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The problem of the motion of a quasiparticle in an inhomogeneous crystal is considered. The form 
of the quasiparticle kinetic energy operator in the effective-mass approximation and the condi- 
tions for admissible spatial dependence of the effective mass are obtained from the general re- 
quirements of hermiticity of the Hamiltonian, probabilistic interpretation of the wave function, 
and Galilean invariance. 

The effective mass approximation is often employed in the where $,,, are arbitrary square-integrable functions satisfy- 
investigation of the effects connected with the quantization ing the matching conditions, leads us (after integration by 
of the motion of quasiparticles in thin films and heterostruc- parts in the x < 0 and x > 0 regions) to the requirement that 
tures. It is then necessary to find the conditions for the y = p/S*, where p = m+/m-, i.e., that 
matching of the wave functions in the various regions. Also 
of interest is the problem in which the effective mass is a $ (+O) =6$ (-0) , $'(+O) =(y/6*) I)'(-0). ( 3 )  

continuous function of the coordinates, as in, say, a semicon- 
ductor with variable doping. Similar problems are consid- 
ered in, for example, Refs. 1-5. The main difficulty here con- 
sists in the choice of the right form of the kinetic-energy term 
in the Hamiltonian. Various Hermitian operators that go 
over into the usual operator - (h2/2m ) A  in the case of a 
homogenous sample have been postulated for this term. The 
various operators lead, naturally, to different r e~u l t s .~  The 
assertion is made in Ref. 3 that this operator is, in principle, 
not unique, and, consequently, the effective mass approxi- 
mation is not suitable for the description of the motion of a 
particle in an inhomogeneous medium. As a matter of fact, 
the kinetic energy operator is uniquely defined. An addi- -- - - - 

tional condition that makes a unique choice possible is that 
the solution to the corresponding Schrodinger equation 
should be a wave function, i.e., it should admit of a probabi- 
listic interpretation. 

Let us first consider as an example the following one- 
dimensional case. Let the coordinate of the boundary 
between two regions be x = 0, and let the effective masses in 
the regions to the left and right of the boundary be respec- 
tively equal to m- and m +. We shall assume here that the 
motion in each region is exactly described by the effective- 
mass equation, i.e., that the kinetic energy operator in the ith 
region has the form 

Assuming that the model does not contain any parameters 
having the dimensions of length, and describing the bound- 
ary, we are forced to require that 

where 6 and yare dimensionless quantities. Then the hermi- 
ticity condition for the Hamiltonian: 

Forp  = 1, the continuity condition for $ I / $ ,  which follows 
from the momentum-conservation requirement, should be 
fulfilled at the boundary. Accordingly, S = 1 when p = 1. 
Whenp # 1, this requirement is not legitimate, on account of 
the inhomogeneity of the space, and S becomes a free param- 
eter. Let us find out what this parameter depends on, and 
what the form of the dependence is. 

Let us consider a crystal with smoothly varying proper- 
ties, in which the mass will be a continuous function of the 
coordinates. The probability of finding the particle in the 
vicinity of the point x is proportional to the square of the 
modulus of the true wave function: 

where uo(x) is the Bloch function corresponding to the bot- 
tom (top) of the band in question in the spatial region under 
investigation, a region which is large compared to the intera- 
tomic distance, while p ( x )  is a slowly-varying envelope 
function, for which the effective mass approximation is valid 
in this region. The latter implies that the quasimomentum 
operator acts on the function p ,  and is equal top, = - iW / 
dx,, while the kinetic energy in the "classical limit" (i.e., in 
the limit of a homogeneous sample or a sufficiently rapidly 
varying p) has the form 

where yi, is an element of the reciprocal effective mass ten- 
sor. 

Averaging (4) over a scale large compared to the inter- 
atomic distance, we obtain 

whereg(x) is the average value of 1 uo(x) l 2  in a unit volume, 
i.e., is a quantity that is inversely proportional to the volume 
of the unit cell. Thus, the scalar product of the envelope 
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functions should be defined as 

(91, .p2) = J g (4 pi (XI  r p 2  (4 dx. 

