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The Hall conductivity of a two-dimensional system of noninteracting electrons in a strong mag- 
netic field is considered. A general relation between the conductivity uxy and the properties of the 
current-carrying edge states is established. A new proof, based on the indicated relation, of the 
quantization of the Hall conductivity is presented. The important limiting case of a random 
potential V(r) varying slowly in space is analyzed in detail. Formulas expressing the a,, ( w )  in 
terms of the characteristics of the classical drift trajectories, which coincide with the equipoten- 
tial lines v(r) = const, are obtained in this limit. The effect of the frequency corrections on the 
Hall-conductivity quantization is also investigated. 

1. INTRODUCTION relation is simply a consequence of the equality to zero of the 

At low temperatures the magnetic-field dependence of 
the Hall resistance of a two-dimensional electron system has 
a stepped character in the region of strong magnetic fields B, 
the Hall conductivity in the plateau regions being, to a high 
degree of accuracy, quantized: 

where n is a whole number1 (we shall not discuss here frac- 
tional quantization2). Although great progress has been 
made in the construction of the theory of this phenomenon 
(see, for example, Refs. 3-17), there are still a number of 
problems here that have not been definitively solved. In par- 
ticular, there is no reliable theoretical estimate for the cor- 
rections to the values of the conductivity ( 1 ) . Also necessary 
is a detailed investigation of the structure of the delocalized 
states, the response at a finite frequency, the role of the in- 
elastic processes. Finally, there is still a need for the clearest 
possible explanation of the quantization ( 1 ) . 

In the present paper we consider the Hall conductivity 
in a system of noninteracting two-dimensional electrons 
moving in an external potential V(r). Although we shall be 
interested in the value of uxy in the thermodynamic limit, it 
is convenient to begin the computation of the Hall conduc- 
tivity with an analysis of a system of finite dimensions. In a 
magnetic field the presence of edges leads to the appearance 
of current-carrying edge states corresponding to electrons 
"hopping" along the reflecting edge. The importance of the 
role of these states for the theory of the quantized Hall effect 
was pointed out by Halperin.' Further investiga- 
tions~z,~3.~s,~~-21 showed that the bulk Hall conductivity can 

be directly related to the characteristics of the edge states. 
We present here a simple derivation of the general rela- 

tion between ox, and the current carried by the edge states, 
this relation being valid in the case when there are no cur- 
rent-carrying states at the Fermi level inside the system. The 
derivation presented allows us to better understand the 
physical causes of the relation between the bulk value (of the 
conductivity) and the edge current. It turns out that this 

total transport current in a system with edges in thermody- 
namic equilibrium in an external electric field. The total 
equilibrium current in the situation in question vanishes as a 
result of the compensation of the volume Hall current by the 
currents flowing along the edges. This is precisely the reason 
why we can represent ox, in the form of a sum over only the 
edge states. 

The fact that the Hall conductivity can be expressd in 
terms of the current in the edge states explain at the qualita- 
tive level the insensitivity of uxy to local changes in the po- 
tential V(r) inside the system, since such changes have no 
effect on the properties of the states localized near the edges. 
In the thermodynamic limit a,, does not also depend on the 
properties of the edge, and assumes only the quantized val- 
ues: integral multiples of e2/h. 

The above-noted relationships manifest themselves 
especially clearly in the case of a very strong magnetic field 
B, when the external potential V(r) can be assumed to vary 
slowly over scales of the order of 1 = (cfi/eB) '" (the Lar- 
mor radius for the lowest Landau level). A detailed analysis 
of the Hall conductivity in this limit will be carried out in 
Sec. 2. In the limit of strong fields we can neglect the electron 
transitions between the Landau levels, and the motion of the 
electron occupying some Landau level reduces to drift mo- 
tion along an equipotential line V(r) = const." The wave 
function of an electron with energy E (measured from the 
center of the broadened Landau level) is then localized near 
the line V(r) = E, and decreases exponentially over a dis- 
tance 1 from this line. The properties of the equipotential 
lines V(r) = const for a two-dimensional random potential 
are fairly well known in connection with the classical perco- 
lation problem.24 If the mean value of the potential is equal 
to zero, then the equipotentials with c#O are closed curves 
of finite length, which corresponds to localized states. The 
radius of localization increases without restriction as ~4, 
and therefore the existence of a drift trajectory of infinite 
length is possible at E = 0. According to this picture, all the 
states in a two-dimensional disordered system located in a 
strong magnetic field are localized, with the exception of the 
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state at the center of the Landau level (other approaches led 
to a similar r e ~ u l t ' ~ ~ ' ~ ~ ~ ~ ) .  The drift approximation was first 
applied to the analysis of the quantized Hall effect by Ior- 
d a n ~ k y , ~  who obtained the formula ( 1) from an analysis of 
the delocalized drift trajectories in an external electric field. 
A similar picture is used to explain the quantization of a,, in 
Refs. 10 and 26 (see also Refs. 14 and 27). 

