F. Butuzov, Asimptoticheskie razlozheniya re- 
shenii singulyarno vozmushchennykh uravnenii (Asymptotic Expan- 
sions of the Solutions of Singularly Perturbed Equations), Nauka, Mos- 
cow, 1973, Chap. 4. 

15Ya. B. Zel'dovich, G. I. Barenblatt, V. V. Librovich, and G. M. Makhvi- 
ladze, Matematicheskaya teoriya goreniya i vzryva (Mathematical The- 

ory of Combustion and Explosion), Nauka, Moscow, 1980. 
1 6 ~ .  V. Volkov and Sh. M. Kogan, Usp. Fiz. Nauk 96,633 (1968) [Sov. 

Phys. Usp. 11,881 (1969)l; V. L. Bonch-Bruevich, I. P. Zvyagin, and 
A. G. Mironov, Domennaya Clektricheskaya neustoichivost' v polupro- 
vodnikakh (Domain Electrical Instabilities in Semiconductors), 
Nauka, Moscow, 1972 (Eng. Transl., Consultants Bureau, New York, 
1975), Chaps. 5-8. 

I7B. S. Kerner, E. M. Kuznetsova, and V. V. Osipov, Dokl. Akad. Nauk 
SSSR 277, 11 14 ( 1984) [Sov. Phys. Dokl. 29,644 ( 1984) 1; Mikroelek- 
tronika 13,407 ( 1984). 

I8L. D. Landau and E. M. Lifshitz, Kvantovaya mekhanika (Quantum 
Mechanics), Nauka, Moscow, 1974 (Eng. Transl., Pergamon, Oxford, 
1977), Chap. 3. 

I9L. A. Ostrovskii and V. G. Yakhno, Biofizika 20,489 ( 1975). 
20R. G. Casten, H. Cohen, and P. A. Lagerstrom, Quart. Appl. Math. 32, 

365 (1975). 
"B. Schlicht, R. Dornhaus, G. Nimtz, and L. D. Haas, Solid-State Elec- 

tron. 21, 1481 ( 1978). 
"K. Lischka and W. Huber, J. Appl. Phys. 48,2632 (1977). 
23P. R. Emtage, J. Appl. Phys. 47,2565 (1976). 
2 4 Y ~ .  I. Ravich, B. A. Efimova, and I. A. Smirnov, Metody issledovaniya 

poluprovodnikov v primenenii k khal'kogenidam svintsa PbTe, PbSe, 
PbS (Semiconducting Lead Chalcogenides), Nauka, Moscow, 1968 
(Eng. Transl., Plenum, New York, 1970). 

25B. S. Kerner and V. V. Osipov, Fiz. Tekh. Poluprovodn. 13,891 ( 1979) 
[Sov. Phys. Semicond. 13,523 (1979)l. 

26B. S. Kerner and V. V. Osipov, Fiz. Tverd. Tela (Leningrad) 21,2342 
(1979) [Sov. Phys. Solid State 21, 1348 ( 1979)l. 

Z7B. S. Kerner and V. F. Sinkevich, Pis'ma Zh. Eksp. Teor. Fiz. 36, 359 
(1982) [JETP Lett. 36,436 (1982)l. 

Translated by A. K. Agyei 

348 Sov. Phys. JETP 62 (2), August 1985 El. S. Kerner and V. V. Osipov 348 