In complete analogy with the problem of quantization in 
Riemannian space,6 it is not difficult to show that in this case 
the kinetic energy operator acting in the space of the func- 
tions q, has the form 

Let us note in parentheses that, for the case of Riemannian 
space the correctness and uniqueness of precisely this form 
of the operator T can be verified through a direct change of 
variables.' 

The analysis of the problem in the space of the functions 
q, is not convenient, in view of the fact that q, is not a wave 
function, since Jq, l 2  does not have the meaning of a probabil- 
ity density, and 

does not have the meaning of a probability-flux density. 
Therefore, let us introduce in place of the envelope functions 
effective-mass approximation wave functions, for which 
these combinations have the meaning of averages over a 
small, but macroscopic range of values of the corresponding 
quantities. Clearly, these functions are connected with the 
functions q, by the relation 

The Schrodinger equation for the function qh in the case 
when all the parameters are continuous has the form 

with the kinetic energy operator having the form of a sym- 
metric monomial-in complete agreement with the results 
obtained in Ref. 4. But let us note that here the quasimomen- 
tum operator acting in the space of the qh functions is equal to 

where g(x)  is a real function. Thus, we have to pay for the 
introduction of the wave functions by having the commuta- 
tion relations violated, and the requirement that these rela- 
tions be valid leads to the necessity of defining the scalar 
product in the form (6),  i.e., of working in space with curva- 
ture. 

The assertion is made in Ref. 3 that the Schrodinger 
equation with the Hamiltonian in which the mass depends 
on the coordinates leads to results that are not invariant un- 
der the Galilean transformations 

x'=xf vt, tf=t. (10) 

This assertion is valid not for all such Hamiltonians, but only 
for the spherically symmetric model considered in that pa- 
per. 

The Galilean transformations change the equation 

ih$=(T+U)$ (11) 

into the equation 

The solution to (12) should be related with the solution to 
( 1 1 ) by a unitary transformation: 

Substituting ( 13 ) into ( 12), and equating to zero the coeffi- 
cients of those space derivatives of $ which are not contained 
in ( 11 ), we see that such a transformation exists only if the 
system of equations 

where the mV are the elements of the effective mass tensor, 
i.e., the inverse of the tensor yV, possesses a solution. The 
equality of the mixed derivatives, i.e., the relation 

d20/dxidx,=a20/dxjdz,  (15) 

leads to the conditions 

which, together with the requirement that the tensor mu be 
symmetric, lead to the result that this tensor is always a ten- 
sor composed of the second derivatives of some scalar field: 

a= 
mu =- 

a x ,  a x j  M (4. 

The only case in which the tensor mu satisfies ( 17) and real- 
izes the spherical symmetry of the operator T is the case 
corresponding to m = const, as demonstrated in Ref. 3. 
Thus, the conclusion, drawn in Ref. 3, that a Hamiltonian 
with a variable mass is not Galilean invariant is not correct. 
The invariance of the physical processes under the Galilean 
transformations leads to the requirement ( 17). The corre- 
sponding tensor may not only not have identical diagonal 
elements, it may, in the general case, not even be simulta- 
neously reducible to the principal axes at all points in the 
crystal. 

Returning to the case with a sharp boundary, we shall 
not easily understand the origin of the parameter 6. In order 
for the kinetic energy operator to have the form ( 1 ) every- 
where, except in the boundary region, we shall have to set 
g(x)  = g- = const for x < 0 and g(x)  = g+ = const for 
x > 0. Then from Eq. (9) we immediately obtain the match- 
ing conditions 

which correspond to ( 3 )  with 6 = (g+/g-)'I2. For the 
boundary between crystals with the same symmetry and lat- 
tice constant 6 = 1, and the matching conditions coincide 
with those obtained in Refs. 5 and 8. Let us point out that the 
condition (3),  which does not require the validity of the 
effective-mass approximation inside the boundary region, is 
more general that ( 18). This should be understood in the 
sense that, if the boundary is sharp on the microscopic scale, 
the condition (3) is fulfilled, but the relation 6 = (g+/  
g- )'I2 does not hold. We shall verify this with the example 
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given at the end of the paper. 
The quantity S is, in the effective-mass approximation, 

an important parameter, which describes the boundary. 
Knowing it, we can easily determine, for example, the coeffi- 
cient of reflection from the boundary between the materials: 

where U  is the potential jump at the boundary. When U = 0  
andp > 0 ,  the quantity R is equal to zero at 161 = p1I4 and to 
unity when S = 0,  co . 