A distinctive feature of the present investigation is the 
unification of the simple physical picture provided by the 
drift approximation with linear response theory, which al- 
lows us to obtain a new expression for the conductivity. Al- 
though the actual contribution to the Hall current in an ex- 
ternal electric field is made only by the delocalized states 
with E = 0, the conductivity a,, can be expressed solely in 
terms of the properties of the states at the Fermi level," i.e., 
in the present case, in terms of contour integrals along the 
drift trajectories V(r) = E,. It then turns out that, if E, > 0 
(i.e., if the Landau level is more than half-filled), then only 
the edge trajectories make a nonzero contribution to the 
expression for a,, . The existence of a plateau in the electron- 
concentration dependence of the Hall conductivity and the 
nondependence of a,, on the specific form of the random 
potential V(r) turn out in this case to be simple conse- 
quences of the general topological properties of the edge tra- 
jectories. 

The formulas obtained for the conductivity in the drift 
approximation allow us to also investigate the frequency de- 
pendence of aij (w) .  The frequency corrections lead to the 
destruction of the plateaus in the magnetic-field dependence 
of u,,. In the region of frequencies much higher than the 
characteristic frequencies of the drift motion, a,, (w)  coin- 
cides with the conductivity tensor of an ideal impurity-free 
system. For the estimation of the conductivity in the region 
of low and intermediate frequencies we put forward a simple 
model within the framework of which the response at a finite 
frequency can be expressed in terms of the geometric charac- 
teristics of the equipotential lines V(r) = const. Let us note 
that the measurement of the conductivity at low frequencies 
(especially in the region E, ~ 0 )  could, in principle, provide 
important information about the properties of the random 
potential V(r). 

In the final section the results obtained for the statisti- 
cal Hall conductivity within the framework of the drift ap- 
proximation are generalized to the case of an arbitrary scat- 
tering potential. If there are no current-carrying states with 
energy E, inside the system, then a,, can be expressed in 
terms of the current i ( ~ ,  ) carried by the edge states lying at 
the Fermi level. It will also be shown that the edge current 
i ( ~ ,  ) does not depend on the specific properties of the edge, 
and assumes only universal quantized values. This explains 
the Hall-conductivity quantization, which is exact in an infi- 
nite system at zero temperature. 

2. QUANTIZATION OF THE HALL CONDUCTIVITY IN A 
STRONG MAGNETIC FIELD 

To compute the Hall conductivity, let us consider a sys- 
tem of large but finite dimensions L, XL,, with periodic 
boundary conditions along the X axis. We shall assume that 
the electron motion along the Y axis is bounded by a confin- 

ing potential that increases without restriction as the boun- 
daries are approached, and is equal to zero inside the system. 
In fact we are considering a band of finite width rolled into a 
cylinder. If the electric field is directed along the Yaxis, then 
the potential energy of an electron is equal to 

where V(r) contains both a confining potential in the vicini- 
ty of the boundaries and a smoothly varying random poten- 
tial with zero average value. 

In a strong magnetic field, the transitions between the 
Landau levels can be neglected, and the motion of an elec- 
tron in the lowest Landau level3' reduces simply to the drift 
of the guiding center of the cyclotron orbit. The coordinates 
(X, Y) of the center of the orbit are noncommuting operators 
(see, for example, Ref. 29), but the commutator [X, Y] = il 
tends to zero in the limit as B+ a,. Therefore, in strong fields 
we can use the classical equations of drifting motion4) 

These equations have the form of canonical equations of mo- 
tion for a system with Hamiltonian U(X,Y), with Yplaying 
the role of momentum conjugate to the variable X. For the 
drift approximaation to be valid, it is necessary that the po- 
tential V(r) vary slowly over scales of the order of I. 

In a system of noninteracting electrons the equation for 
the distribution function f (X,Y) at the lowest Landau level 
is a simple corollary of the drift equations (2), and has the 
form 

In the state of thermodynamic equilibrium f = f,( U(R) ), 
where f,(s) is the Fermi distribution function. 

Let us now assume that the electron gas was initially in 
equilibrium in the absence of the electric field, and then the 
field was adiabatically switched on. The time-dependent so- 
lution to Eq. ( 3 )  with the initial condition f = f,( V(R) ) at 
t = - co can be written in the following form: 

t 

f ( R ,  t )=f l  ( v ( R ) + ~ E ( ~ )  Y-e j d r  ~ ( r ) ~ ( r )  ). (4) 
- Co 

where R(T) = (X(T), Y(T) ) is that solution to the dirft 
equations (2) which is such that the trajectory correspond- 
ing to it passes through the point R at the moment of time t, 
i.e., R( t )  = R. That (4) is a solution can be verified through 
direct substitution into (3), it being only necessary to take 
into account the fact that Y(T) is an implicit function o f t  
and R. Notice that (4)  differs from the equilibrium distribu- 
tion function f,(U(R)) in an electric field. Substituting (4) 
into the expression for the total current: 

and taking account of Eq. (2),  as well as the fact that, be- 
cause of the presence of the confining potential, f,( V) = 0 at 
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where E~ is the Fermi energy measured from ih,/2, and 
therefore 

rot[e,f,,(V)]=[e,~VV]6(~~-V(R))=t(R)6~(R). (7)  

the boundaries y = + L, /2, we finally obtain in the approx- 
imation linear in E the expression 

t 

I ( t ) =  (ea/h) d r &(r )  d R Y ( r ;  t ,  R ) r o t [ e , f , ( V ( R ) )  1, (5) 
- m 

where Y ( T )  is now determined by the equations (2)  with 
U = V(R) and e, is the unit vector along the Z axis. At zero 

Here the S function SF (R)  is centered on the equipotential 
V(R) = EF, and 

t ( R ) = [ e , x V V ] / I V V I  

x 

is the unit tangent vector to this curve at the point Now FIG. 1.  The hatched regions are the regions for which V(r) <E,  in the 
the current ( 5 )  can be expressed solely in terms of the prop- cases when a )  E, <O and b) E, > O. The continuous curves depict the 
erties of the drift trajectoreis with energy E,, i.e., the trajec- equipotentials V(r) = E F .  

tories lying at the Fermi level. 
Let us, to begin with, consider the response to a con- 

temperature the distribution function has the form a 

stant field. Notice that the expression (5) ,  which can be de- 
rived directly from the the Kubo formula in the limit B-co 
(see Appendix I) ,  does not vanish even when E ( T ) - o ,  
which indicates the absence of erg~dicity.''.~' The reason for 
this is that, as will be seen below, because of the presence of 
the confining potential, two distinct (edge) states occur at 
the Fermi level. The contribution of these states to the var- 
ious averages does not satisfy the condition for the weaken- 
ing of the correlations, and leads to a nonzero universal 
expression for the Hall current. 

If in the distant past the electric field E(T) was adiabati- 
cally switched on from zero to some value E, then the cur- 
rent (5) does not depend on the time t. This can most easily 
be seen if we choose the dependence E(r) in the form of a 
linearly increasing function in the time interval [ - T,O], 
andsetE(7) =Ofo r r<  - TandE(r )  = E  forr>O.Then 
for T+ co we have 

E 
J d r & ( r ) ~ ( r ; ~ ) =  lim - S  Y ( r ; R ) - E Y ( R ) .  

-m T*m T - T  

For periodic trajectories, which are the ones that will be con- 
sidered below, Y ( R )  is simply the average over the period of 
the motion. The same result is obtained in the case when the 
field is switched on in the usual way, i.e., for 
E ( r )  = EexpSr, 6 4 .  Thus, the final expression for the cur- 
rent at zero temperature assumes the form 

where T is the boundary of the region occupied by the elec- 
trons, i.e., the equipotential line on which V(r) = E,. 

Let us now consider how the current behaves as the 
Landau level is systematically filled. Let E, < O  initially. 

Then the regions with V < E ~  form isolated "lakes" (the 
hatched regions in Fig. l a ) ,  which, from the standpoint of 
percolation theory, are finite clusters. The curve r in this 
case consists of a set of closed contours Ti to which corre- 
spond periodic drift trajectories. Since for a periodic trajec- 
tory the mean quantity Y(R) does not depend on the loca- 
tion of the point R on the contour, 

I = X E X  yt$, dst ( s )  =o, 
i 

as it should be, since, for E, < 0, all the occupied states are 
localized. 

As the electron concentration is increased further, we 
reach the percolation threshold E, = 0, and the picture qual- 
itatively changes when E, > 0. There are now in the interior 
only isolated "islands," for which V> E, (see Fig. lb),  since 
simultaneous flow through the dark and white regions is im- 
possible in two dimensions. But in addition to that there are 
still electron-free regions in the immediate neighborhood of 
the edges y = + !&, , where V >  E, because of the presence 
of the confining potential. There are now two types of trajec- 
tories at the Fermi level. First, there are localized states in- 
side the system, which do not make a contribution to the 
total current, and, secondly, there are extended edge states 
T, and r,. Because of the periodic boundary conditions 
along the X axis, the motion along the trajectories rl and r, 
is periodic (these trajectories are closed on the cylinder). 
Therefore, the total current is equal to 

The expression (9)  does not imply that the Hall current un- 
der the conditions in question actually flows along the edges. 
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It simply indicates that I, can be expressed in terms of only 
the characteristics of the edge states (see below, as well as 
Refs. 12, 13, 18-20). 

The contour integrals in (9) in fact do not depend on 
the specific form of the contours T,. This is due to the fact 
that 

is a topological invariant distinguishing between two classes 
of homotopically nonequivalent contours existing in the ge- 
ometry in question. These classes correspond to localized 
and extended states. lo  For the contours that can be contract- 
ed to a point through continuous deformation (to them cor- 
respond the localized states), we have q = 0, whereas 
q = + 1 for the contours that traverse the entire system 
from x = 0 to x = L, . Since the edge states are delocalized 
states, we obtain from (9) the expression 

I,=- (e2 /h)  EL,(Y,-P,) . 