Now let us consider as an example how the equations 
( 7 )  and ( 9 )  and the condition ( 3 )  can be obtained within 
the framework of the simplest microscopic approach: the 
tight-binding approximation. Let our one-dimensional mod- 
el be described by the Hamiltonian 

whose matrix elements en and V,, depend on the site num- 
ber, with V,, # O  only for sites that are nearest neighbors. 
For the amplitude p, of the excitation at the nth site we have 
the difference equation 

When en = e  and V,, = - V  the dispersion law is given by 
the relation 

E (k) =e-2V cos kn, ( 2 2 )  

where a  is the interatomic distance. For V >  0  the bottom of 
the band corresponds to k = 0 ,  and the effective mass 

is determined by the parameters V  and a. 
Introducing in place of the discrete variable n a contin- 

uous variable y that assumes the value n at the nth site, and 
setting 

we obtain, on going over to the continuous case, the differen- 
tial equation 

which is valid provided E - U ( y )  ( 1 .  Let us now go over 
from the dimensionless variable y to the variable x  according 
to the rule y = x / a ( x ) ,  where a ( x )  is the interatomic dis- 
tance in the vicinity of the point x .  This corresponds to the 
substitution 

The last expression has the form of ( 7 ) ,  with the function 
g ( x )  = l / a ( x ) .  

It is also not difficult to consider within the framework 
of this model the case of a microscopically sharp boundary. 

Let en = el, V, - ,, , = - V, for n(O and en = e,, 
V,, , + , = - V2 for n> 1 ,  and let a ,  and a ,  be respectively 
the interatomic distances in the regions to the left and right 
of the point 0 .  In order to investigate the matching condi- 
tions in the pure form, and avoid a jump and a singularity in 
the effective potential at the boundary, we shall have to set 

Thus, our model with U = 0 contains two dimensionless pa- 
rameters: the ratios v = V1/V2  and a = a1 /a2 ,  withp = va2 .  

If v = 1, then 

The quantity $ ( x ,  ), where x,  is the coordinate of the nth 
site, differs from q, only by a constant factor, which has 
different values in the regions to the right and left of the 
boundary because of the different modes of normalization 
adopted for q, and $. Thus, when v = 1 the function $under- 
goes a jump: 

Since the presence of the boundary in this case is not in any 
way manifested in the Hamiltonian ( 2 0 ) ,  there is no reflec- 
tion from it, so that 6 = p1I4, in complete agreement with 
( 19).  For arbitrary v and a 

$ (+O) = ( v a )  (-0) , 

$' (+0) =v'"a"ll) (-0) =p ( v a )  -"$' (-0) , 
( 2 5 )  

so that S = (va) ' I 2 .  If by chance V,, # ( V,V2) 'I2, but the 
effective-mass approximation is valid for both x  <O and 
x  > 0,  then the matching condition has, in first order in 
w = V,, - ( Vl V2) ' I 2 ,  the form 

The correction, proportional to o, to the derivative can be 
interpreted as the contribution of a &function potential lo- 
cated to the right of the boundary: 

This "impurity" potential can also be considered to be locat- 
ed to the left of the boundary; the second equation in ( 2 6 )  
can then be written in the form 

The expression obtained from ( 2 5 )  for 6 does not coin- 
cide with the expression obtained from ( 18 ), since ( 2 5 )  cor- 
responds to the limiting case of a microscopically sharp 
boundary, whereas ( 18) was obtained under the assumption 
that all the quantities vary smoothly on the microscopic 
scale. The general relation (3) is naturally valid for both 
cases. 

The author is grateful to P. V. Elyutin for indicating to 
him the connection between the above-considered problem 
and the problem of quantization in Riemannian space, as 
well as L. V. Keldysh and A. P. Silin for extremely useful 
discussions. 
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