The trajectories r, and T2 are located near the edges of the 
system; therefore, for Ly + co , the difference between the 
mean values of the Ycoordinate is simply equal to the dimen- 
sion of the system: 7, - Y,+L,. Therefore, in an infinite 
system the Hall conductivity is equal to 

where E ,  > 0. Similar analyses can be performed for the 
higher Landau levels. As a result, we arrive at the ideal quan- 
tization ( 1 ) : it turned out that the localization of the volume 
states lying at the Fermi level is sufficient for this quantiza- 
tion, the existence of a gap in the spectrum of the states being 
unnecessary. 

But the main result of the analysis performed is not so 
much the formula ( 10) itself, which has been derived before 
by other methods in the drift approximation,99'0~27 as the 
new explanation of the quantization on the basis of the repre- 
sentation of the Hall current in the form of (9) and the gen- 
eral topological properties of the edge trajectories. As we 
shall see below, the proof given admits of a generalization to 
the case of an arbitrary potential V(r). Let us also note that, 
since the Hall conductivity was expressed only in terms of 
the properties of the states at the Fermi level, we were able to 
avoid the consideration of the delocalized state with E = 0 
(which actually carries the current), for the description of 
which the drift approximation is, apparently, not directly 
applicable. The point is that, in the immediate neighborhood 
of the percolation threshold E = 0 (in the absence of an elec- 
tric field) tunneling between neighboring equipotentials 
having the same energy is an important process (see Appen- 
dix 11). 

3. RESPONSE AT A FINITE FREQUENCY 

The general expression (5)  for the current allows us to 
also compute the conductivity at finite frequencies 
W(W, = eB /mc. If we take account of the fact that Y(T; t, 
R )  actually depends on the difference T - t (on account of 
the homogeneity of the equations (2)  with respect to the 

time), then after simple calculations we obtain from (5)  the 
expressions 

here S = L, Ly is the area of the system and 
rn 

P. (R) = lim d ~ P ( r ;  R) exp ( i w r s r ) ,  
a++o 

(12) 

where ?(T) denotes the time-reversed solution of the drift 
equations (2)  that satisfies the initial condition 
R(O) = (R).  At zero temperature we can again use the 
equality (7) ,  and express the conductivity in terms of only 
the drift trajectories at the Fermi level: 

e2 
ox, (o) =-iw - $~xP. (R) 

hS r 
(13) 

(ayy (w) is given be a similar formula with dX+ - dY). 
Here, as before, r is the equipotential curve V(r) = E,. 

In the region of high frequencies, the computation of 
the conductivity can be carried through. Indeed, at the lim- 
it5' W+CO the dominant contribution to the integral (12) is - 
made by the region of small T, where ?(T) Y(0) + r"Y(0). 
Taking account of the explicit form of the equations of mo- 
tion (2 ) ,  we obtain the following expansion in powers of the 
parameter l/w: 

Substituting ( 14) into the formula ( 11 ), we obtain 

where v is the degree of occupancy of the Landau level (in 
the B+CO limit v is equal to the ratio of the area occupied by 
the electrons toS). At zero temperature the derivative of the 
distribution function can be represented in the form 

after which the averaging over the random potential in ( 15) 
can be carried out without difficulty. For potentials V(R) 
distributed according to the Gaussian distribution with 

< V (R) > =0, ( V (R) V (0) > = Vo%xp (-RZ/a2), 

the averages in (15) can be computed with the aid of the 
equalities 

If in the expression for u,, (a) we also take account of the 

331 Sov. Phys. JETP 62 (2). August 1985 S. M. Apenko and Yu. E. Lozovik 331 



next term of the I/w expansion, then after a series of compu- 
tations we finally obtain 

where R, = 1 V,/O/fia2 and the function 

is proportional to the density of states at the lowest Landau 
level in the limit B+w. It can be seen from the formulas 
( 16) that, at high frequencies, the electron practically does 
not feel the potential V(r), and og (a) tends to the conduc- 
tivity tensor for the pure system. 

It is not possible to compute the conductivity exactly at 
lower frequencies, and we limit ourselves to a qualitative 
analysis. We shall assume that the trajectories at the Fermi 
level are circles with radii of the order of the localization 
length L (E, ), and that the motion along them is harmonic, 
with frequency a,. In the case when E, < 0 we find for the 
motion along the j-th circle that 

P(T; R) =Y cos o,t+X sin olt, 

after which a calculation with the aid of the formulas ( 12) 
and ( 13) yields the contribution of this circle to the conduc- 
tivity: 

where S, is the area enclosed by the circle. 
In order to take account ofthe irregularity of the poten- 

tial, let us further assume that the frequencies wj are ran- 
domly distributed around some characteristic frequency 
R (E, ). A simple estimation yields R - v/t (E, ), where 
v - I VJ& is the mean drift velocity and t ( ~ ,  ) is a typical 
length of the drift trajectory lying at the Fermi level. For E, 

not too close to zero, t(cF ) -a,  and we have from ( 16) that 
R(E, ) -a,. In real systems it is unlikely that this frequency 
will be much lower than the width of the Landau level, i.e., 
we can expect that R,- 10'0-1011 sec-'. Let us, for simpli- 

city, assume that the frequencies wj occur with probability 

P (a,) =2Q201 (w,Z+Qz) -'. (18) 

Other distributions lead to qualitatively close results. The 
summation over all the states can now be carried out in two 
stages. First we sum ( 17) over all the circles with fixed fre- 
quency wj. The result will be proportional to the total area 
enclosed by these circles, which is equal to vSP(wj ). After 
this, the summation over all the frequencies reduces to the 
averaging of ( 17) with weight P(wj ). For the continuous 
distribution ( 18) we obtain as a result the expressions 

where E, < 0, i.e., with 0 < v < 0.5. 
Similar calculations can be performed for the E, > 0 

case as well. The only difference (besides the existence of 
edge trajectories) consists in the fact that the regions bound- 
ed by the trajectories lying at the Fermi level are now free of 
electrons, and the direction of motion along these trajector- 
ies is reversed. If we take into account the fact that the tan- 
gent vector to the trajectory also changes sign (according to 
(7) its direction correlates with the direction of V V), then it 
can be shown that, > 0, the contribution of theindivid- 
ual circular trajectories to ax, coincide with (17), while the 
contribution to uxy differs from (17) only in sign. Taking 
these remarks into account, we find that, in the region 
0 .5<v< 1, 

and u,, is given by the formula (19) with v replaced by 
1 - v. This replacement, as well as the fact that the frequen- 
cy-dependent corrections in (20) and (19) have opposite 
signs, indicates that the frequency response in the region 
EF >O is determined by the contribution of the positively 
charged holes in the population of the Landau level. 

The dependence of o;, (w ) on the degree -v of occupan- 
cy in the model under consideration is schematically depict- 
ed in Fig. 2. It can be seen that the plateaus in axy are de- 
stroyed by the frequency-dependent corrections 6axy ( o ) ,  
whose sign depends on both vand the relation between w and 
R (E, ) .6' For w a n  the Hall conductivity given by the formu- 
las (19) and (20) tends to the conductivity = - e2v/h 
in the pure system, which agrees with the exact result ( 16). 
The dependences obtained qualitatively agree with the re- 
sults obtained in Ref. 22, in which S-function impurities are 
considered. 

Interesting phenomena should occur near the percola- 
tion threshold E, zO. In this region a typical equipotential 
curve has a complicated fractal structure, and bears absolu- 
tely no resemblance to a circle. Therefore, for ~ ~ 4 ,  the 
above-developed harmonic approximation cannot be used to 

FIG. 2. Dependence of the Hall conductivity on the degree vof occupancy 
of two values of the frequency: a) w < a,; b) 0 > a,. The dashed line analyze the conductivity in the entire frequency range. In the 
corresponds tow = 0. region of small E, values a trajectory lying at the Fermi level 
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is characterized by an entire set different scales, starting 
from the smallest, which is of the order of the correlation 
length a of the potential, and ending with the localization 
length L (E, ), which tends to infinity as E,+O. In this con- 
nection we should distinguish several frequency intervals. 

In the region of high frequencies w>R,, the result ( 16) 
is valid. The high-frequency conductivity is determined by 
the smallest spatial scale a, and therefore the divergence of 
the localization length at &,-A is not manifested in ( 16) in 
any way. For sufficiently small E, there exists a region of 
intermediate frequencies 

in which the fractal structure of the trajectories should be 
exhibited. From the standpoint of percolation theory, the 
region occupied by the electrons in the case when E, < 0 is a 
set of finite clusters, and since a typical cluster has a compli- 
cated structure in the vicinity of the percolation threshold, 
its contribution to the frequency-dependent conductivity 
will differ from ( 17). In the frequency region (21 ) we can 
expect for the response a universal frequency dependence, 
determined, for example, by the fractal dimensions of the 
cluster or its boundary. 

At low frequencies ~ ( R ( E , )  the response should be 
determined by the entire period of the motion. Therefore, we 
have at the w-0 limit the estimate 

o=(o) --io/L?(ep), Re (o,,+ne2/h) - ( (~ /Q(E+)  1'. (22) 

The equipotential curve having a length equal to t ( ~ ,  ) is the 
outer boundary of the cluster, and for large clusters tj -SY9, 
where? is the area of the cluster.34 According to the scaling 
theory of percolation,35 the area of a typical cluster behaves 
in the region of small E, values like E; I/", where in the two- 
dimensional case ~ ~ 0 . 3 9 .  Then for the characteristic fre- 
quency a(&, ) we obtain in the & , - a  limit the estimate 

Q ( E ~ )  -t-'-&+l, (23) . , 

where y z 2.3. Since at low frequencies ox, - - i d  '(E, ), 
where L (E, ) is the localization length, we find from (23) 
that L (E, ) -E; ", and that v z  1.15. This result is quite close 
to the value, v = 1.35, obtained when we take as L (E, ) the 
correlation length for two-dimensional percolation theory." 

These estimates cannot, apparently, be extended too 
close to the point EF ~ 0 ,  where the quantum effects are im- - 

portant (see Appendix 11). Therefore, we can expect the 
occurrence in the energy region E, - (1 /a)'V, a transition 
from the value of the critical exponent v given by percolation 
theory to another v value characteristic of the quantum lo- 
calization regime. It should also be emphasized that, at very 
low frequencies w < V, exp( - a2/21 '), the tunneling effects 
are the controlling effects even at E, - V,. In this frequency 
region, which is very narrow when a>l, the use of the well- 
known Mott arguments leads to the result36 
Re u,, - p 2 ( ~ F ) ~ Z  In w2. 

4. GENERAL RELATION BETWEEN THE HALL 
CONDUCTIVITY ANDTHE EDGE STATES. QUANTIZATION OF 
THE EDGE CURRENT 

The proof, given for the case of a smooth potential in 
Sec. 2, of the quantization of the Hall conductivity is based 

on the relation between a,, and the characteristics of the 
edge trajectories (the formula (9)  ). Let us now show that 
this proof can be generalized to the case of an arbitrary ran- 
dom potential V(r) . 

Let us consider the previous system of finite dimen- 
sions, located in an external electric field E, which we shall 
now describe with the aid of the Hamiltonian 

+ e E y f  V ( x ,  Y ) ,  (24) 

where V(r) is the sum of a random and a confining potential 
and 6 is an arbitrary parameter. In the case of periodic 
boundary conditions, $(O, y )  = $(L,, y), for the motion 
along the X axis we can assume that the electron motion 
occurs on the surface of a cylinder. In this configuration the 
introduction of the parameter 6 corresponds to the addition 
to the system of a solenoid placed on the axis of the cylinder, 
and containing a magnetic flux proportional to 6 (Refs. 4, 
13, and 37). The parameter 6 can be eliminated from the 
Hamiltonian by means of the gauge transformation 

g(x, y)-t$(x, Y) exp (-iExlLz). (25) 

In that case, however, the new wave function will satisfy 
modified boundary conditions: $(O,y) = $(L, ,y) 
X exp (igL, /12). Only when 5 = 2nd 'k /L, (k  is a whole 
number) will the boundary conditions remain unchanged 
and (25) be an admissible gauge transformation. 

Let us further note that, in the limit L, -+ w , the observ- 
able quantities computed for a fixed temperature and a fixed 
chemical potential p should not depend on the gauge vari- 
able ''6 (cf. Ref. 17). Indeed, any physical quantity assumes 
thesamevalueat the points6 = 6, = 2nd 'k /L, , since in this 
case the parameter 6 can be eliminated by means of the gauge 
transformation (25). In the limit L, + W  , when the system 
under consideration turns into a strip of infinite length, the 
points 6, become infinitely closely bunched up, and any de- 
pendence on 6 disappears. From this it follows, in particular, 
that in the state of thermodynamic equilibrium the total cur- 
rent flowing along the X axis should be equal to zero (even in 
the presence of an external electric field). Indeed, the equi- 
librium current can be represented in the form 

where v, is the velocity operator, the la') are the exact eigen- 
states of the Hamiltonian (24) with the eigenvalues E:, f , ( ~ )  

is the Fermi distribution function, and R (p,T) is the ther- 
modynamic potential of the system of noninteracting elec- 
trons. Since in the L, - w limit R does not depend on 6, the 
equilibrium current (26) vanishes. 

Let us now expand the current (26) in a series in powers 
of the electric field (in the case of finite L, ), and let us limit 
ourselves to the terms linear in E. Then from the fact that the 
equilibrium current is equal to zero we obtain 
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where la) and la ) are the E = 0 eigenstates with energies&, 
and E~ respectively. The first term in (27) is simply the 
Kubo formula for the static Hall conductivity. Since the 
electric field enters into the electron Hamiltonian only in the 
form 6H = eEy, we have in the E 4  limit 

Taking these observations into account, we find from (27) 
that at zero temperature 

Only the current-carrying states (for which (alu, la) #O)  
lying at the Fermi level make a contribution to the right- 
hand side of the formula (28). If all the E, = E, states inside 
the system are localized, or if E, falls within the gap in the 
spectrum of the volume states, then such current-carrying 
states can exist only at the edges of the system.8' The physical 
meaning of Eq. (27) then become clear: at equilibrium the 
bulk currentj, = ax, E carried by the delocalized states with 
E, < E~ is fully compensated by the total edge current that 
arises because of the difference in the electron concentra- 
tions at the opposite edges. It is precisely because of this that 
we are able to represent the bulk conductivity a,, in the form 
of a sum over only the edge states. The direct analog of the 
expression (28) in the strong-magnetic-field limit is the for- 
mula (9) obtained earlier. 

Let us now take into account the fact that the edge 
states are localized near the edges of the system, and there- 
fore yla) =: + (L,/2) la) and the edge currents flowing 
along opposite edges in the case E = 0 are equal in absolute 
value, but have different directions. Then we obtain from 
(28) in the limit L, -t co the expression 

The prime on the summation sign indicates that the summa- 
tion in (29) is over only the edge states near one of the boun- 
daries (y = - L, /2), i.e., virtually over the delocalized 
states in a semifinite system. We denote by i ( ~ )  the contribu- 
tion of the states with energy E to the total current (per unit 
length) flowing near the edge. 

Since the thermodynamic limit IT,, does not depend on 
the specific properties of the edge, the current i ( ~ , )  should 
also possess this property. This is most easily proved in the 
case when there is a gap in the spectrum of the volume states, 
and the Fermi level lies in the gap. Then the current i(&, ) 
turns out to be connected with the magnetic moment M of 
the system (see Appendix 111), and we obtain from (29) the 
following well-known formula for the Hall conductiv- 
ity8,19,38,39. 

where n is the mean electron density at a fixed Fermi energy. 
In the more general case, when there is no gap in the spec- 
trum, this formula is no longer applicable, but the current 
i ( ~ ~ )  carried by the states at the Fermi level in a semifinite 
system all the same assumes only universal quantized values. 

To prove this assertion, let us introduce some new con- 
cepts. Let us consider the Schrodinger equation with the Ha- 
miltonian (24) with E = 0. Let us eliminate the parameter 6 
from the Hamiltonian with the aid of the transformation 
(25). Then, as noted above, the dependence on 6 will show 
up in the boundary conditions 

Since when 6 is changed by an amount that is an integral 
multiple of 2371 '/L,, the boundary conditions remain un- 
changed, any solution of the Schrodinger equation will, 
when subjected to the transformation 

which consists in the adiabatic variation of the parameter 6, 
again go over into a solution of the same equation with the 
same boundary conditions. For localized states the explicit 
form of the boundary conditions is unimportant, and they do 
not depend on f at all in the limit L, +CO, but this is not the 
case for extended  state^.'^.^'.^^ Therefore, the group 
G = {T ; k = 0, 1, + 2, ... ) (the transformation that is 
the inverse of (30), and that is defined as the decrease of6 by 
2371 ' /L ,  ) has a nontrivial effect on the set of all delocalized 
states. 

If now we choose some delocalized state lao), then we 
obtain through the successive application of the operation T 
a set of delocalized states lao(k)) = T la,), called the or- 
bit of the state lao) with respect to the group G. The entire 
set of extended states then splits up into nonintersecting 
equivalence classes (orbits) under the action of the group G 
(twostates la) and ) areequivalentif la) = gla ) forsome 
g E G). For example, in the V(r) = 0 case all the states of a 
given Landau belong to one orbit, since the transformation T 
in this case simply changes they coordinate of the center of 
the cyclotron circle. In the general case several orbits can 
correspond to each Landau level. 

As a result we obtain a convenient classification of the 
extended states, in which each such state is completely speci- 
fied by giving the orbit to which this state belongs and the 
integer k specifying the position of the state in question on 
this orbit. 

Let us now ?eturn to the expression (29) of the current, 
which contains a sum over all the extended states in a semi- 
finite system (since it is assumed that there are no extended 
states at the Fermi level in the interior, only the edge states 
actually make a contribution to the sum). We can, in accor- 
dance with the above-proposed classification of such states, 
rewrite the sum in (29) in the form 

where we perform first the summation over the states be- 
longing to the N-th orbit, and then the summation over all 
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the orbits. In the limit L, -+a the transformation (30) cor- 
responds to an infinitesimal change in the parameter g, 
which leaves the expression under the summation sign al- 
most unchanged. Therefore, the summation over k can be 
replaced by integration. If next we use the fact that 
dk = (L, /27rl ')d6, and (a Ju, (a) = ( I  '/fi)d&, /dl, then 
from (3 1 ) we obtain 

(32) 
where N+ is the number of those intersections of the Fermi 
level by the orbits of the group G for which d~,/dg > 0 when 
EN (6) = E~ and N- is the number of intersections for which 
this derivative is negative. If there is no scattering potential, 
then N -  = 0, and N+ coincides with the number of filled 
Landau levels. Although this is not so in the general case 
(see Refs. 11, 12, and 20, in which the quantization of uxy in 
a periodic potential is considered), the current i ( ~ ,  ) always 
assumes only quantized values. 

Since the bulk Hall conductivity is equal to - ei(EF ), 
we have thus shown that, in the case when there are no cur- 
rent-carrying states at the Fermi level inside the system, ox,, 
in an infinite system and at zero temperature can assume 
only values that are integral mutiples of e2/h. It should be 
noted that an expression containing an integral similar to 
(32) is obtained in Ref. 13 for the Hall current in a disor- 
dered system. The distinctive feature of our approach con- 
sists in the fact that the quantization of uxy is explained as 
being the result of the quantization of the current carried by 
the edge states, in accordance with the clear picture obtained 
within the framework of the drift approximation. 

In conclusion the authors express their gratitude to L. 
V. Keldysh, D. A. Kirzhnits, V. L. Pokrovskii, and D. E. 
Khmel'nitskii for useful discussions of the results of the in- 
vestigation. 

APPENDIX I. 

From the Kubo formula we can, following Ref. 41, ob- 
tain for the Hall conductivity in the limit B--+a the expres- 
sion 

ox,=-ecnlB+6o,,, (33) 

where Y ( T )  is the solution to the drift equations (2)  with 
reversed time andB is the reciprocal temperature (the nota- 
tion here is some-what different from the one used in Ref. 
41). Using the identity 

and integrating by parts in (33), we finally obtain 

where Y2 and Yl are the coordinates of the edges of the sys- 
tem. The first term in (34) is obtained in Ref. 41, but in our 
case it is equal to zero, since&( V) = 0 at the edges. The 
second term is not obtained in Ref. 41, since ergodicity is 
assumed there, and S is taken to be equal to zero from the 
very beginning. But in the presence of a confining potential, 
because of the contribution of the edge states, the integrand 
in (34) does not decrease at 7-00, if we set 6 = 0. There- 
fore, the last term in (34) possesses a finite, nonzero limit at 
8 4 .  It is easy to verify that (34) leads to the expression (5)  
for the current. 

APPENDIX 11. 

Let us estimate the energy region around the percola- 
tion threshold E = 0 where the processes of tunneling 
between neighboring equipotentials having the same energy 
are important. Let us assume that two such equipotentials 
come closest to each other in the vicinity of the saddle point 
lying on the trajectory with E = 0. If we assume that the 
separatrices of the saddle coincide with the coordinate axes, 
then in the neighborhood of the saddle point we have 

and the drift trajectories have the form of hyperbolas. The 
shortest distance between two trajectories with energy E in 
this case is d = ( ~ E / c )  '". Tunneling is important when 
d 5 I. But in the region of energies 

when (d ))I, the quantum effects can be neglected. Of course 
in the case of a purely periodic potential the tunneling pro- 
cess is important at any energy because of the resonance 
effects, which, however, disappear in the presence of even a 
slight disorder. Let us note that, in a strong magnetic field, 
the energy region AE is much smaller than the total Landau- 
level width, which is of the order of (I V I). The transition 
from the classical picture of the localization to the purely 
quantum picture can be expected to occur in the region 

1 ~ 1  <A&. 

APPENDIX Ill 

The quantity i ( ~ )  is equal to the contribution of the 
edge states with energy E to the diamagnetic current, 
I, = cM ( M  is the magnetization), per unit length flowing 
in the vicinity of one of the edges. The fact that the diamag- 
netic current flows alongside the edges is an obvious conse- 
quence of the equalityj = c curl M, since the current density 
is nonzero only at the edges, where M decreases to zero. It 
should be emphasized that, unlike the total transport cur- 
rent, the current flowing near one edge includes a contribu- 
tion from the localized volume states; therefore, in the gen- 
eral case 

where i , (~ )  is the contribution of the volume states. Only in 
the case when the Fermi level lies in the gap in the spectrum 
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of the volume states do we have i , ,(~, ) = 0 and 

from which we immediately obtain the formula for a,,, given 
in the text. The fact that the Hall conductivity in the situa- 
tion under consideration can be expressed in terms of the 
magnetic moment has been pointed out by Widom3' and 
Streda and S r n r ~ k a . ~ ~  

"This drift approximation describes the opposite limiting case with re- 
spect to the 6-function impurity m o d e l ~ . ~ . ~ ~  Since a real random poten- 
tial contains both short-wavelength fluctuations with a <I ( a  is the cor- 
relation length of the potential) and fluctuations with a%/ (Ref. 23), 
both limiting cases are equally worthy to be studied. 

''This assertion is valid in the general case as 
3'The entire subsequent analysis can be generalized without difficulty to 

the case of an arbitrary Landau level. 
4'The B-tm limit is the classical limit in a system of interacting electrons 

as well. It turns out that we can also obtain general expressions for the 
thermodynamic quantities in the form of power series in 1/B, the coeffi- 
cients of which can be expressed in terms of the total potential energy and 
its derivatives averaged over the classical Boltzmann di~tribution.~' 

"This limit indicates that o is much higher than the characteristic fre- 
quencies of the drift motion, but, of course, o<o,. 

@Pepper and Wakabaya~h i~~  have experimentally observed the destruc- 
tion of the plateuas in the very low frequency region (1-10 kHz). The 
dependencies obtained by them cannot be explained by the present mod- 
el, and are apparently of different origin (see, in this connection, Ref. 
33). 

7'Let us emphasize that we are speaking of equilibrium values computed at 
fixed 6. The energy an the other physical quantities vary in the course of 
the adiabatic variation of 6. 

"Let us recall that, in a magnetic field, there always occur near the edges 
delocalized states (corresponding to "hopping" electrons) that survive 
in the presence of di~order.~.'' 
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